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Frizzled (FZD) proteins are receptors for the WNT family ligands. Inherited

human diseases and genetic experiments using knockout mice have revealed a

central role of FZDs in multiple aspects of embryonic development and tissue

homeostasis. Misregulated FZD signaling has also been found in many cancers.

Recent studies on three out of the ten mammalian FZDs in melanoma have

shown that they promote tumor cell proliferation and invasion, via the

activation of the canonical WNT/b-catenin or non-canonical PCP signaling

pathway. In this concise review, we summarize our current knowledge of

individual FZDs in melanoma, discuss the involvement of both the canonical

and non-canonical pathways, and describe ongoing efforts to target the FZD

receptors for melanoma treatment.
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1 Introduction

Frizzled (FZD) family proteins belong to the G-protein coupled receptors (GPCRs),

which are the largest group of cell surface receptors found in humans (1). There are six

classes of GPCRs: Rhodopsin family (Class A), secretin receptor family (Class B),

metabotropic glutamate/pheromone family (Class C), fungal mating pheromone

receptor family (Class D), cyclic AMP receptor family (Class E), and FZD/

Smoothened (SMO) family (Class F) (2). Compared to other GPCRs, FZD family

receptors are thought to be atypical as the activity level of G protein signaling

mediated by FZD is much lower than that of a typical GPCR (3). Spontaneous and

targeted mutations in mammalian Frizzled genes have revealed their essential roles in

various developmental and homeostatic processes, including palate and heart
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morphogenesis, tissue polarity, vascular formation and

maintenance, and the development of the central nervous

system, kidney, and bone (4). Increasing evidence also suggests

that FZDs play an important role in cancer development and

progression (5).

Frizzled receptors can activate three signaling pathways:

canonical WNT/b-catenin pathway, non-canonical planar cell

polarity (PCP) pathway, and WNT/calcium signaling pathway

(4, 6). The canonical WNT/b-catenin signaling pathway is

characterized by the stabilization of b-catenin upon ligand

binding (5). The PCP pathway controls the cell/tissue polarity

along the body axis, when mutated, results in various

developmental defects in the body (7, 8). The WNT/calcium

signaling pathway is defined by the regulation of intracellular

Ca2+ levels and the activation of many calcium-sensitive

enzymes (9). Although the activation of these three signaling

pathways seems distinct and independent, convergent models of

signaling networks where several pathways act in a coordinated

and interdependent manner have been proposed (10). The role

of Frizzled receptors in development and other cancers has been

well-reviewed elsewhere (4, 5, 11). Here, we focus on

summarizing our current knowledge of FZDs in melanoma.

We describe the role of individual FZDs in melanoma, discuss

the involvement of both the canonical WNT/b-catenin and PCP
Frontiers in Oncology 02
pathways, and highlight potential targeted therapy on the FZD

signaling pathways for melanoma treatment.
2 FZDs and WNT ligands

There are ten members in the Frizzled family, FZD1-10 in

humans and Fzd1-10 in mice. They are between 500 to 700

amino acids in length and can be divided into four sub-families

based on the amino acid sequence homology (4). Results of the

detailed comparison are shown in Figure 1 using the Clustal

Omega multiple sequence alignment tool (12). In humans, FZD3

and FZD6 share 53% identity, FZD4, FZD9, and FZD10 share

52-65% identity, FZD1, FZD2, and FZD7 share approximately

78-80% identity, and FZD5 and FZD8 share 69% identity. FZDs

from different sub-families share 34-53% identity. These

numbers are very similar for mouse Frizzled proteins.

Common structures of FZDs include an extracellular

N-terminus, seven hydrophobic transmembrane domains, and

an intracellular C-terminus. The N-terminus contains a

conserved 120 amino acids cysteine-rich domain (CRD)

connected to the first transmembrane helix by a hydrophilic

linker of 70-120 amino acids (13). FZD utilizes CRD as a

necessary and sufficient binding site for various ligands,
A B

FIGURE 1

Comparison of human Frizzled proteins. (A) Heat plot showing the percent identity matrix of the 10 human Frizzled amino acid sequences.
(B) Phylogram showing the relatedness of the 10 human FZDs. Sequence compared using the Clustal Omega multiple sequence alignment tool.
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including the WNT proteins, R-spondin, and Frizzled-related

proteins (14–17). More precise WNT binding sites on CRD were

determined by resolving the crystal structure of CRDs from

mouse Fzd8 and secreted Frizzled-related protein 3, and it was

shown that CRDs are predominantly a-helical held in place by

the disulfide bonds formed by the ten conserved cysteines (18).

The co-crystal structure of Xenopus Wnt8 in complex with

mouse Fzd8-CRD well explained how a Wnt ligand engages the

Fzd receptor (19). The first crystal structure of full-length human

FZD has been resolved recently in a ligand-free state at a

resolution of ~2 Å, paving the way to for better understanding

the function of FZDs (20).

There are 19 WNT in mammals, and they are typically

between 350 to 420 amid acids in length. WNT proteins from the

same sub-families share 60-85% identity, and WNTs from

different sub-families share about 30-50% identity (Figure 2).

Like FZDs, WNT proteins are widely expressed in many tissues.

For example, the expression of 13Wnt genes and nine Fzd genes

can be detected in the developing mouse skin (21–23). The 190

possible combinations from 19WNT ligands and 10 FZDs make

the study of the paired role of WNT/FZD extremely difficult.

Moreover, the existence of non-WNT ligands for FZD receptors

and non-FZD receptors for WNT ligands further complicates

the pathway activation. For example, Norrin, a secreted protein
Frontiers in Oncology 03
encoded by the Norrie disease gene, can bind specifically to the

Fzd4 receptor and regulate the angiogenesis and endothelial

barrier function (24). Although not related to Wnt, Norrin can

mimic Wnt for Frizzled recognition and promote Fzd4

clustering and activation (25). Wnt5a can bind to both

Frizzled receptors and receptor tyrosine kinase-like orphan

receptors (ROR1 and ROR2). The signaling outputs of Wnt5a

often depend on the availability of receptor/coreceptor and the

competition of other Wnt ligands binding to receptors (26, 27).

It has been reported that Wnt5a can both activate and inhibit

canonical Wnt signaling (28). Its binding to the ROR receptors is

believed to activate non-canonical PCP signaling (29, 30).
3 Canonical WNT/b-Catenin
signaling and melanoma

The activation of the canonical WNT signaling pathway

involves the inhibition of b-catenin degradation complex,

resulting in the accumulation of b-catenin in the cytoplasm

and the translocation of b-catenin from the cytoplasm into the

nucleus to regulate transcription in combination with LEF/TCF

transcription factors (5, 6). The canonical WNT signaling plays

an important role in multiple steps of normal melanocyte
A B

FIGURE 2

Comparison of human WNT ligands. (A) Heat plot showing the percent identity matrix of the 19 human WNT amino acid sequences.
(B) Phylogram showing the relatedness of the 19 human WNTs. Sequence compared using the Clustal Omega multiple sequence alignment
tool.
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development, including the migration of its precursor neural

crest cell, melanocyte lineage specification, and terminal

differentiation (31). b-catenin can directly interact with

microphthalmia-associated transcription factor (MITF), a key

regulator of melanocytes, to promote melanocyte stem cell

proliferation (32). In melanoma, the canonical WNT/b-catenin
signaling appears to have a cancer-promoting role, similarly as

in many other cancers (33). Mutations in components of the

canonical WNT signaling pathway genes, such as APC, AXIN1,

and CTNNB1, are found at a frequency of 10%, 2.9%, and 5.9%

(34). The pro-cancer role of the canonical WNT/b-catenin
signaling in melanoma has been well supported by studies

with the Pten/BRaf mouse model of melanoma. Silencing the

canonical Wnt signaling by b-catenin knockout can slow down

tumor cell proliferation and inhibit melanoma metastasis, while

activation of the canonical Wnt signaling by b-catenin
stabilization can accelerate tumor cell proliferation and

melanoma metastasis (35). Activation of the WNT/b-catenin
signaling can also promote melanomagenesis by bypassing the

oncogen-induced senescence (36–38) or enabling immune

evasion (39).
4 Non-canonical WNT signaling
and melanoma

Most of our knowledge about the role of non-canonical

WNT signaling pathway in melanoma came from the studies on

WNT5A. Gene expression profiling initially identified that

WNT5A expression correlated with cell motility and

invasiveness of human melanoma cells. This increase in

melanoma cell invasion was not related to the canonical WNT

signaling activation, as no increase in b-catenin expression or

nuclear translocation was observed. Instead, protein kinase C

(PKC) activation was dramatically increased upon WNT5A

overexpression (40). Further studies suggested a phenotypic

switch model of melanoma cells, in which the expression of

WNT5A and CTNNB1 (encodes b-catenin) dictates the

proliferation or invasion status. Cells with high CTNNB1 and

lowWNT5A are highly proliferative, and cells with low CTNNB1

and high WNT5A are highly invasive (41, 42). Tumor cells need

to switch from high-CTNNB1, low WNT5A to low-CTNNB1,

high WNT5A to initiate metastasis and move away from the

primary site. Once they arrive at the site of metastasis, they need

to switch back to the proliferative phenotype to colonize at the

new location. A recent study shows that WNT5A regulates the

expression of the tyrosine kinase receptors AXL and MER to

promote tumor dormancy and drive dissemination (43). It

remains unclear which receptors WNT5A signals through in

regulating the phenotype switch, although evidence for ROR2

and FZD5 both exist (40, 44).
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5 FZDs and melanoma

5.1 FZD1, FZD2 and FZD7

Mouse knockout studies have revealed a critical function of

Fzd1/2/7 in palate closure, convergent extension of the neural

tube, and heart development (45, 46). Among the ten FZDs,

FZD7 is the most studied member in cancer. Overexpression of

FZD7 in cancer cells (e.g., intestinal cancer, hepatocellular

carcinoma, and breast cancer) often results in increased cell

proliferation and tumor growth (11, 47). Thus, targeted

inhibition of FZD7 has been considered as a promising

approach for cancer therapy. Limited studies in melanoma

also indicate a similar pro-oncogenic role of FZD7.

Upregulation of FZD7 expression in melanoma cells

contributes to the drug resistance to the BRAF inhibitor

PLX4720 (48). Knockdown of FZD7 in melanoma cells

inhibits the formation of xenograft tumors and metastatic

growth in the lung following intravenous injection (49). A

recent study has shown that the WNT11-FZD7-DAAM1 axis

activates Rho-ROCK1/2-Myosin II in melanoma and plays a

crucial role in regulating tumor-initiating potential, local

invasion, and distant metastasis formation (50). The role of

FZD1 and FZD2 in melanoma has not been investigated.
5.2 FZD3 and FZD6

Activation of the canonical WNT signaling can be

monitored in vitro using HEK293 cells carrying a luciferase

reporter under the control of 7 LEF/TCF binding sites (Super

TOP-FLASH, STF cells) (24). FZD3 and FZD6 are believed to

signal mainly through the non-canonical PCP pathway since

they do not activate canonical WNT signaling when

cotransfected with many WNTs in the STF cells (45).

Knockout studies in mice show that Fzd3 is required for axon

guidance of thalamocortical neurons and spinal sensory neurons

(51, 52). Fzd6 is required in patterning hair follicles and follicle-

associated structures (53, 54). Together, Fzd3 and Fzd6 also play

redundant roles in neural tube closure and patterning hair cells

in the inner ear (55).

Both FZD3 and FZD6 have been found to play a pro-cancer

role in melanoma. FZD3 is overexpressed in ~20% of human

patient melanoma samples (56). Knockdown of FZD3 in patient-

derived melanoma cells reduces melanoma cell proliferation and

progression when engrafted into NSG mice (57). We recently

found that FZD6 is also overexpressed in multiple melanoma cell

lines and patient tissues. Knockdown or knockout of FZD6 does

not affect cell proliferation but slows down cell invasion.

Moreover, knockout of Fzd6 dramatically reduces lung

metastasis in the Pten/BRaf mouse model of melanoma (58). It
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will be interesting to dissect the mechanistic difference between

FZD3 and FZD6 in melanoma, as they clearly regulate different

aspects of melanoma cell behaviors (FZD3 in cell proliferation

and FZD6 in cell invasion).
5.3 FZD5 and FZD8

The role of FZD5 and FZD8 in melanoma has not been

studied directly. Antibodies against FZD5 have been shown to be

able to block melanoma cell migration and invasion in vitro,

possibly by the inhibition of PKC activity (40). An FZD8-related

asialylated antiproliferative factor can inhibit the proliferation of

two melanoma cell lines in vitro, Hs839T and A375 (59). Due to

the caveats of the specificity of the chemical inhibitors or

blocking antibodies, further studies are needed to directly

determine the function of FZD5 and FZD8 in melanoma.
5.4 FZD4, FZD9, and FZD10

FZD4 is believed to signal through the canonical Wnt

signaling (4). It binds with WNT7A and WNT7B and non-

WNT ligand Norrin (24, 60, 61). They can form a signaling

complex with co-receptors LRP5 and TSPAN12 to regulate the

vascular formation and maintain the blood-retina barrier and

the blood-brain barrier (62, 63). FZD9 plays a role in the

development of B-cell, dentate gyrus, and bone (64–66). The

role of FZD4 and FZD9 in melanoma has not been studied.

Expression of FZD10 has been reported in many cancers,

including melanoma. In colon cancer, the cytoplasmic staining

of FZD10 increases as the tumor progress. Interestingly, an

opposite pattern has been observed in melanoma and gastric

cancer, as the cytoplasmic staining of FZD10 is much lower in

metastatic tumors than in early-stage tumors (67). The

significance of the dynamic expression of FZD10 in melanoma

is unknown.
6 Therapeutic potential of
FZD receptors

GPCRs are important drug targets as they are involved in

various diseases. As of 2018, about 34% (n=475) of drugs

approved by the Food and Drug Administration (FDA) target

108 GPCR family members (68). Given the general cancer-

promoting role of FZDs, several strategies have also been

explored to inhibit FZDs for cancer treatment. For example,

antibodies targeting the extracellular domain of FZD5, FZD7,

and FZD10 have been successfully applied to inhibit the

individual FZD-induced tumor growth in pancreatic ductal

adenocarcinoma, Wilms’ tumor, and synovial sarcoma,

respectively (69–71). The monoclonal antibody OMP-18R5
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(vantictumab), initially identified by binding to FZD7, can

interact with four other FZD receptors (FZD1, FZD2, FZD5,

and FZD8) and block the canonical WNT signaling induced by

multiple WNT family members. This antibody can inhibit the

growth of a range of tumor types, including lung, breast, colon,

and pancreatic tumors in xenograft studies (72). OMP-54F28

(ipafricept), a recombinant fusion protein consisting of the

FZD8 CRD and a human IgG1 Fc fragment, has been

designed as a decoy receptor to sequester WNTs and prevent

them from binding to FZD8 (73). This recombinant protein is

effective in inhibiting FZD8-mediated solid tumor growth in

preclinical models, although no notable anti-cancer response has

been observed in clinical trials (74–76). Similarly, a soluble

extracellular peptide of FZD7 has been utilized as a decoy

receptor for inhibiting FZD7 in hepatocellular carcinoma cells

(77). The idea of disrupting the FZD-induced signaling pathways

to treat cancer has also been tried in melanoma (78). FJ9 is a

compound designed to disrupt the interaction between the

FZD7 and the PDZ domain of Dishevelled. Melanoma cell line

LOX treated with FJ9 in vitro can inhibit tumor cell growth and

cause significant apoptosis. The effects appear to be related to the

inhibition of the canonical WNT signaling. Although the in vivo

effect of FJ9 on melanoma growth has not been tested, it does

inhibit the growth of non-small cell lung cancer xenografts in

nude mice.

MicroRNA (miRNA)-based gene therapies have shown

promise in preclinical studies for cancer treatment, and several

have advanced into clinical testing (79). The discovery of various

miRNA(s) of FZD receptors has paved the way for designing

suitable miRNA-based therapeutic strategies against different

cancers, including melanoma. For example, miR-485-5p has

been found to target the 3’-untranslated region (3’-UTR) of

FZD7. It can inhibit melanoma cell invasion and proliferation in

vitro by suppressing FZD7 expression, thus providing a

promising therapeutic target for melanoma treatment (80).

FZD6 expression can be negatively regulated by several

miRNAs, such as miR-199a-5p, miR-125b, and miR-20b (81,

82). Given the pro-invasion role recently identified for FZD6 in

melanoma, it will be interesting to see if these miRNAs can be

used for preventing melanoma progression and metastasis.
7 Conclusion

Genetic studies in animalmodels have revealed critical functions

of FZD receptors in embryonic development and adult tissue

homeostasis. Increasing evidence also suggests a role of FZDs in

many cancers. FZD activation, either via the canonical WNT/b-
catenin or the non-canonical pathway, appears to have a universal

cancer-promoting role in melanoma. Although known at a

descriptive level, FZD3, FZD7, and the most recent addition of

FZD6 are involved in melanoma cell survival and invasion. The

functionof theother sevenFZDs inmelanoma remains tobe studied.
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Perhaps the greatest challenge is to define the role of individual

WNT/FZDpairs inmelanoma, not only in cell survival and invasion,

but also in drug resistance, immune escape, and tumor

microenvironment. A detailed, mechanistic understanding of the

FZD signaling pathway in melanoma is needed for developing

potential therapy. Effort is already underway to target FZD

receptors for cancer treatment, including blocking antibodies,

peptide inhibitors, small molecule inhibitors, and miRNA-based

therapies. Finding an effective but specific targeted therapy on

FZDs for melanoma is still a challenging task, given the complexity

of the signaling pathway and broad expression of FZDs in many

normal tissues. Specific delivery of the drug(s) tomelanoma cells will

greatly improve the safety and effectiveness of treatment.
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