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The tumor immune microenvironment has been a research hot spot in recent

years. The cytokines and metabolites in the microenvironment can promote

the occurrence and development of tumor in various ways and help tumor cells

get rid of the surveillance of the immune system and complete immune

escape. Many studies have shown that the existence of tumor

microenvironment is an important reason for the failure of immunotherapy.

The impact of the tumormicroenvironment on tumor is a systematic study. The

current research on this aspect may be only the tip of the iceberg, and a relative

lack of integrity, may be related to the heterogeneity of tumor. This review

mainly discusses the current status of glucose metabolism and lipid

metabolism in the tumor microenvironment, including the phenotype of

glucose metabolism and lipid metabolism in the microenvironment; the

effects of these metabolic methods and their metabolites on three important

immune cells Impact: regulatory T cells (Tregs), tumor-associated

macrophages (TAM), natural killer cells (NK cells); and the impact of

metabolism in the targeted microenvironment on immunotherapy. At the

end of this article,the potential relationship between Ferroptosis and the

tumor microenvironment in recent years is also briefly described.
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1 Composition and characteristics of
tumor microenvironment

The tumor microenvironment is closely related to the

occurrence, development, and metastasis of tumor. From the

perspective of the composition of the tumor microenvironment,

in addition to the tumor cells themselves, this microenvironment

also includes immune cells, fibroblasts, extracellular matrix, blood

vessels, et (Figure 1) (1). Immune cells in the tumor

microenvironment can be temporarily divided into two camps.

One is the immune cell camp that can effectively fight tumor,

including effector T cells, NK cells, and M1 macrophages; the

other is to help tumor cells get rid of immune system monitoring,

the immune suppressive cell camp that promotes tumor growth,

including Tregs, M2 macrophages, Myeloid-derived suppressor

cells (MDSC), and resistant dendritic cells. It can be said that the

immune suppressive cells that exist in the second camp are our

betrayers. Because under normal circumstances, we also need

these immune suppressive cells to balance the effects of the

immune system, control the strength of inflammation, and

prevent excessive Injury caused by inflammation. It’s just that in

the tumor microenvironment, they are bought by the tumor and

exert a more vital immune suppressive ability. More and more

studies have shown that Tregs can kill effector T cells and antigen-

presenting cells through a variety of ways: Tregs inhibits effector T

cells through the PTEN-PI3K signaling pathway (2, 3); Tregs can
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secrete a variety of anti-inflammatory factors (IL-10, IL- 35, TGF-

b) blocking the function of dendritic cells, it can also promote

more Naive T cells to transform into Tregs (4–6); M2 type

macrophages can combine with PD-1 on effector T cells

through high expression of PD-L1, Inhibit the function of T

cells (7). MDSC inhibits the function of T cells by expressing

myeloid cell receptor tyrosine kinases (TYRO3, AXL, MERTK)

and CD39 and CD73 (8, 9). Tolerant dendritic cells is used for T

cells through PD-L1, FAS-L-mediated cell contact mechanism,

and can also be used to secrete immunosuppressive cytokines like

IL-10 and TGF-b which act on T cells to inhibit the function of T

cells (10). Of course, this cannot be all to blame for them, because

our “police”, those cells belonging to the first camp, when they

enter the tumor microenvironment, are like being dissatisfied with

water and soil, showing a lack of function and reduction on the

quantity (11, 12). Therefore, in general, the power of the two

camps in the tumor microenvironment is entirely unsuitable. This

situation has also led to tumor that can get rid of the surveillance

of our immune system, grow and metastasize unscrupulously. At

the same time, it also brought considerable obstacles to

our treatment.

So, what caused the formation of such a microenvironment?

The reasons can be tentatively divided into two aspects. Many

cytokines inhibit inflammation in the tumor microenvironment

(13); the other is the unique metabolism of tumor cells and the

impact of metabolites on immune cells (14). Clarifying the specific
FIGURE 1

The tumor microenvironment. The tumor microenvironment contains many cells such as tumor, TAM, Tregs, NK cells, Fibroblast.
Immunosuppressive cells (M2 and Tregs) show an increase in number and function in this environment. However, immune cells (M1 and NK
cells) show a decrease in number and weakened function.
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mechanisms that affect the tumor microenvironment in these two

aspects is of great help to our supplementary immunotherapy.
2 Glucose metabolism in the tumor
microenvironment

Growing tumor are characterized by insufficient blood

attention and hypoxia (15). Hypoxia in tumor is well

understood because of the constant consumption of wildly

growing tumor and the lack of adequate oxygen supply.

Therefore, this situation will activate the hypoxia inducible

factor HIF-1 and start a series of compensatory responses.

HIF-1 is composed of two subunits, HIF-1a and HIF-1b. HIF-

1b plays a structural role in the protein and is stably expressed in

cells. This appearance is different from HIF-1a and is not

restricted by oxygen (16). While HIF-1a is an active subunit,

it is usually degraded by ubiquitination under normal oxygen

conditions. The typical mechanism for regulating HIF-1 is that

under the condition of sufficient oxygen, the proline and

asparagine on HIF-1a are hydroxylated by prolyl hydroxylase-

domain protein (PHDS) and factor-inhibiting HIF (FIH). At the

same time, pVHL will accumulate multiple proteins [von

Hippel-Lindau tumor suppressor protein (VHL), Elongin B,

Elongin C, cullin 2 (CUL2) and RING-box protein 1 (RBX1)]

to form a complex, and this complex will combine with ubiquitin

ligase E2 to complete the ubiquitination and degradation of HIF-

1a. When under a hypoxic environment, PHDS, FIH and pVHL

lose their original activity due to oxygen limitation, helping HIF-

1a escape and accumulate from the fate of ubiquitination (17).

In the new research, long non-coding RNA is also involved in

the protection of HIF-1a under hypoxia, which can be called an

atypical HIF-1 regulatory mechanism (18). Under this

mechanism, HIF-1a and HIF-1b form a heterodimer and play

an important role.

HIF-1 is the switch of cell metabolism from mitochondrial

oxidative phosphorylation to glycolysis because cells can only

survive by accelerating energy production under hypoxic

conditions. PI3K/AKT/mTOR pathway and HIF-1 are central

regulators of glycolysis. At the same time, HIF-1 plays a vital role

in regulating critical enzymes of aerobic glycolysis (19, 20). In

addition, HIF-1 has also been shown to activate pyruvate

dehydrogenase kinase, which converts mitochondrial oxidative

phosphorylation to glycolysis by degrading the pyruvate

dehydrogenase required in the tricarboxylic acid cycle (21). Many

scholars, therefore, believe that the hypoxia-induced accumulation

of HIF-1 in the tumor microenvironment promotes glycolysis, and

metabolism is one of the reasons for the Warburg effect (22).

Mammals are supposed to obtain sufficient energy through

mitochondrial oxidative phosphorylation. Under aerobic

conditions, the tricarboxylic acid cycle can oxidize pyruvate

produced by glycolysis to carbon dioxide and produce

Nicotinamide adenine dinucleotide (NADH) and FADH2, which
Frontiers in Oncology 03
are then made through the electron transport chain a lot of ATP.

After a glucose molecule is oxidized, 36 ATP molecules can be

produced. However, among tumor cells, even in an environment

with sufficient oxygen, they tend to rely on glycolysis. This effect is

called the Warburg effect (23). The final product of glycolysis is

lactic acid produced by pyruvate through lactate dehydrogenase.

During this process, each glucose molecule produces 2 ATP. In the

early days, we did not know why tumor cells would use such

inefficient energy production. However, with the deepening of

research, researchers have discovered that the Warburg effect is

not only the metabolic reprogramming of tumor cells but also helps

the occurrence and development of tumor. Because tumor cells can

transfer the produced lactic acid into the tumor microenvironment

through the monocarboxylic acid transporter (MCT) on the cell

membrane, and finally form a low glucose, high lactic acid

microenvironment, such an environment is suitable for the

survival of immunosuppressive cells. It can damage immune cells

and help tumor cells escape immune surveillance (Figure 2) (24).

Given these effects of lactic acid, they measure the level of lactic acid

in tumor and throughout the body has shown promise as a marker

for detecting and prognosis of certain cancers (25). Among patients

with gastric cancer, the level of norepinephrine was significantly

increased, while the norepinephrine degrading enzymes MAOA

and MAOB were reduced considerably. Elevated norepinephrine is

related to activated glycolysis, so the levels of MAOA andMAOB in

tumor tissues are closely related to the prognosis of patients with

PD-1 and other immunotherapy (26).However, these conclusions

were based on the finding that tumor cells consume high levels of

glucose. It is true that FDG-PET does not always provide the results

clinicians expect. So, in 2021, a study upended 100 years of basic

understanding of the metabolic model of cancer. The study used

two PET tracers, one for glucose and one for glutamine, to separate

the cancer tissue, using cell-surface marker proteins and flow

cytometry to separate the tumor into cells and measure

radioactivity in the cells. The results showed that in six cancers,

including rectal, kidney and breast, myeloid immune cells absorbed

the most glucose, followed by T cells and cancer cells. Cancer cells

take up themost glutamine. Further studies revealed that the uptake

of different nutrients by different cells depended on specific

signaling pathways. So this study overturns 100 years of thinking

that tumors suppress other immune cells by competing to get too

much glucose. Instead, cells are metabolically reprogrammed to take

in certain nutrients in response to specific cellular signaling

pathways. This will help us further develop specific targeted

therapies, as well as more effective PET methods that allow

clinicians to better see where the tumor is (27).

It is worth noting that an effect called reverse Warburg seems

to be different from traditional views. This study believes that

fibroblasts in the tumor microenvironment exhibit high

glycolytic activity. The lactic acid produced is released into the

microenvironment through MCT1 and is taken up by tumor

cells for oxidative stress phosphorylation(Figure 2) (28). The

detection of MCT1 content in tumor stroma has also become a
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predictor of adverse outcomes in triple-negative breast cancer

(29). However, such effects may only be manifested in certain

types of cancers. In addition, tolerant DC cells have also been

shown to weaken the role of T cells by releasing lactic acid and

acting on T cells (30). Regardless of the Warburg or reverse

Warburg effect , the high lactic acid in the tumor

microenvironment is specific. It has reason to believe that this

is the joint effect of multiple cells in the microenvironment.

Secondly, HIF-1 can promote epithelial-mesenchymal

transition among cancers. Epithelial-Mesenchymal Transition

(EMT) refers to the biological process of epithelial cells

transforming into cells with a mesenchymal phenotype

through specific procedures. The characteristics include the

decrease of cell adhesion molecules, the up-regulation of

vimentin and so on. The activation of HIF-1 can overexpress

VASP, and VASP changes the EMT phenotype by activating

AKT and ERK signals and promotes the metastasis of liver

cancer in vivo and in vitro (31). The latest research shows that

HIF-1 mediates cervical cancer metastasis by directly targeting

hCINAP (32). HIF-1 can also regulate long non-coding RNA,

such as lncRNA RP11-390F4.3, and promote epithelial-

mesenchymal transition (33).

Finally, HIF-1 is also involved in angiogenesis in tumor (34).

In addition to VEGF, the mechanism of HIF-1 inducing

angiogenesis can also be mediated by the SNHG1-miR-199a-
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3p-TFAM axis (35). In some other diseases, more and more

evidence shows that microRNA also plays a vital role in the

angiogenesis promoted by HIF-1 (36, 37).

In addition to activating HIF-1a signal, hypoxia also has

other different effects. For example, hypoxia induces the

expression of hyaluronic acid synthase and reduces the

synthesis of hyaluronic acid degrading enzymes, resulting in

high hyaluronic acid concentrations in hypoxia environments

(38). Based on this phenomenon, a recent study used

nanosystems to remotely enhance hyaluronidase activity,

promote hyaluronic acid degradation, and reduce HIF-1a
expression, alleviating the immunosuppressive tumor

microenvironment (39).

Targeting hypoxic environments directly also seems like a

good option, A study of microalgae to improve the hypoxic

microenvironment and increase the sensitivity of tumors to

radiation therapy demonstrates the broad range of tumor

therapies (40).
3 Lipid metabolism in tumor
microenvironment

The rapid growth of tumor cells requires a lot of energy, and

glycolysis alone is certainly not enough. Therefore, lipid
FIGURE 2

Lactate in the tumor microenvironment. Tumor microenvironment is characterized by high lactic acid enrichment. For the classic Warburg
effect and the later Reverse Warburg effect, only the lactate producing cells are different. The former relies on the production of lactic acid by
tumor cells themselves, while the latter relies on tumor fibroblasts. High concentration of lactic acid will affect various immune cells in the
microenvironment. First, lactic acid can promote M2-type polarization of macrophages through ERK-STAT3 pathway and Gpr132. Secondly,
lactic acid can also cause macrophages to overexpress VEGF, thus generating more blood vessels conducive to EMT of tumors. Finally, lactate-
induced macrophages produce high levels of TNF-a, which promotes glycolysis of tumor cells, creating a vicious cycle. For Treg, high lactic
acid promotes its proliferation, and Treg can actively adapt to this environment by down-regulating Myc and LDH. NK cells, on the other hand,
were completely inhibited, including down-regulation of IFN-g and cytotoxicity, and increased apoptosis.
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metabolism is essential for tumor cells, and lipids are not only

the substrates for forming cell membranes; It can also undergo b
oxidation and produce large amounts of ATP; It also acts as

some of the second messengers involved the signalling axis of

tumor development.

Studies have shown a high throughput of lipid metabolism in

tumor cells, either through the uptake of lipids from the

microenvironment or by improving their ability to synthesize

lipids. Where do the rich lipids in the microenvironment come

from? Fibroblasts in tumor tissue can synthesize more lipids and

release them into the microenvironment (41). High protein

expression associated with fatty acid intake, CD36, is

associated with poor prognosis in patients with breast, ovarian,

gastric, and prostate cancers (42). Key enzymes related to fatty

acid synthesis and cholesterol synthesis, for example, long-chain

acyl-CoA synthetase (ASCL), 1-aminocyclopropane-1-

carboxylic acid (ACC), Fatty acid synthase (FASN), stearoyl-

CoA desaturase (SCD), 3-hydroxy-3-methyl glutaryl coenzyme

A reductase (HMGCR), Serine Proteinase (SM), several studies

have shown the high expression of critical enzymes in cancer

cells and promote the development of tumor (43–51). A new

study has revealed the specific lipid anabolic mechanism of

tumor cells, suggesting that phosphoenolpyruvate carboxylated

kinase 1 (PCK1) can be phosphorylated to achieve protein

kinase activity (Figure 3). PCK1 with protein kinase activity
Frontiers in Oncology 05
can phosphorylate INSIG1/2, which leads to impaired binding of

INSIG1/2 with intracellular lipids, thus promoting the activation

of the SREBP signaling pathway and lipid synthesis of tumor

cells (52). This suggests that tumor cells may have a different

lipid synthesis pathway from normal cells and also provides a

new direction for us to target lipid metabolism. Finally, fatty acid

oxidation also shows high activity in many cancers (53). Studies

have shown that fatty acid oxidation can improve

radioresistance in nasopharyngeal cancer and breast cancer

(54, 55). A recent study suggests that fatty acid oxidation can

not only improve tumor radioresistance but also mediate

immune evasion of tumor cells through CD47 (56). In

addition, it also knows that the metabolism of M2

macrophages and Tregs is more prone to fatty acid oxidation

and oxidative phosphorylation. A recent single-cell-based study

systematically delineated the heterogeneous population and

different differentiation pathways of Tregs, the study found

that Tregs had nine functional subgroups, FOXP3hi subgroup

with the strongest immunosuppressive function had high

expression of fatty acid oxidation related genes (57).

The highly active lipid metabolism in the microenvironment

is not only manifested in tumor cells. Immunosuppressive cells

Such as Tregs and M2 macrophages are also believed to be

involved in this process and thus consolidate their

immunosuppressive ability.
FIGURE 3

Fatty acid (FA) in the tumor microenvironment. The increase of FA exists in various tumor microenvironments. Tumor fibroblasts release a large
of FA into the microenvironment, and some of the FA are absorbed by tumor cells for energy generation. Of course, tumor cells themselves
also promote FA synthesis by increasing the activity of ACLY, ACC and FASN. Meanwhile, PCK1 induces FA synthesis through SREBP pathway,
which is considered to be a specific way of tumor cells. FA produced by tumor cells can also be transported into the microenvironment and
become part of the composition of exogenous FA. These exogenous FA are transported by CD36 receptors on the macrophages to activate
FAO and promote M2-type polarization of macrophages. Macrophages themselves also adapt to this environment by down-regulation SIRT4
and RIPK3 and activating PPAR.
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4 Macrophages in the tumor
microenvironment

Macrophages are the body’s “cleaners,” regulating the

immune response to pathogens and maintaining tissue

homeostasis. They can be polarized in a particular

environment to perform a specific function. Polarized

macrophages can be roughly divided into two categories: M1

type macrophages and M2 type macrophages. IFN-g, LPS

activation, produces M1-type macrophages; IL-4 and IL-13

evoke M2 macrophages (58). M1-type macrophages are pro-

inflammatory cells, clearing pathogens by producing TNF-a, IL-
6, IL-12, etc. In contrast, M2 macrophages inhibit inflammation

by producing TGF-b, IL-10, promoting angiogenesis, tissue

remodeling, and repair (59). Different subtypes of

macrophages have other metabolic preferences. M1-type

macrophages tend to use glycolysis rather than oxidative

phosphorylation (60, 61). M2 macrophages showed increased

oxidative phosphorylation and fatty acid oxidation flux (62, 63).

M. de-Brito et al. showed that M2-like macrophages exhibit

similar metabolic needs to M1-like macrophages, namely

enhanced glycolysis and lactic acid production (64). However,

Wang et al. showed that M2macrophage differentiation does not

depend on glycolysis as long as oxidative phosphorylation is

active (65). Therefore, the different metabolic preferences of

macrophages are still worthy of further study.

Tumor-associated macrophages (TAM) are macrophages

involved in the formation of the tumor microenvironment.

Tumor-associated macrophages are widely present in various

tumor (66). TAM also shows a similar activation phenotype to

macrophages and promotes tumor growth, invasion, metastasis,

and drug resistance (67). So what exactly causes tumor-

associated macrophages to be “bought” to have a role in tumor

growth? More studies have shown that metabolites in the tumor

microenvironment (TMA) play an essential role.
4.1 The effect of lactic acid on
macrophages

Ohashi et al. showed that in squamous cell carcinoma of the

head and neck, high lactic acid accumulation in the tumor

microenvironment could promote The M2-type polarization of

TAM (68), consistent with the different metabolic preferences of

varying macrophage subtypes mentioned before, but the specific

mechanism is not precise. In breast cancer, Mu et al. showed that

lactic acid promoted M2-type polarization of macrophages

through the ERK-STAT3 pathway (69).

Chen et al. showed that a high lactic acid concentration in

the tumor microenvironment induces M2-type polarization by

activating macrophage Gpr132 (70). In addition, a recent study

showed that the lactyl group extracted from lactic acid can be
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used for post-translational modification of histones, resulting in

increased expression of M2 marker genes, such as IL6 and arg1

(71).The M2-type polarization of macrophages induced by lactic

acid may occur through other molecular mechanisms in

different tumor. Therefore, it is crucial to understand the

influence mechanism of lactic acid on macrophage typing in

various tumor.

As previously mentioned, M2-type macrophages are mainly

involved in immunosuppression and angiogenesis promotion.

More and more studies have shown that M2-type macrophages

can help tumor cells get rid of the “monitoring” of the immune

system through various ways.

Shan et al. found that lactic acid-induced high expression of

PD-L1 in M2-type macrophages promotes the immune escape of

tumor cells, and HIF-1a knockdown in macrophages

significantly reduces the expression of PD-L1, suggesting that

HIF-1a plays a vital role in the immunosuppression of

macrophages (72).

Zhang et al. showed that activated M2-type macrophages

promote breast cancer metastasis through the CCL17/CCR4/

mTORC1 axis (73). In liver cancer and pancreatic cancer, lactic

acid-induced reactive oxygen species can activate Nrf2 of

macrophages and promote VEGF expression, which is

conducive to angiogenesis during tumor growth and improves

epithelial-mesenchymal transformation of tumor (74). In lung

cancer and melanoma, lactic acid has also been found to activate

mTORC1 and inhibit Feb-mediated lysosomal membrane

protein (ATP6V0d2) expression, thereby alleviating HIF-2a
degradation and leading to continuous HIF-2a -mediated

VEGF production (75). These studies provide new targets for

the inhibition of angiogenesis in tumor. Of course, the high

content of VEGF can promote the generation of blood vessels

and the accumulation of Tregs in the tumor microenvironment

(76), making the “accomplice” of tumor cells in the

microenvironment more powerful. Meanwhile, TNF-a
secreted by TAM can promote glycolysis of tumor cells, and

the increased AMPK and peroxisome proliferator-activated

receptor gamma coactivator1-a in TAM can promote hypoxia

of tumor cells (77). This creates a vicious cycle, making it easier

for tumor cells to evade the immune system.

Although macrophages become accomplices in tumor

immune escape due to the “temptation” of lactic acid secretion

by tumor, it can still regulate macrophages by inhibiting lactic

acid production and influencing the pathway of lactic acid action

on macrophages.

Chung et al. found that MachilinA functions as a

competitive inhibitor by blocking the NADH binding site of

LDHA, reducing the proportion of M2-type macrophages and

angiogenesis in colorectal cancer, breast cancer, lung cancer, and

liver cancer (78). In gastric cancer, either CHC, an inhibitor of

MCT1, or HIF-1a knockout can significantly reduce the M2

phenotype of macrophages (79).
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4.2 Effects of lipid substances on
macrophages

4.2.1 The fatty acids
The need for fatty acid metabolism in different subtypes of

macrophages is controversial, especially in M2-type

macrophages. It has been suggested that M2-type macrophages

are more prone to fatty acid oxidation and oxidative

phosphorylation; It has also been suggested that M2-type

macrophages prefer glycolysis as their means of production.

However, a growing number of experiments seem to support the

first view. Liu et al. suggested that S100A4 can promote the M2-

type polarization of macrophages. The molecular mechanism is

that S100A4 can make macrophages highly express CD36 (a

fatty acid transporter located on the cell membrane) by

activating PPAR-g and promoting heavy acid absorption and

fatty acid oxidation of macrophages (80).Similarly, Li et al. found

that SIRT4 is generally low expressed in tumor-associated

macrophages of liver cancer, and down-regulation of SIRT4

can enhance fatty acid oxidation of macrophages through the

FAO-PPARd-STAT3 axis, resulting in more transformation of

macrophages into The M2 subtype. Notably, the silencing of

SIRT4 in macrophages can promote the proliferation, migration,

and invasion of HCC cells by increasing the secretion of IL-6. It

can boost the apoptosis of M1-type macrophages by enhancing

the production of IL-10, which can better deteriorate the tumor

immune microenvironment and promote the occurrence and

development of liver cancer (81). Wu et al. also pointed out the

low expression of RIPK3 by TAM in liver cancer. The loss of

RIPK3 can also promote fatty acid oxidation and M2-type

polarization of macrophages by activating PPAR(Figure 3).

RIPK3 can inhibit PPAR through ROS-caspasl signalling (82).

These findings all seem to indicate that increased peroxisome

proliferator-activated receptor-dependent fatty acid oxidation

can induce M2 polarization in macrophages, and there may be

many upstream factors that play different roles in different

cancer. Therefore, the study of PPAR and its pathway seems

to provide us with a new target to improve the tumor

microenvironment by changing the classification of tumor-

associated macrophages.

Many other studies have also demonstrated that fatty acids

are essential for the polarization of tumor-associated

macrophages. Similar to the findings of Liu et al., Su et al. also

found that tumor-associated macrophages can accumulate super

lipids through CD36 in lung cancer and breast cancer and

promote fatty acid oxidation and tumorigenesis (83). Wu et al.

found that lipid droplet-derived fatty acids, predominantly

unsaturated oleic acid, in macrophages can promote the

differentiation of M2 subtype in colon cancer and

fibrosarcoma, in which mTORC2 is an important molecule

(84). It has also been proved that fatty acid oxidation plays an

essential role in M2-type macrophages and promotes the

migration of liver cancer by enhancing the secretion of IL-1b
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(85). Therefore, more evidence indicates that M2 macrophages

are more dependent on fatty acid oxidation, and glycolysis is just

a replacement mode of M2-type macrophages when the

mitochondrial oxidative respiratory chain is damaged (65).

Interestingly, macrophages can improve the intake of

exogenous fatty acids through fatty acid transporters such as

CD36 and make themselves highly accumulate fatty acids by

enhancing their fatty acid synthesis. Limet al. suggested that

Tregs could indirectly maintain metabolic adaptation and

mitochondrial integrity of M2-like macrophages by inhibiting

IFN-g secretion of CD8+T cells and promoting SREBP1

mediated fatty acid synthesis in M2-like macrophages (86).

Similarly, TAM in TC and NB can also promote tumor

development by increasing fatty acid synthesis (87). Notably,

in this study, macrophages promoted their inflammatory

phenotypes by enhancing their fatty acid synthesis, contrary to

the previous report that macrophages differentiated into the

anti-inflammatory M2 phenotype by accumulating fatty acids

and promoting fatty acid oxidation. That may be because

inflammation plays an utterly opposite role in different

tumor.In some cases, inflammation promotes tumor

development; And in some cases, inflammation inhibits tumor

growth. Therefore, it is worth our attention whether the

accumulation of fatty acids promotes the occurrence and

development of tumor in different tumor tissues. This seems

to be a problem for those trying to improve the efficacy of

immunotherapy by enhancing fatty acid metabolism.

Fatty acid metabolism is significant for the classification of

tumor-associated macrophages, so can be targeted fatty acid

therapy play an influential role? Wu et al. found that DGAT

plays a vital role in the process of rich acid transfer to

intracellular lipid droplets, and its inhibitors can well inhibit

the growth of colon cancer in mice (84). In patients with gastric

cancer, lipid accumulation of TAM can promote M2-type

polarization of macrophages through PI3K-g, and IPI549, as a

selective inhibitor of PI3K-g, can reverse this process (88). A

high dose of dexamethasone also seems to have such effects.

Studies have found that a high amount of dexamethasone can

significantly inhibit the expression of exogenous fatty acid

ingestion related proteins and heavy acid oxidation related

genes and convert M2-type macrophages into M1-type

macrophage s , succe s s fu l l y improv ing the tumor

microenvironment (89). Notably, Su et al. found that myeloma

developed in the myeloma mouse model and led to death in the

control mice. The CD36 KO mice survived (83). More

importantly, through the collation of clinical data, this study

showed that CD36 was highly expressed on the surface of tumor-

associated macrophages in lung cancer and breast cancer

patients and was significantly higher than other normal tissue

macrophages. This suggests that CD36 can be used as a specific

target for fatty acid metabolism of macrophages in lung cancer

and breast cancer to improve the tumor microenvironment

while reducing the influence of M2-type macrophages in other
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normal tissues, thus reducing the damage to the autoimmune

system. Therefore, this suggests that when studying the

relationship between fatty acids and macrophage typing, it

should pay attention to the specific molecular mechanism and

evaluate whether the expression of these molecules is specific to

macrophages in other normal tissues to minimize the impact

on autoimmunity.

4.2.2 Cholesterol
In addition to fatty acids, cholesterol with the cyclopentane

poly-hydro phenanthrene structure appears to play an essential

role in the M2-type polarization of macrophages. Goossens et al.

found that in ovarian cancer, tumor cells can drive the

cholesterol effection of TAM through the release of hyaluronic

acid, which promotes IL-4-induced macrophage reprogramming

(towards M2-type differentiation). The specific molecular

mechanism requires STAT6 phosphorylation and PI3K-

MTORC2-Akt activation (90). Similar to Su et al. ‘s study,

phosphorylation of STAT6 seems to play an essential role in

the M2 typing of macrophages. Many studies have proved that

inhibition of STAT6 can reverse the M2-type polarization of

macrophages and inhibit the occurrence and development of

tumor (91–93). In addition to fatty acids, cholesterol with the

cyclopentane poly-hydro phenanthrene structure appears to

play an essential role in the M2-type polarization of

macrophages (94).

4.2.3 Prostaglandins
In glioblastoma, tumor cells can activate MGLL through

ARS2, and monoacylglycerol lipase (MAGL) is the translation

product of MGLL, which can produce PGE2 to promote M2

polarization (95). Interestingly, MGLL deficiency in

macrophages promotes CB2/TLR-4 dependent macrophage

polarization in mouse colon cancer (96).
5 Tregs cells in the tumor
microenvironment

Tregs cells are the essential immunosuppressive cells in the

tumor microenvironment because Tregs can inhibit various

immune cells, such as T cells, DC cells, etc. Tregs in tumor

tissues is a group of cells expressing Foxp3, CD4, and high

expression of CD25. Interestingly, CD25, as the a chain of the

IL-2 receptor, can effectively bind IL-2. At the same time, Tregs

cells themselves expressed less IL-2. More importantly, IL-2 is an

essential substance for effector T cells to produce immune

function. Therefore, such a high expression of CD25 in Tregs

cells can effectively reduce the IL-2 utilized by effector T cells in

tumor tissues and reduce the immune activity of effector T cells

(76). Of course, Tregs can also achieve immunosuppressive

function in a variety of other ways. For example, Tregs can kill
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effector T cells directly by the FASL-FAS pathway or by

producing grease B and perforin (97, 98). The proportion of

Tregs to effector T cells in the tumor microenvironment also

affects prognosis and clinical treatment (99–101). In general,

Tregs infiltration is negatively correlated with prognosis.

However, in some tumor, Tregs density was positively

associated with prognosis (102, 103). This may be because

inflammation plays a different role in different tumor.

Many therapeutic approaches aimed at reducing Tregs in the

tumor microenvironment have not achieved good results. On the

one hand, targeting Tregs is likely to damage one’s immune system

because Tregs plays an essential role in regulating immune balance

in normal tissues. On the other hand, there seems to be a

“mysterious force” in the tumor microenvironment that

deliberately amplifies Tregs strength. Therefore, finding specific

targets targeting Tregs in the tumor microenvironment or revealing

this mysterious force is essential for current research.

A growing body of research suggests that tumor’ unique

metabolisms and metabolites seem to be part of this

mysterious force.
5.1 Effects of lactic acid on Tregs

How low glucose and high lactate environments in tumor are

created is not explained here. The activation and function of T

cells also depend on glycolysis for energy (104). It’s not hard to

imagine that T cells and tumor cells would have to compete with

glucose in a low-glucose environment to complete glycolysis

while simultaneously removing lactic acid, an intermediate

product of glycolysis, from the body. On the one hand, T cells

are much smaller than tumor cells, so can they successfully

compete for glucose? On the other hand, in the tumor

microenvironment with a high concentration of lactic acid,

MCT-1 on the surface of T cells is inhibited, and T cells cannot

expel lactic acid generated in the body, resulting in inhibition of

metabolism, proliferation, and functional decline (105).

However, Tregs cells did not seem to be affected by low

glucose, high lactate environment. This may be related to its

metabolic reprogramming. It has been reported that Foxp3 can

help Tregs adapt to this environment. Foxp3 can not only help

Tregs turn to rely on oxidative phosphorylation for energy

supply; It also inhibits Myc (a transcription factor that plays

an essential role in upregulating glycolysis in activated T cells)

and glycolysis (by restricting the direction of lactate

dehydrogenase, which prevents pyruvate from producing

lactate through LDH) (106). In conclusion, in such an

environment of low glucose and high lactic acid, the

metabolism of effector T cells is inhibited. At the same time,

Tregs shows metabolic adaptability and increased activity by

mitochondrial oxidative phosphorylation (107).

Therefore, can glycolysis targeted at tumor cells or lactic acid

uptake targeted at Tregs achieve good resul ts in
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immunotherapy? Recently, a study showed that inhibition of

tumor glycolysis contributes to the therapeutic effect of CTLA-4

blockade, and the combination of CTLA-4 blockade and tumor

glycolysis inhibitors may be considered (108). Another study

suggested that elimination of ALKBH5 (RNAm6R demethylase)

reduced the expression of MCT4/SLC16a3 on melanoma cells,

reduced the accumulation of lactic acid in TME, and weakened

the immunosuppressive function of Tregs (109). At the same

time, this study also proved that ALKBH5 inhibition could

improve the effect of anti-PD-L1. Similar to this study, Liu

et al. found that FTO protein, also RNA m6R demethylase,

allows glycolysis of tumor cells by upregulating transcription

factors C-Jun, JunB, and C/EBP b. Inhibition of FTO can

significantly reduce lactic acid produced by the glycolysis of

tumor cells. The research team also developed an effective FTO

molecular inhibitor, Dac51. It provides a new therapeutic target

for tumor glycolysis (110).

However, both blocking tumor cell glycolysis and reducing

Tregs lactic acid uptake raises the question of whether the use of

inhibitors, many of which lack specificity, can cause autoimmune

damage. Happily, Greg M. Delgoffe’s team found that inhibition

of the expression of MCT1 monocarboxylic acid transporter on

Tregs could significantly reduce the intake of lactic acid in Tregs

while weakening the inhibitory ability of Tregs. Because they co-

operated with anti-PD-1 therapy by triggering MCT1 deletion in

Tregs cells, this procedure resulted in complete tumor regression

in 37.5% of B16-bearing mice. More importantly, they found that

the loss of MCT1 appears to be optional for Tregs cell survival

and function but may impact tumor tissue rich in lactic acid

(111). In addition to specificity in inhibitory targets, it can also

choose to innovate in pharmaceutical materials. Recently, a new

nanomaterial that encapsulates the MCT1 inhibitor AZD3965

has been reported, which can be released to target MCT1 on the

surface of tumor cells when the ph of the external environment is

lowered to reduce lactic acid accumulation in TME, improve the

microenvironment and improve the efficacy of immunotherapy

(112). The benefit of this material is that when used with less

specific inhibitors, it can target the tumor microenvironment

with high lactate and thus work, reducing the risk of

autoimmune damage.
5.2 Effects of lipid substances on Tregs

5.2.1 The fatty acids
Like M2-type macrophages, Tregs cells also rely on

mitochondrial oxidative phosphorylation, and fatty acid

oxidation seems to provide sufficient “material” for oxidative

phosphorylation of Tregs cells. Such metabolic change of Tregs

cells also appears to be affected by HIF-1a (113). Similarly, Tregs

has two ways to obtain fatty acids: from tumor microenvironment;

It depends on its fatty acid synthesis.
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In gastric cancer, the Y42 mutation of tumor RHOA was

observed, which increased the production of free fatty acids in

GC cells by activating the PI3K-AkT-mTOR signalling pathway.

The resulting fatty acids provide more energy for Tregs.

Combined use of PI3K inhibitors and PD-1 inhibitors was

found to significantly reduce resistance to PD-1 in RHOA Y42

mutated gastric cancer. This provides a new therapeutic idea for

patients who are resistant to immune checkpoint inhibition

(114). In another study, researchers compared Tregs in breast

cancer with Tregs in PBMC. They found that Tregs in breast

cancer expressed high levels of the fatty acid transporter

CD36, which has also been demonstrated in other cancers.

This also seems to indicate that Tregs consolidate their

immunosuppressive function by ingesting exogenous fatty

acids. Because the researchers combined the CD36 knockout

mice with a PD-1 inhibitor, they found that the survival of the

mice in this group was significantly improved. In addition, CD36

was found to activate PARP-b signaling and enhance

mitochondrial function, further helping Tregs adapt to TME.

Notably, CD36 defects did not damage the immune system and

did not affect Foxp3 expression in Tregs cells (115). This

provides a new target for improving the tumor immune

microenvironment. It can consider whether CD36 is highly

expressed in Tregs and M2 macrophages in the same tumor

environment and whether this can play a dual role.

Interestingly, however, when inhibited FABP5 (a fatty acid-

binding protein) on Tregs, it found that Tregs mitochondria

were damaged, and oxidative phosphorylation decreased. Still,

Tregs released mtDNA and induced increased IL-10 expression

through cGAS-STING dependent I-IFN signaling. It promotes

Tregs inhibition. This seems to contradict the previous

discussion (116). However, the experiment did not examine

whether long-lived Tregs were in stock or whether IL-10 release

decreased over time.

On the other hand, Tregs in the tumor microenvironment

are self-reliant and seem to be trying to generate enough energy

for themselves through their fatty acid synthesis. Lim et al. found

that SREBP1/2 protein expression in regulatory T cells was

significantly increased in melanoma, breast cancer, and head

and neck squamous cell carcinoma microenvironments than in

other parts of the body. When they knocked out the SCAP gene,

an upstream protein of SREBP, in mouse models, the mice

became more resistant to transplanted tumor and could even

fully recognize colorectal cancer cells. Of course, the

combination of PD-1 inhibitors has also shown surprising

results in melanoma. Further studies found that SCAP

knockout could affect the production of fatty acid synthase

FASN, and Tregs without FASN could not be activated, thus

losing their immunosuppressive function. More happily, they

found that SCAP knockout mice did not develop autoimmune

diseases, and the PROPORTION of CD4+/CD8+ T cells in other

tissues remained regular, which seems to indicate that SCAP
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knockout does not affect T cells in other normal tissues, which is

a specific target (86).

5.2.2 Cholesterol
The main metabolic pathway of cholesterol is the MVA

pathway. Tregs cells can up-regulate the MVA pathway through

LKB1, thus maintaining their own function and stability (117).

The MVA pathway in Tregs seems to be inhibited in the tumor

microenvironment, however, this does not affect the

immunosuppressive function of Tregs itself. It may be related

to tumor cells themselves through high expression of MVA

pathway, the resulting FPP synthesizes large amounts of

Kynurenine through RAS-ERK-STAT3-IDO and promotes the

expansion of Tregs (118).

Cholesterol may have more objections to the function of

CD8+ T cells than Tregs. One study found that an increase in

free cholesterol in CD8+ T cells resulted in more mature and

intact synapses on cells (119). Another recent study showed that

higher cholesterol levels were associated with higher levels of

PD-1,LAG-3,TIM-3,2B4 and other immune checkpoints (120).

This may also depend on the heterogeneity of the tumor.

Therefore, further research is needed on the role of cholesterol

metabolism in tumor microenvironment.
6 NK cells in the tumor
microenvironment

NK cells are a group of large particles of lymphocytes, which

contain granzymes and perforin, responsible for NK cells killing

(121). NK cells are also an integral part of the immune system,

responsible for clearing pathogens and tumor. A growing

number of studies have also shown that damaged NK cells or

lack of NK cells increase the risk of cancer in both patients and

mouse models (122). This seems to suggest that NK cells also

play an essential role in the process of tumor resistance.

Therefore, we must first understand how NK cells are

damaged in the tumor environment to provide a solid

foundation for immunotherapy based on NK cells. Studies

have shown that tumor cells can release TGF-b (123), PGE2

(124), IDO, adenosine acid (125, 126), and IL-10 (127, 128) to

damage the function of NK cells and avoid attacks from NK

cells. These appear to be just some of how tumor cells consume

NK, and some recent studies have shown that lactic acid released

by tumor cells can also severely damage NK cells.

Husain et al. suggested that lactic acid could inhibit the

killing effect of NK cells in vitro. Secondly, injection of LDH-A-

deficient pancreatic cancer cells into mouse models significantly

enhanced the cytotoxic activity of NK cells (129). However,

some studies suggest that the cytotoxic activity of NK cells is

inhibited in vivo, which is not caused by lactic acidosis, but the

specific mechanism is still unclear (130). Another study also
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showed that tumor with low LDHA expression in melanoma

grew more slowly, with increased NK cells infiltration and

increased IFN-g release (131). Indeed, it facilitated the

decrease in IFN-g release from NK cells due to acidosis when

adopted a systemically buffered alkalization approach (130).

Lactic acid produced by tumor cells results in the loss of

function of tumor-infiltrating NK cells and damages the original

“resident” NK cells in metastatic tissues, providing a perfect

environment for the arrival of tumor. Harmon et al. found that

liver metastasis of colorectal cancer can lead to depletion of NK

cells in the liver itself, which is due to the production of large

amounts of lactic acid by tumor cells, the reduction of pH value

in the environment, and the NK cells apoptosis caused by

mitochondrial damage of NK cells through ROS (132).
7 Immunotherapy and targeting the
tumor microenvironment

Immunotherapy has become a powerful weapon against

cancer. The success of ipilimumab, which targets PD-1/PD-L1

and CTLA-4, has also brought hope to many cancer patients.

However, not all patients are sensitive to immunotherapy, which

leads to the limitations of immunotherapy in the application

process. Then what causes such difference in immunotherapy

has become the focus and difficulty of research. More and more

studies have shown that the tumor microenvironment affects the

effect of immunotherapy, including cytokines and metabolites in

the microenvironment. In triple-negative breast cancer, different

subtypes were found to have different sensitivity to other

metabolic inhibitors. MPS1 was more sensitive to inhibiting

fatty acid synthesis, while MPS2 was more sensitive to inhibiting

glycolysis. This suggests that various tumor may have metabolic

preferences that need to be adapted to local conditions.

However, it is encouraging to note that targeting metabolism

in the tumor microenvironment appears adjunct to

immunotherapy (133).
7.1 Targeted HIF - 1

In the hypoxia environment, the high expression of HIF-1 in

glioma cells affects the increased expression of PD-L1, and the

combination of HIF-1 inhibitor and PD-L1 inhibitor can

significantly improve the efficacy (134). Before this, HIF-1

inhibitors have been used as a method of tumor therapy due

to the effect of HIF-1 on tumor development. However, recent

studies have found that HIF-1 signaling seems to be related to

the high expression of PD-L1 mediated immunotherapy

tolerance on tumor cells. In non-small cell lung cancer, EZH2

upregulates the expression of PD-L1 through HIF-1a, so the

combination of HIF-1 inhibitors and immunotherapy may have
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a more substantial therapeutic effect (135). As an inhibitor of

HIF-1a and HIF-1b dimer, acriflavine can significantly improve

the efficacy of anti-PD-L1 immunotherapy (136). The HIF

inhibitor PT2385, completed phase 1 clinical trials in clear cell

renal cell carcinoma, also showed better efficacy when combined

with a PD-L1 inhibitor (137).

Ginseng diol, a Chinese herbal component, also showed

inhibition of HIF-1a formation and blocked the interaction

between HIF-1a and STAT3, inhibiting the expression of PD-L1

in colon cancer cells, and also showed minor cytotoxicity in cell

experiments (138). Another Chinese herb, turmeric, and

turmeric has been found to have a similar effect on liver

cancer (139). However, it is unclear whether these herbs could

have a more power fu l influence in con junc t i on

with immunotherapy.
7.2 Target glucose metabolism

In some patients, resistance to immune checkpoint

inhibition is primarily determined by lactic acid levels in the

tumor mi c ro env i r onmen t . L a c t i c a c i d c an he l p

immunosuppressive cells survive and perform their functions

in the microenvironment, and improve the expression of PD-L1

on tumor cells. A recent study found that upregulation of PD-L1

in nasopharyngeal carcinoma cells is associated with active

glycolysis, and sirilimarine (A drug used in hepatitis, cirrhosis,

and liver protection) interferes with HIF-1a/LDH-A mediated

glucose metabolism and shifts to mitochondrial oxidative

phosphorylation, reducing PD-L1 expression (140).

Metformin, a clinical drug used in patients with type 2

diabetes, affects glycolysis in various cancers (myeloma, liver

cancer) by interfering with HIF-1 signaling (141, 142).

Meanwhile, metformin has also been reported to significantly

improve the immune microenvironment in type 2 diabetes and

colorectal cancer patients (143). Metformin in combination with

immune checkpoint inhibitors has also been shown to be more

effective in melanoma (144). Conversely, metformin is also

thought to inhibit tumor cell response to paclitaxel by

inducing lactic acidosis (141). Therefore, whether metformin

can improve tumor microenvironment and enhance

immunotherapy efficacy through targeted metabolism still

needs a systematic study.
7.3 Target lipid metabolism

The activity of lipid metabolism in tumor microenvironment

mentioned above is increased, including the fatty acid synthesis,

fatty acid oxidation and the MVA pathway of cholesterol synthesis.

FASN is a key enzyme in fatty acid synthesis. Studies have

shown that FASN inhibition both limits tumor-cell migration
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and invasiveness, and increases tumor sensitivity to drug therapy

(145, 146). Recent studies have found that FASN can also be

used as an indicator of anti-CTLA-4 and anti-PD-1 therapy in

BC patients (147).

A fatty acid oxidation inhibitor, namely ranolazine which

showed reduced colony-forming activity of GBM combined with

DCA (148).

Lipid-lowering statins is an inhibitor of cholesterol synthesis

which appear to improve immunotherapy in non-small cell lung

cancer, but further studies are needed to confirm this (149).

Because there are different opinions about the effects of statins.

Several studies have shown that statins improve first-line

chemotherapy survival in metastatic pancreatic cancer and

multiple myeloma patients (150, 151). In contrast, the addition

of statins did not benefit patients with advanced liver cancer

(152). Therefore, lipid metabolism has a long way to go than

targeting glucose metabolism.

PCSK9, a protein that plays a crucial role in cholesterol

regulation. One study showed that inhibiting this protein

allowed tumor cells to express more MHC-1, increasing T cell

infiltration and boosting immune checkpoint inhibition.

However, this relied on a method independent of cholesterol

metabolism (153).

In addition, PPARa can inhibit DC dysfunction induced by

lipid-rich exosomes secreted by tumor cells and improve the

effect of immunotherapy (154).
8 Nanomaterials

As the role of the tumor microenvironment in tumor genesis

and development has been continuously discovered, some drugs

targeting glucose metabolism and lipid metabolism have also

been found to improve the efficacy of immunotherapy.

Therefore, nanomaterials are gradually added to the family of

immunotherapy, which can more accurately target the tumor

microenvironment and minimize systemic side effects caused

by immunotherapy.

For glucose metabolism: Li et al. loaded chemotherapy drugs

HCPT and siMCT-4 on PEG-CDM modified GSH responsive

hollow mesoporous organic silica nanoplatforms for targeted

tumor therapy, which can effectively induce apoptosis of tumor

cells, reduce lactic acid concentration in the microenvironment,

improve macrophage M2/M1, and restore the function of

efficient T cells (155). In another study, they designed a ph-

responsive coated nanoparticle that targets the tumor

microenvironment through metformin and siFGL1 to

collaborate with immunotherapy against breast cancer (156).

For lipid metabolism: Kim et al. activate lipid metabolic drug

molecules packages amid amphiphilic poly glutamic acid

nanoparticles and adopt CD3ef resistance (ab ‘) 2 pieces

modified nanoparticles surface of T cells to achieve targeted

transport, protection of T cells in the microenvironment of the
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lack of glucose metabolism difficulties, restore the function of T

cells, enhance the effect of immunotherapy against PD - 1 (157).
9 Ferroptosis and tumor
microenvironment

Ferroptosis, a new way of cell death first proposed in 2012

(158). Unlike autophagy and apoptosis, ferroptosis is iron-

induced reactive oxygen-dependent cell death, mainly

characterized by the disappearance of the mitochondrial crest

and the rupture of mitochondria and mitochondrial outer

membrane. Ferroptosis occurs through lipid peroxidation and

oxidative stress in cells (159).

As the understanding of ferroptosis continues to grow, it

increasingly believe that ferroptosis may be an essential way to

inhibit cancer. In addition, some genes related to ferroptosis

have been proved to be features for evaluating prognosis and the

immune microenvironment in a variety of cancers (colon

cancer, head, and neck squamous cell carcinoma, lung

adenocarcinoma) (160–162). New studies have found that

lncRNA related to ferroptosis can also be used as markers of

prognosis and the immune microenvironment in breast

cancer (163).

Is there a potential link between ferroptosis and tumor

microenvironment? Cancer cells, Tregs, and M2 macrophages

all show enhanced fatty acid oxidation in the tumor

environment, but the incidence of ferroptosis is not high in

these cells. So what is the reason to protect these cells from the

damage of reactive oxygen species? The typical regulatory

mechanism of ferroptosis is mediated by glutathione

peroxidase GPX4 (164). Therefore, inhibition of GPX4 to

induce ferroptosis in cancer cells may be a therapeutic strategy

for some tumor, just as RSL3 inhibition of GPX4 induces

ferroptosis in colon cancer (165). Of course, inhibition of

GPX4 upstream, such as the cystine transporter SLC7A11, also

seems to contribute to ferroptosis. Because cystine is taken up by

cells via SLC7A11, it is reduced to cysteine in the cell and

participates in glutathione formation. GPX4 is responsible for

understanding the toxicity of reactive oxygen species in a

glutathione-dependent manner. Studies have shown that

SLC7A11 inhibition can also interfere with GPX4 protein

translation by inhibiting the Rag-mTORC1-4EBPs signaling

pathway, independent of glutathione (166). However, GPX4

inhibitors have different responses in different cancer cells

(167), suggesting that other mechanisms regulate ferroptosis in

different cells. Interestingly, it was found that high-density cells

were more resistant to ferroptosis after GPX4 inhibition; The

specific mechanism shows that this effect is generated through E-

cadherin-mediated cell-cell contacts. Such intercellular

interaction activates the Hippo pathway through NF2/Merlin

tumor suppressor, thus inhibiting the transcriptional activity of

YAP, and there are many genes regulating ferroptosis which is
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the target genes of YAP (168). A protein named FSP1 is

considered to be a novel signal for inhibiting ferroptosis

independent of the classical GPX4 pathway, and FSP1 inhibits

ferroptosis by reducing lipid peroxidation in CoQ10 tissues. In

lung cancer, the presence of FSP1 maintains the growth of lung

cancer cells when GPX4 is inactivated, so an apparent targeting

of FSP1 seems to be a new target for cancer therapy, the study

said (169, 170). GPX4 exists in the cytoplasm, SLC7A11 exists in

the cell membrane, and in mitochondria, dihydroorotate

dehydrogenase DHODH resists ferroptosis by regulating

dihydro ubiquinone production in mitochondria (171). In

addition, SCD1 and FABP4 are also thought to inhibit

ferroptosis in tumor cells by inducing desaturation of fatty

acids which is essential for tumor relapse in response to

tyrosine kinase inhibitors (TKI) and chemotherapy (172).

I t is noteworthy that lact ic acid in the tumor

microenvironment can help HCC cells resist oxidative stress-

induced lipid peroxidation through the HCAR1/MCT1-AMPK-

SREBP1-SCD1 pathway (173). This gives us more reason to

believe that lactic acid is not just a waste product of tumor cells’

metabolic adaptation. In addition, activation of the AMPK

pathway can reduce the polyunsaturated fatty acid synthesis

and inhibit ferroptosis by inhibiting ACC (174).

Tumor cells can inhibit ferroptosis through various

mechanisms, while effector T cells, main glycolysis, are

subjected to ferroptosis. Studies have shown that excessive

cholesterol in the tumor microenvironment increases the

expression of CD36 on effector T cells. In contrast, high

expression of CD36 on T cells can make T cells absorb more

fatty acids from the tumor microenvironment, induce lipid

peroxidation and ferroptosis, and reduce the function of T

cells and the production of toxic cytokines. CD36 blocking or

ferroptosis inhibition on T cells can reshape the immune

function of T cells and, more importantly, can be better

combined with PD-L1 inhibitors (175, 176).

However, it is interesting that CD8+T cells can down-

regulate cystine transporter expression on the tumor cell

surface and promote ferroptosis by releasing IFN-g (177). The

specific mechanism was found in subsequent studies, because

IFN-g alone did not induce ferroptosis in tumor cells in vitro, so

the researchers hypothesized that IFN-g could act selectively

with arachidonic acid. IFN-g regulates the expression of ACSL4

(Acyl-CoA synthetase long chain family member 4) directly

through STAT1-IRF1 signaling pathway, while arachidonic acid

induces ferroptosis in tumor cells through preferential

integration of ACSL4 into phospholipids containing C16 and

C18 acyl chains. Finally, arachidonic acid supplementation

inhibited tumor progression in vivo and synergized with the

antitumor effects of PD-L1 inhibitors in immunocompetent

mice (178). It provides a new basis for immunotherapy

combined with targeting ferroptosis. In this study, in

immunologically normal mice, the tumor size of the ASCL4

knockout model was significantly larger than that of the wild-
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type mice, and there were also fewer T cells in the tumor

microenvironment, suggesting that ferroptosis of tumor cells

can lead to the release and spread of tumor antigens, thereby

promoting immunity. This finding is consistent with another

finding that ferroptotic cells are immunogenic and contribute to

tumor immune activation (179). All these conclusions seem to

tell us that there is no harm in inducing ferroptosis of

tumor cells.

However, studies have demonstrated that in pancreatic

cancer, ferroptosis of tumor cells can release KARSG12D,

which is packaged into exosomes and taken up by macrophages

through the AGER pathway. KARSG12D promotes M2-type

polarization of macrophages through STAT3-mediated fatty

acid oxidation (180). In addition, an animal study also

demonstrated that loss of GPX4 in mice with high iron diet

and pancreatic cancer accelerated the development of pancreatic

ductal adenocarcinoma mediated by Kras mutations through

STING1/TMEM173 pathway (181). This suggests we by

inducing tumor cell death treatment there is a lot of unknowns,

based on the heterogeneity of tumor itself and the difference of

various components in tumor microenvironment, it still needs to

set up a complete database in order to analysis the differences

between the various forms of cancer, and find out each tumor is

the most suitable immune treatment measures.
Conclusion

In summary, it still have a long way to go explain various

phenomena in the tumormicroenvironment and their influence on

tumor development. It can’t be sure, for example, which fatty acids

play a role in the microenvironment, or whether it depends on the

characteristics of the tumor itself? Because of the heterogeneity of

tumor, many studies may seem contradictory, but that is

understandable. Of course, in addition to glucose metabolism

and lipid metabolism, amino acid metabolism and frontal

nucleotide metabolism also play an essential role in forming a

microenvironment. Therefore, It should consider the effects of

various metabolic factors on the tumor microenvironment in

multiple aspects. It is worth paying attention to tumor
Frontiers in Oncology 13
heterogeneity, including the location of tumor organs and tissues.

And whether metabolic tendencies change as the tumor progresses.

Finally, It should also develop effective and practical “weapons”

that can predict the state of tumor microenvironment in clinical

treatment so that clinicians can accurately and conveniently take

appropriate adjuvant immunotherapy based on such prediction so

that more cancer patients can improve their sensitivity

to immunotherapy.
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