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Breast cancer is the most common malignant disease in female patients

worldwide and can spread to almost every place in the human body, most

frequently metastasizing to lymph nodes, bones, lungs, liver and brain. The liver is

a commonmetastatic location for solid cancers as a whole, and it is also the third

most common metastatic site for breast cancer. Breast cancer liver metastasis

(BCLM) is a complex process. Although the hepatic microenvironment and liver

sinusoidal structure are crucial factors for the initial arrest of breast cancer and

progressionwithin the liver, the biological basis of BCLM remains to be elucidated.

Importantly, further understanding of the interaction between breast cancer cells

and hepaticmicroenvironment in the livermetastasis of breast cancer will suggest

ways for the development of effective therapy and prevention strategies for

BCLM. In this review, we provide an overview of the recent advances in the

understanding of the molecular mechanisms of the hepatic microenvironment in

BCLM formation and discuss current systemic therapies for treating patients with

BCLM as well as potential therapeutic development based on the liver

microenvironment-associated signaling proteins governing BCLM.
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Introduction

Breast cancer (BC) is the most common malignant disease in

female patients worldwide (1, 2). Intrinsic BC subtypes by gene

expression profiling include luminal A, luminal B, luminal/

human epithelial growth factor receptor 2 (HER-2), HER-2

enriched, basal-like, and triple-negative (TN) non-basal (3).

Currently, the 5-year survival rate for BC is over 90%.

However, about 50% of patients diagnosed with BC will

develop distant metastases (4), and the 5-year survival rate

declines to less than 20% once distant metastases have

developed (5, 6).

BC can spread to almost every place in human body, most

frequently metastasizing to lymph nodes, bones, lungs, liver, and

brain (7–9). The liver is one of the most common metastatic

locations for solid malignant tumors, and it is also the third

common metastatic organ for BC (10). Patients with breast

cancer liver metastasis (BCLM) often suffer deterioration of liver

function due to the aggravation of BC burden, which will

threaten the lives of BC patients (11). The survival is only 4-8

months if BCLM is left untreated (12). Therefore, the treatment

of BCLM is a significant issue globally. Thus far, no standard

therapy has been established for BCLM (13). Currently, the

treatments for BCLM include chemotherapy, immunotherapy

(triple negative disease), targeted systemic therapies including

endocrine therapy (luminal subtype), HER-2 target therapy

(HER-2 enriched subtype), radiotherapy, and palliative therapy

(11, 14). However, patients with BCLM frequently exhibit poor

response to the current therapies and experience high mortality

rates (15).

BCLM is a complex process. Its biological basis has not been

well delineated. It has been found that the hepatic

microenvironment plays a significant role in BCLM (16). An

understanding of hepatic microenvironment in the liver

colonization of metastatic BC cells is essential for developing

novel and effective therapy for BCLM. In this review, we provide

an overview of recent advances in molecular mechanisms of the

hepatic microenvironment in BCLM formation and discuss

current systemic therapies as well as potential therapeutic

development based on the liver microenvironment-associated

signaling proteins governing BCLM.
Organ tropism of breast
cancer metastasis

It is a long-standing observation that different subtypes of

BC show distinct propensity of metastasizing to specific organs

(3, 17, 18). Luminal breast cancer (LBC) preferentially

metastasizes to the bones, while HER-2 and basal-like BC

often develop visceral metastases including brain, liver and
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lung metastasis (19). Some studies report that the HER-2

enriched subtype found to exhibit a higher risk of developing

liver metastasis (18, 20, 21). In contrast, other studies report that

basal-like BC has a lower rate of liver metastasis (3). Although

there are some discrepancies in reports about preferential organ

sites of breast cancer metastasis, it is now accepted that

particular metastatic sites are associated with different breast

cancer subtypes (22).

It is well-established that preferred metastatic sites are

mechanistically determined by molecular, cellular and

microenvironment factors rather than random dissemination

(23). Features of organ circulation may have a key role in

determining the sites of metastatic disease as capillary networks

in tissue arrest the circulating BC cells (10). Organs that receive

similar amounts of blood and circulating tumor cells show

differing abilities to accommodate disseminating BC cells and

form metastases. This finding indicates that the “mechanical

arrest” may not be the only explanation for organ tropism of

BC metastasis (24, 25). Another explanation is the “seed and soil”

hypothesis, which proposes the metastases form only when the

disseminated BC cells are compatible to the distant organ

microenvironment (26). The ability of BC cells to interact with

tissue resident cells and the microenvironment factors may also

determine the metastatic organs of BC (24). Therefore, the

crosstalk between BC cells and liver tissue components provides

key mechanisms that dictate BCLM (27–29). In this review, we

will describe and summarize our current knowledge on the

BCLM process.
Metastatic phase of breast cancer
liver metastasis

The formation of BCLM involves a series of complex

biological processes. The BC cells will undergo epithelial-to-

mesenchymal transition (EMT), detach from the primary

tumor, and intravasate through endothelial barriers into the

blood circulation system (30, 31). Macrophages and

mesenchymal stem cells (MSCs) contribute to EMT at primary

BC. Cancer-associated fibroblasts (CAFs) and myeloid progenitor

cells are recruited to invasive edge of primary BC and promote

intravasation (31). Platelets are also involved in the survival of BC

cells in circulation to extravasation sites (31). After circulating

tumor cells extravasate into the parenchyma of the liver (32),they

will enter a dormant state or form clinically detectable

macrometastases (33, 34). BCLM is considered to comprise

multi-steps: 1) The intravasation phase; 2) The premetastatic

phase (35–37); 3) the tumor-infiltrating microvascular phase; 4)

the pre-angiogenic micrometastatic phase; 5) the angiogenic

micrometastatic phase; 6) the growth phase (38). The process of

BCLM is summarized in Table 1 and Figure 1.
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FIGURE 1

The process of liver metastasis formation in breast cancer. The whole process can be separated into six steps: 1) Intravasation phase: cancer
cells intravasate into the circulation system under help of immune cells; 2) Premetastatic phase: HSCs, KCs, and immune cells in hepatic
microenvironment form premetastatic niche; 3) Tumor-infiltrating microvascular phase: cancer cells extravasate into liver parenchyma through
LSECs; 4) Pre-angiogenic micrometastatic phase: HSCs and immune cells are recruited into micrometastases and activate local stromal
response; 5) Angiogenic micrometastatic phase: micrometastases become vascularized and interact with cells in the microenvironment; 6)
Growth phase: metastases expansion under the stimulation of hepatocytes, HSCs, and immune cells. (HSC, Hepatic stellate cell; KC, Kupffer cell;
LSEC, Liver sinusoidal endothelial cells).
TABLE 1 The phases of breast cancer liver metastasis.

Phase of liver
metastasis

Function Involved cells References

1. The intravasation
phase

Primary breast cancer cells detach from surrounding cells and
intravasate into the circulation system

MSCs; macrophages; endothelial cells; platelets; CAFs;
myeloid progenitor cells; DCs; neutrophils

(30, 31, 39,
40)

2. The premetastatic
phase

Form “premetastatic niche” in the liver permit breast cancer cells
entry and outgrowth

HSCs; CAFs; KCs; MDSCs; Tregs; neutrophils (35–37, 41–
48)

3. The tumor-infiltrating
microvascular phase

Breast cancer cells arrest in the sinusoidal vessels and lead to cancer
cell extravasation

M2 macrophages; HSCs; CAFs; neutrophils; LSECs;
hepatocytes; KCs

(32–34, 39, 40,
49–56)

4. The pre-angiogenic
micrometastasis phase

Host stromal cells are recruited into avascular micrometastases in
the liver

M2 macrophages; LSECs; neutrophils; HSCs; KCs (40, 53, 56–
63)

5. The angiogenic
micrometastasis phase

Metastatic breast tumors in the liver become vascularized through
several possible interactions with the microenvironment

M2 macrophages; LSECs; neutrophils; HSCs; KCs (40, 53, 56–
63)

6. The growth phase Metastatic breast tumors in the liver become a “clinical”
macrometastases

Hepatocyes; HSCs; LSECs; M2 macrophages;
neutrophils; MDSCs; Tregs; KCs

(38, 47, 48,
56–61, 64, 65)
Frontiers in Oncology
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MSC, Mesenchymal stem cells; DC, Dendritic cell; HSC, Hepatic stellate cell; CAF, Cancer-associated Fibroblast; KC, Kupffer cell; MDSC, Myeloid-derived suppressor cell; Treg, Regulatory
T cell; LSEC, Liver sinusoidal endothelial cells.
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Of the aforementioned steps, the “premetastatic phase” is

essential for organ-specific metastasis formation and has

recently gained much attention. Numerous studies have

proposed that primary tumor-derived secreting factors are

associated with the premetastatic niche formation in distant

organs (36, 66). The vascular endothlial growth factor (VEGF)

and transforming growth factor-b (TGF-b) show critical roles in

premetastatic niche formation to promote BC metastasis (41–

43). Moreover, chronic psychological stress can promote

metastatic colonization of circulating BC cells by promoting a

premetastatic niche through activating b-adrenergic signaling

(36). BC secreted exosomes can fuse preferentially with organ-

specific cells at their predicted destination to prepare the

premetastatic niche and exosomal integrins can be used to

predict organ-specific metastasis (44). In the liver, exosomes

secreted from BC cells can reach liver and fuse with Kupffer cells

to form premetastatic niche (44). Exosomal integrin avb5
uptake by Kupffer cells can induce Src phosphorylation and

S100 gene expression to determine liver metastasis (44). Tumor-

derived tissue inhibitor of metalloproteinases 1 (TIMP-1) was

also found to induce liver metastasis via hepatic stromal cell

derived factor 1 (SDF-1) and neutrophil recruitment (45).

Despite these recent discoveries, the roles and mechanisms of

premetastatic step in BCLM are currently not well understood.
Hepatic microenvironment of breast
cancer liver metastasis

The hepatic microenvironment into which disseminated

BC cells invade and colonize is pivotal for the formation of

BCLM. The hepatic microenvironment is highly regulated,

relying heavily on the interaction between BC cells and

resident cell populations (67). These interactions help

nurture liver tissue to become fertile grounds for tumor cell

seeding. The roles of different types of cells in the

microenvironment of liver metastases are summarized in

Table 2 and described below.
Cancer stem cells

Cancer stem cells (CSCs) can interact with the hepatic

microenvironment such as extracellular matrix, hypoxia or

growth factors, all of which contribute to the metastasis (70).

Knaack et al. cultured pancreatic cancer CSCs in vitro together

with hepatic stellate cells and myofibroblasts to demonstrate the

importance of these stromal cells in liver metastasis formation

(71), indicating a connection between CSCs and liver

microenvironment. Furthermore, Zhang et al. showed the

CD44high/CD24- breast CSC population can activate TGF-b1
signaling and increase the invasive capacity and liver metastasis

of BC (68). In line with this study, the cell surface adhesion
Frontiers in Oncology 04
molecule CD44 was found to enhance breast tumor invasion and

metastasis to the liver (69).
Liver sinusoidal endothelial cells

When breast tumor cells enter the hepatic microcirculation,

they first encounter liver sinusoidal endothelial cells (LSECs).

LSECs are double-edged swords, as they can not only promote

but a l so inhib i t BCLM format ion in the hepat i c

tissue microenvironment.

Regarding the tumoricidal activities of LSECs, many studies

have shown that the tumor cells can obstruct the sinusoids to

trigger an ischemia and inflammatory response. LSECs release

cytotoxic cytokines, which have damaging effects in adjacent

tumor cells (73–77). LSECs can also remove or degrade the

enzymes that promote angiogenesis and metastasis (78).

Whether the tumoricidal action of LSECs exert a prominent

effect on BCLM remains to be determined.

On the other hand, tumor cells can activate Kupffer cells

(KCs) to secrete proinflammatory cytokines, which induce

LSECs to express adhesion molecules and help tumor cells

extravasate into hepatic parenchyma (49–51, 72). Also, LSECs

allow tumor cells directly adhere to the membrane proteins and

promote metastasis (105). Although these findings came from

studies on colorectal cancer or lung cancer, it is postulated that

LSECs also possess tumor-promoting activities in BCLM.

Furthermore, some critical molecules from LSECs or their

surrounding microenvironment are involved in liver metastasis

(64). The expression of chemokine (C-X-C motif) receptor 4

(CXCR4) in cancer cells is associated with increased expression

of chemokine ligand CXCL12 in LSECs’ microenvironment and

CXCR4-CXCL12 signaling drives metastasis (64). Intercellular

adhesion molecule 1 (ICAM-1), signal transducer and activator

of transcription (STAT)3, programmed cell death-ligand 1 (PD-

L1), and microRNA-20a with its targeted proteins expressed by

LSECs also play a pivotal role in the interaction between LSECs

and cancer cells and thereby promote liver metastasis (64).
Hepatocytes

The main function of hepatocytes is helping metastatic BC

cells in seeding and colonization of the liver. BC cells can directly

interact with hepatocytes by forming tight-junction-like

complexes with hepatocytes in the Disse space, the space

between hepatocytes and sinusoids (83). Interestingly,

metastatic BC cells exhibit a lower adherent ability with LSECs

compared to the hepatocytes (52), suggesting that hepatocytes

facilitate BC cell seeding in the liver.

Hepatocytes can release growth factors, such as insulin-like

growth factor 1 (IGF-1) and hepatocyte growth factor (HGF)

which promote liver metastasis (53). The overexpression of RON
frontiersin.org
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receptor has been reported in BC and RON can be activated by

HGF-like protein secreted by hepatocytes. RON activation

promote cancer cells growth, invasion and metastasis (53).
Liver macrophages and Kupffer cells

Liver macrophages can be divided into monocyte-derived

recruited macrophages and liver resident KCs (84). The M1 to

M2 repolarization of tumor-associated macrophages (TAMs) can

prevent immunogenic, inflammatory responses while inducing

neoangiogenesis and matrix remodeling, thus promoting breast
Frontiers in Oncology 05
cancer progression and metastasis (57, 58). It has been

demonstrated that the EMT of BC cells is regulated by M2

macrophages in the liver metastatic microenvironment (39).

KCs, unlike monocyte-derived recruited macrophages, are

permanent resident monocytes in the sinusoids. They can fuse

with exosomes derived from BC cells and contribute to the

premetastatic niche formation (44). On one hand, KCs can

exhibit tumoricidal activity by releasing reactive oxygen

species (ROS), cytotoxic cytokines, proteases, and recruitment

of other inflammatory cells (85, 87, 88), particularly when the

burden of tumor cells invading liver is excessive. The anti-tumor

activity of KCs might base on the reruitment of natural killer
TABLE 2 The roles of different cells in the microenvironment of breast cancer liver metastasis.

Cell type Molecules or cytokines Interaction with other cells

Cancer stem
cells (CSCs)

TGF-b1 pathway promote liver metastasis of breast cancer by inducing the
CD44high/CD24- breast cancer stem cell population (68, 69)

Interaction between CSCs and liver microenvironment cells promote
metastasis (70, 71)

Liver
sinusoidal
endothelial
cells
(LSECs)

TNF-a or IL-1 stimulate the attachment of tumor cells to LSECs and lead
extravasation (49–51); LSECs secret fibronectin induce EMT and promote
metastasis (72); CXCL12, ICAM-1, STAT3, PD-L1 and microRNA-20a expressed
by LSECs interact with cancer cells and involve in liver metastasis (64)

Obstruction of the sinusoids by tumor cells can lead ischemia, trigger
inflammatory response and damage disseminated tumor cells (73–
78)

Hepatocytes Claudin-2 (52, 79–81), E-cadherin (82) promote the adhesion between tumor cells
and hepatocytes; hepatocytes release IGF-1 and HGF to promote metastasis (53);
HGF-like protein secreted by hepatocytes activate RON to promote metastasis
(53)

Tumor-hepatocyte interactions promote liver metastasis (52, 79–83)

Liver
macrophages

M1 to M2 repolarization induced by IL-4, IL-13 and STAT6 pathway contribute to
metastasis (57, 58, 84, 85); PLD-2 promote TAMs infiltration in breast tumor and
liver metastasis (86)

M2 macrophage phenotype regulate EMT of breast cancer cells, and
promote liver metastasis (39)

Kupffer cells
(KCs)

KCs relase oxygen metabolites, cytotoxic cytokines, proteases, TNF-a and IL-1b to
damage disseminated tumor cells (53, 85, 87, 88); KCs decrease cancer cells by
promoting secreting GM-CSF and IFN-g (53); KCs release growth factors (HGF,
VEGF), cytokines (TNF-a, Il-1, IL-1b, IL-6 and IL-10), MMP9 and MMP14 to
promote extravasation (49–51, 53) and outgrowth of metastases (53, 59–61)

KCs fused with exosomes secreted from cancer cells and contributed
to the premetastatic niche formation (44); KCs damage disseminated
tumor cells through recruitment of NK cells (85, 87, 88)

Cancer-
associated
Fibroblasts
(CAFs)

CAFs promote metastasis through exhibiting antitumor immune suppression
depends on CXCL12 or NOX4 signaling (89, 90)

CAFs modify ECM which may facilitate cancer cell migration or act
as barrier (91)

Hepatic
stellate cells
(HSCs)

Activated HSCs promote metastasis through exhibiting antitumor immune
suppression response by releasing potent immune suppressor TGF-b (46); HIF-1
activates TWIST and promotes the binding of VEGF to VEGFR to contribute liver
metastasis (92); RLN target activated HSCs inhibit metastasis (92)

Activated HSCs promote metastasis by organization of ECs into neo-
vessel network (62) and inducing LSECs and ECs to form vascular
tube (63); activated HSCs promote metastasis by inducing T cell
apoptosis and NK cells quiescence (93, 94); HSCs modify ECM
which may facilitate cancer cell migration or act as barrier (91, 95)

Neutrophils Neutrophils inhibit tumor growth by releasing cytolytic factors (40); aged
neutrophil promote metastsis by releasing promoting factors (96); neutrophil-
derived transferrin promote metastasis (97); loss of p53 in cancer cells triggers
WNT-dependent systemic inflammation promote metastasis (98)

Neutrophils inhibit tumor growth through recruiting CD8+ cytotoxic
T cells or macrophages (54, 99); physical interaction of neutrophils
with tumor cells enhance migration of tumor cells into the
extravascular space (55)

Myeloid-
derived
suppressor
cells
(MDSCs)

MDSCs can be recruited to the metastases by chemokines (CXCL1 and CXCL2)
(100); S100A8/Gr1-positive MDSCs (101) can promote growth and aggressiveness
of cancer cells by producing arginase and IL-6 (102–104)

Tumor cells recruiting MDSCs can induce immune tolerance state to
contribute tumor growth (47, 48)

Regulatory T
cells (Tregs)

– Tregs contribute metastasis by inhibiting antitumorigenic T-cell (65)
TAM, Tumor-associated macrophage; EMT, Epithelial-to-mesenchymal transition; NK cells, Natural killer cells; ECM, Extracellular matrix; EC, Endothelial cell; TGF-b, Transforming
growth factor-b; TNF, Tumor necrosis factor; CXCL, Chemokine (C-X-C Motif) ligand; NOX4, Nicotinamide adenine dinucleotide phosphate oxidase 4; IL, Interleukin; STAT, Signal
transducer and activator of transcription; PLD, Phospholipase D; HGF, Hepatocyte growth factor; ICAM-1, Intercellular adhesion molecule 1; PD-L1, Programmed cell death-ligand 1; IGF-
1, Insulin-like growth factor 1; HIF, Hypoxia induced factor; GM-CSF, Granulocyte macrophage colony stimulating factor; IFN-g, Interferon g; MMP, Matrix metalloproteinase; VEGF,
Vascular endothlial growth factor; VEGFR, Vascular endothelial growth factor recepter; RLN, Relaxin.
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(NK) cells by secreting inflammatory factors granulocyte

macrophage colony stimulating factor (GM-CSF) and

interferong(IFN-g) (53). KCs can also decrease metastatic BC

by increasing level of tumor necrosis factor (TNF)-a and

interleukin (IL)-1b (53). On the other hand, KCs can also

promote liver metastasis through secreting growth factors and

cytokines including HGF, VEGF, IL-6, matrix metalloproteinase

(MMP)9 and MMP14, as demonstrated in colorectal cancer

studies (53, 59–61). However, whether KCs have these

dichotomous effects in BCLM awaits to be examined.
Cancer-associated fibroblasts and
hepatic stellate cells

The cancer-associated fibroblasts (CAFs) in the hepatic

microenvironment are widely considered to be derived from

hepatic stellate cells (HSCs) (106). It was found that HSCs can be

induced to trans-differentiate into a proliferative and motile

form called myofibroblasts by growth factors released from

tumor ce l l s o r KCs dur ing the deve lopmen t o f

micrometastases (107, 108). Functionally, activation of HSCs

promotes liver metastasis by enhancing tumor cell adhesion,

invasion, survival, and proliferation (56). Activated HSCs can

also initiate angiogenesis by organizing endothelial cells (ECs)

into a neovascular network and inducing LSECs and ECs to form

vascular tubes within metastases (62, 63). Vascular endothlial

growth factor receptor (VEGFR) are mainly distributed on the

endothelial surface of tumor vessels, inhibit VEGFR can

significantly suppress liver metastasis of BC. Hypoxia induced

factor (HIF)-1 can activate TWIST and promote the binding of

VEGF to VEGFR to contribute BCLM (92).

In addition, activated HSCs suppress antitumor immune

response by inducing T cell apoptosis and releasing TGF-b (46,

93), consistent with the well-established notion that immune

suppression by CAFs is mediated by CXCL12 or nicotinamide

adenine dinucleotide phosphate oxidase 4 (NOX4), leading to

exclusion of CD8+ T cells85,86. Notably, HSCs can modify the

extracellular matrix (ECM), thereby facilitating or impairing BC

cell migration and invasion (89, 90). Relaxin (RLN), an anti-

fibrosis peptide in liver tissue preferentially target metastatic BC

cells and activated HSCs. The increased expression of RLN can

inhibit BCLM, where RLN gene might be a novel target for

treating BCLM (92).
Neutrophils

Neutrophils are innate immune cells. Clinical studies have

demonstrated that increased neutrophil-to-lymphocyte ratio or

immune-infl;ammation index is associated with poor survival in

BC patients (109–111). Neutrophils can inhibit tumor growth

through releasing cytolytic factors and recruiting CD8+ cytotoxic
Frontiers in Oncology 06
T cells or macrophages in the hepatic microenvironment (40, 54,

99). On the other hand, neutrophils have also been shown to

promote cancer progression and metastasis via distinct

mechanisms. For example, they can anchor circulating BC

cells and enhance migration of BC cells. The tumor-interacting

neutrophils may promote BCLM in a CD90-TIMP-1 juxtacrine-

paracrine manner (55). Of note, a recent report showed that

aged neutrophils can robustly enhance BCLM through releasing

neutrophil extracellular traps, reactive oxygen species, VEGFs,

and MMP-9 (96), which are involved in the well-known

neutrophil response to infection and injury.
Myeloid-derived suppressor cells and
regulatory T cells

The myeloid-derived suppressor cells (MDSC) and regulatory T

cells (Tregs) are known as immunosuppressive cells, and they induce

an immune tolerance state that permits tumor growth by evading T-

cell-mediated killing (47, 48, 65, 112).MDSCs can be recruited to the

liver metastasis site by chemokines released by LSECs, KCs and

HSCs (100). These MDSCs, especially S100A8/Gr1-positive MDSCs

(101), can enhance the growth and aggressiveness of BC cells and

consequently liver metastasis by producing arginase and IL-6 (102–

104). Much effort has gone into the development of approaches to

eliminate MDSCs, but these attempts have been met with little

success (113). Notably, studies have shown that Tregs can exacerbate

the development of liver metastasis in intra-abdominal malignancies

(114). A direct relationship between Treg accumulation and BCLM

has not been reported yet, and there remains an intriguing question

as to the role of Tregs in BCLM.
Prognostic factors of breast cancer
liver metastasis

Liver metastatic cancer cells spread through the systemic

circulation and therefore liver metastases are rarely isolated

(115). Only about 5-10% of patients with BCLM have isolated

metastases confined to the liver with no evidence of metastatic

disease at other sites (12, 116). The median survival time of

untreated patients with BCLM is limited to a few months and is

dependent on several prognostic factors (12, 117).

Survival of patients with metastatic BC is affected by many

different clinical features, including age, race, marital status,

performance status, tumor size, lymph node status, number of

metastatic sites, history of treatments, and subtype (118). For

BCLM patients, Eichbaum et al. found a prognostic benefit for

BCLM patients who were hormone receptor (HR)+ and had an

expression of Ki-67 <20% and p53 <50% (119). Similarly, in a

review of 4,285 BCLM patients, Xie et al. found that those with

the HR+/HER-2+ subtype had the longest median survival of

31.0 months. Patients who were HR-/HER-2+ had a median
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survival of 22.0 months, and those who had triple negative breast

cancer (TNBC) had the shortest median survival of 8.0 months

(120). It has been observed that patients with TNBC have the

lowest survival after liver metastases in many other studies as

well, given the lack of effective therapy (121, 122). In general,

factors that may predict worse survival after liver metastasis

include the triple negative phenotype, time from curative

therapy to liver metastases, burden of tumor cells, and high

histological grade of primary (115, 123, 124).

To date, there are few studies on prognostic molecular

markers for patients with BCLM. Tian et al. showed that

mutations in AKT1, ESR1, ERBB2, FGFR4, APOBEC cytidine

deaminase, and defective DNA mismatch repair were significant

genetic determinants for BCLM development and progression

(125). The study by Yang et al. found that the PPFIA1 gene was

markedly elevated in BCLM and associated with decreased

disease-free survival (DFS) in HR+ BCLM patients (126). In

HER-2+ BC patients, mutant CCND1 (P241P) and PIK3CA

(E542K) led to significantly reduced DFS (127).
Current systemic therapies for
breast cancer liver metastasis

Systemic therapy remains the cornerstone of BCLM

management. However, BCLM patients who are treated with

systemic therapy have poor survival, particularly for triple

negative or HR- subtypes (128). If treated with chemotherapy

alone, the median survival of BC patients with solely liver

metastasis or with limited disease elsewhere is between 19

months (with pre-taxane chemotherapy regimens) to 22-26

months (with taxane-containing regimens) (129). The five-year

overall survival (OS) of patients with BCLM treated with systemic

therapy is 8-12% (117, 130). It is highly likely that new systemic

therapies recently approved for TNBC and HER-2+ BC may

improve clinical outcomes in patients with BCLM.

For patients with non-TNBC subtypes, there are options for

targeted systemic therapies. In the setting of metastatic HER-2+

tumors, trastuzumab in combination with systemic therapy is

associated with longer OS and progression-free survival (PFS)

compared to those treated with systemic therapy (14, 131, 132).

Rossi et al. found that in patients with metastatic HER-2+ BC

who were treated with trastuzumab and had liver-lung

metastases (n=328), 4-year survival was 32.1% (133). Further,

there has been significant innovation in HER-2-directed

therapies in recent years. Currently, there are two Food and

Drug Administration (FDA)-approved HER-2-directed

antibody-drug conjugates (ADCs), trastuzumane-emtansine

(T-DM1) and trastuzumab-deruxtecan (T-DXd), for HER-2+

metastatic BC (134). Interestingly, the DESTINY-Breast04

clinical trial showed that T-DXd also prolonged PFS and OS

in HER-2-low metastatic BC patients than chemotherapy (135).
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Recently, the third HER-2-directed ADC, disitamab vedotin

(RC48), received approval for treatment of metastatic gastric

or gastroesophageal junction cancer in China in 2021. It may

also soon become a treatment modality for HER-2+ metastatic

BC (134). At present, there are a total of 11 ADCs that target

HER family receptors in clinical trials.

In terms of HR+ disease, endocrine therapy in

combination with cyclin-dependent kinase 4 & 6 inhibitors

have shown to be effective in patients with both bone-only

and visceral metastases (136). He et al. reviewed HR+ patients

who were treated with fulvestrant. Fifty-one patients had

liver-only metastases, and their PFS was 3.7 months (137).

Recently, the SOLAR-1 trial revealed that the alpelisib plus

fulvestrant treatment had a significantly benefit in median OS

(37.2 months) compared to fulvestrant alone (22.8 months)

for PIK3CA-mutant/HR+/HER-2- BC patients with lung

and/or liver metastasis (138). Further, several new oral

bioavailable selective estrogen receptor modulators/

degraders (SERMs/SERDs) , inc lud ing las fox i f ene ,

bazedoxifene, LSZ102, and RAD1901, for ESR1 gene

mutation are currently under clinical investigations to treat

ESR1-mutant or endocrine therapy resistant metastatic BC

(139). It remains to be determined whether SERMs/SERDs

are effective treatment modalities for BCLM.

In contrast to other BC subtypes, there is no first-line

targeted therapy for TNBC. The clinical impact of

chemotherapy as the standard treatment of TNBC is limited

(140). Sacituzumab govitecan (SG) is an antibody-drug

conjugate composed of ant ibody target ing human

trophoblast cell-surface antigen 2 (Trop-2), coupled to

topoisomerase I inhibitor (SN-38) via a proprietary

hydrolyzable linker. In ASCENT study, 42% of patients had

liver metastasis. The median PFS (5.6 months) and OS (12.1

months) of metastatic TNBC patients in the SG group were

significantly longer than in the chemotherapy group (141).

Furthermore, immune checkpoint inhibitors (ICIs) in several

clinical trials have shown positive results for treating metastatic

BC recently (142). A phase III trial (KEYNOTE-355) utilized

pembrolizumab plus chemotherapy to treat metastatic TNBC.

For patients with PD-L1 expression (combined positive score

[CPS] ≥10), median PFS was 9.7 months in pembrolizumab

group vs. 5.6 months in placebo group (143). Another study

used pembrolizumab and capecitabine for metastatic BC (144).

However, metastatic BC only had moderate response to ICIs.

PD-L1 positive, first-line therapy, high tumor-infiltrating

lymphocytes, and high CD8+ T cell infiltrating are associated

with better response to ICIs (142). BCLM reportedly had a

lower response rate to ICI treatment when compared with the

other metastatic locations (142). Therefore, exploring new

targets and developing more effective therapy for BC with

liver metastasis are urgently needed and would have

tremendous clinical impact.
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Hepatic microenvironment related
therapeutic implications for BCLM

Given the critical roles of different cells in the hepatic

microenvironment in BCLM formation, it is tempting to

explore novel therapeutic approaches based on available

interventional agents targeting the key signaling proteins in

these cells. These potential treatment options for BCLM are

summarized in Table 3 and described below.

For BC stem cells in the hepatic microenvironment, the cell

surface adhesion molecule CD44 has been shown to potentiate

the invasion and metastasis of BC cells to the liver (68, 69). These

studies suggest that CD44 may be a novel target for inhibiting

BCLM. One phase I study utilized bivatuzumab mertansiene to

treat metastatic BC patients with positive CD44v6, and

estimated the pharmacokinetics and safety of the treatment

(145). This study demonstrated that the bivatuzumab

mertansine targeting CD44v6 could be a potential therapeutic

option for metastatic BC patients that express CD44v6 (145).

Claudin-2 is a molecule that plays a key role in the formation

of tight junctions. Previous studies have shown that liver

metastatic BC cells express high levels of Claudin-2 and the

protein is critical for the adhesion between BC cells and

hepatocytes by acting as an adhesion molecule (52). Afadin, a

Claudin-2-interacting partner, is also involved in BC cell

metastasis to the liver (79). Furthermore, the Claudin-2

expressed by liver metastatic BC cells can increase the

expression of integrin complexes in the surface of BC cells,

leading to enhanced adhesion of BC cells to ECM components,

such as type IV collagen and fibronectin (80). Although primary

human BC samples express low levels of Claudin-2, most of the

liver metastatic BC samples were found to display higher

expression levels of Claudin-2 (80). Further supporting the

significant role of Claudin-2 in BCLM formation, Tabaries

et al. demonstrated that blocking tumor-hepatocyte

interactions by inhibiting Claudin-2 expression using the Lyn-
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selective kinase inhibitor Bafetinib (INNO-406) can suppress

BCLM growth (81). Currently, most studies on Bafetinib are in

the preclinical stage, and there are a few phase I and phase II

clinical trials of Befetinib in chronic leukemia, prostate cancer,

and brain cancer.

The epithelial cell adhesion E-cadherin may also play an

important role in BC cell interaction with hepatocytes. BC cells,

which undergo EMT to escape from primary tumors, have been

shown to re-express E-cadherin upon entering the liver

microenvironment (82). This upregulation contributes to the

adhesion with hepatocytes and promotes BC cell survival by

activating extracellular regulated protein kinases (ERK)

signaling (82, 146). Although the clinical relevance of breast

tumor-hepatocyte or breast tumor-ECM interactions has not

been well evaluated, disruption of interactions between BC cells

and hepatocytes or ECM may serve as a potential strategy to

inhibit BCLM. Furthermore, results of some preclinical studies

suggest that ROS1 inhibitors, such as crizotinib, may be utilized

to treat E-cadherin defective BC. The preclinical data provided

theoretical basis to support the phase II clinical trials to evaluate

the safety and efficacy of ROS1 inhibitors in E-cadherin defective

BC patients (147). Currently, ROS1 inhibitors are widely used to

treat lung cancer patients with ROS1 mutations, and there are

also phase I and phase II clinical trials for ROS1 inhibitors to

treat patients with other advanced or metastatic solid tumors.

For macrophages, targeting M2 macrophage polarization

has been proposed as an anti-cancer treatment approach. The

STAT6, a key effector and mediator of IL-4 and IL-13 function,

is a potential therapeutic target in this regard (58). Notably,

phospholipase D-2 (PLD-2) is an important player in BC

progression and metastasis. In preclinical studies, PLD

inhibitors [FIPI (dual PLD1/PLD2 inhibitor) or VU0155072-2

(PLD2 inhibitor)] were found to reduce the tumor-promoting

macrophages and neutrophil infiltration in primary breast

tumors and liver metastasis, thereby suppressing BCLM (86).

In addition, Cao et al. showed that cabazitaxel could affect
TABLE 3 Hepatic microenvironment related therapeutic implications in breast cancer liver metastasis.

Hepatic
micoenvironment
cells

Related moleculars or pathway Therapeutic implications References

Breast cancer stem cells CD44, TGF-b1 pathway bivatuzumab mertansine (68, 69, 145)

Hepatocytes Claudin-2, ECM components (such as fibronectin and type IV
collagen), integrin complexes

Lyn-selective kinase inhibitor Bafetinib (INNO-406) (52, 79–81)

E-cadherin, ERK pathway ROS1 inhibitors (crizotinib) (82, 146, 147)

Macrophages STAT6, IL-4 and IL-13, CD47 PLD inhibitors [FIPI (dual PLD1/PLD2 inhibitor) or
VU0155072-2 (PLD2 inhibitor)], cabazitaxel

(58, 86, 148,
149)

NK cells Interleukin-15, interferon-g, CXCL12 and CXCR4 Interleukin-15 based immunotherapy (94)

Neutrophils G-CSF, P53, WNT, KIAA1199, TGFb-CXCL3/1-CXCR2 axis LGK974 (a Porcupine inhibitor blocking acylation of
Wnt), KIAA1199 inhibitors

(97, 98, 150–
152)
fr
ECM, Extracellular matrix; PLD, Phospholipase D; NK cells, Natural killer cells; TGF-b, Transforming growth factor-b; ERK, Extracellular regulated protein kinases; IL, Interleukin; STAT, Signal
transducer and activator of transcription; CXCL, Chemokine (C-X-C Motif) ligand; CXCR, Chemokine (C-X-C motif) receptor; G-CSF, Granulocyte colony stimulating factor. Figure legends.
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macrophages and improve the immunotherapy targeting CD47

in TNBC (148). The activation of macrophages by cabazitaxel

combined with the CD47 blocking effect could drastically

enhance the tumoricidal activity against TNBC cells, thus

suppressing BCLM (148). Cabazitaxel is widely utilized to treat

patients with metastatic castration resistant prostate cancer.

Several phase I and phase II trial studies have shown the

efficacy of cabazitaxel in metastatic BC patients so far (149).

One recently study showed an increased NK cells in dormant

heptic microenvironment. Interleukin-15 based immunotherapy

could ensure a large number of NK cells to maintain dormancy

and prevent BCLM through interferon-g signalling (94). Actived
HSCs secreted chemokine CXCL12 could induce NK cells

quiescence through CXCR4 to promote BCLM (94).

Normalizing NK cell pool might be a novel way to

prevent BCLM.

For neutrophils, the immature low-density neutrophils

(iLDNs) mobilized by cancer cell-derived granulocyte colony

stimulating factor (G-CSF) can promote BCLM (150), and the

liver metastatic growth may be facilitated by neutrophil-derived

transferrin in BC (97). The neutrophil or the transferrin

receptors depletion could inhibit transferrin production in the

metastatic microenvironment and suppress BC metastasis (97).

Furthermore, P53 may be a key regulator of pro-metastatic

neutrophils. It was shown that blockade of Wnt secretion by

LGK974, a Porcupine inhibitor blocking acylation of Wnt, or

shRNA in p53-null BC cells reverse subsequent neutrophilic

inflammation, resulting in reduced BCLM growth (98). To date,

the WNT inhibitor LGK974 is under a phase I clinical study in

patients with malignancies (151). Recently, Wang et al. found

that the KIAA1199 could promote immunosuppressive

neutrophils to infiltrate into the liver microenvironment,

which indicated that KIAA1199 might be a potential

therapeutic target to treat the liver metastasis (152). In

addition, KIAA1199 carries out its function through the

TGFb-CXCL3/1-CXCR2 signaling pathway. Restoration of

immune infiltration in the liver metastasis microenvironment

can potentially be achieved by inhibiting KIAA1199

pharmacologically, and thereby allowing for suppression of

liver metastasis and enhancement the response to ICI

treatment (152). Further in vivo studies and clinical trials are

needed to establish the utility of KIAA1199 inhibition in the

treatment of BC with liver metastasis.
Conclusion

Although recent advances in the understanding of the

molecular mechanisms of hepatic microenvironment in BCLM

using various in vitro and in vivo models shed light on potential

therapeutic targets, much work is needed to tie these findings to

clinical relevance. Concomitantly, identification of biomarkers
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to predict BCLM risk, progression, treatment response, and

patient survival will have a significant clinical impact. Further

in-depth investigation of critical pathways and genetic changes

underlying human BCLM would pave the way for developing

new approaches for preventing and treating BCLM.
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