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Programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) is an important pair
of immune checkpoints (IC), which play an essential role in the immune escaping process
of tumors. Anti-PD-1/PD-L1 immunotherapy can block the suppression effect of the
immune system produced by tumor cells through the PD-1/PD-L1 axis and restore the
pernicious effect of the immune system on tumor cells. The specific mechanism of anti-
PD-1/PD-L1 immunotherapy is closely related to PI3K (phosphatidylinositol 3-kinase)/
AKT (AKT serine/threonine kinase 1), JNK (c-Jun N-terminal kinase), NF-kB (nuclear
factor-kappa B subunit 1), and other complex signaling pathways. Patients receiving anti-
PD-1/PD-L1 immunotherapy are prone to drug resistance. The mechanisms of drug
resistance mainly include weakening recognition of tumor antigens by immune cells,
inhibiting activation of immune cells, and promoting the production of suppressive
immune cells and molecules. Anti-PD-1/PD-L1 immunotherapy plays a vital role in non-
small cell lung cancer (NSCLC). It is essential to find better efficacy prediction-related
biomarkers and screen patients suitable for immunotherapy. At present, common
biomarkers related to predicting immune efficacy mainly include PD-L1 expression level
in tumors, tumor mutation burden (TMB), microsatellite instability (MSI)/mismatch repair
(MMR), mutations of driver gene, etc. However, the screening efficacy of each indicator is
not ideal, and the combined application of multiple indicators is currently used. This article
comprehensively reviews anti-PD-1/PD-L1 immunotherapy-related mechanisms, drug
resistance-related mechanisms, and therapeutic efficacy-related predictive biomarkers.

Keywords: non-small cell lung cancer (NSCLC), programmed cell death-1 (PD-1)/programmed death-ligand 1
(PD-L1), immunotherapy, predictive biomarkers, drug resistance
INTRODUCTION

Lung cancer is the tumor with the second morbidity rate and the first mortality rate globally (1, 2). Non-
small cell lung cancer (NSCLC) accounts for 85% of lung cancer (3). At present, the main treatments for
NSCLC are surgery, radiotherapy, chemotherapy, and targeted therapy (3–5). With the rise of
immunotherapy in recent years, immunotherapy has also become one of the main treatments for
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NSCLC (6). Programmed cell death-1 (PD-1, also called CD279)/
programmed death-ligand 1 (PD-L1, also known asCD274) is a pair
of critical immune checkpoints (IC) and tumor cells can inhibit the
killing effect of the immune system by activating the PD-1/PD-L1
axis (7). The anti-PD-1/PD-L1 immunotherapy can block the PD-
1/PD-L1 axis and restore the lethal effect of the immune system on
tumor cells (8). After binding of PD-1 to PD-L1, it can antagonize T
cell (antigen) receptor (TCR) recognition by phosphorylating the
Src homology 2 domain tyrosine phosphatases (SHP-2) site and
block T cells from functioning (9). The activity of T cells is inhibited,
leading to immune escaping of tumor cells through
phosphatidylinositol 3-kinase (PI3K)/AKT serine/threonine kinase
1 (AKT)/mammalian target of rapamycin (mTOR) and other
signaling pathways (10).

Patients receiving immunotherapy often develop drug resistance.
Current studies have shown that drug resistance occurs mainly
through weakening recognition of tumor antigens by immune cells,
inhibiting activation of immune cells, and promoting the
production of suppressive immune cells and molecules (11, 12).
The current common prediction markers of immunotherapy effect
include PD-L1 expression level of tumor tissue, tumor mutation
burden (TMB), microsatellite instability (MSI)/mismatch repair
(MMR), related driver gene mutations, etc. But the predictive
effect of each marker is not ideal, and a combination of multiple
indicators is usually used (13–15).

Given current research on anti-PD-1/PD-L1 immunotherapy,
we have found some problems. Some patients have higher PD-L1
expression, but the therapeutic effect is not ideal. On the
contrary, some patients have lower or even negative PD-L1
expression, but the therapeutic effect is well. Biomarkers such
as TMB, Tumor Proportion Score (TPS), MSI/MMR, driver gene
mutations are not perfect for evaluating the efficacy of
immunotherapy. At present, there is no ideal predictive
biomarker for the therapeutic effect of immunotherapy, and a
combination of multiple indicators is usually used to improve
the predictive efficiency. According to reports, the current
effective rate of immunotherapy in lung cancer is not more
than 30% (16), and the overall effective rate is just about 20%
(17). Therefore, it is essential to find suitable biomarkers for
immune efficacy prediction and screen out appropriate patients
for immunotherapy. Based on the above questions, we want to
explore anti-PD-1/PD-L1 immunotherapy efficacy and drug
resistance related mechanisms in NSCLC. At the same time,
we hope to find more reliable biomarkers for predicting
immunotherapy efficacy. We have made a comprehensive
review of these issues.
MECHANISMS RELATED TO THE
EFFICACY OF ANTI-PD-1/PD-L1
IMMUNOTHERAPY

Structure and Expression of PD-1
and PD-L1
The IC proteins currently discovered include PD-1, PD-L1,
cytotoxic T lymphocyte-associated molecule-4 (CTLA-4),
Frontiers in Oncology | www.frontiersin.org 2
lymphocyte-activation gene 3 (LAG3), T cell immunoglobulin,
mucin domain-containing protein 3 (TIM3), etc. But the most
researched ICs are PD-1 and PD-L1 (18, 19). PD-1 is a
transmembrane protein encoded by human programmed cell
death protein 1 (PDCD1) (20, 21), which is mainly expressed on
the surface of activated T cells, B cells, and natural killer (NK)
cells (22). PD-1 can exert an immunosuppressive effect by
combining PD-L1/programmed cell death 1 ligand 2 (PD-L2,
CD273) (23). Both PD-L1 and PD-L2 belong to the B7 protein
family (24). PD-L1 is mainly expressed on the surface of tumor
cells, immune cells, epithelial cells, and endothelial cells. In
contrast, PD-L2 is primarily expressed on the surface of
dendritic cells and macrophages (25). PD-L1 is more widely
expressed on normal cells and tumor cells, and its role is much
more significant than that of PD-L2, so most of the current
studies focus on PD-L1 (26).

Many studies focus on the protein expression level of PD-L1
in tumor cells. Most of these studies have shown that the level of
PD-L1 expression is closely related to the efficacy of anti-PD-1/
PD-L1 immunotherapy (27, 28). The commonly used parameter
in NSCLC to reflect the expression level of PD-L1 is the TPS
score, which is the percentage of positive tumor cells. TPS= (PD-
L1 staining positive tumor cells)/(total live tumor cells) *100%
(29). PD-L1 expression levels can be divided into two types,
innate and adaptive immune expression. The expression mode of
innate immunity is regulated by genes and has a certain fixity
(19). The expression mode of adaptive immunity is affected by
immune and inflammatory factors, such as interleukin,
interferon, tumor necrosis factor, etc. This expression mode
will change with the dynamic changes of the tumor immune
microenvironment (19).

Mechanisms of PD-1/PD-L1 Inhibitors
The tumor immunoediting processes are divided into three steps:
immune elimination, immune balance, and immune escape (12,
30). PD-1/PD-L1 are essential immune checkpoints, which can act
as a brake on the immune system and play a crucial role in the
immune escape process of tumors (31). A combination of PD-1 and
PD-L1 can generate immunosuppressive signals and inhibit the
follow-up effects of the immune system (32). PD-L1 molecules are
highly expressed on the surface of tumor cells. PD-L1 binds to PD-1
molecules on the surface of immune cells (mainly T lymphocytes),
which can induce immune cell exhaustion and inhibit the direct
killing effect of immune cells on tumors. It can induce immune cells
(primarily T helper cells) to secrete immunosuppressive factors to
inhibit further the immune system’s killing effect on tumor
cells (33).

After PD-1 binds to PD-L1, it will lead to the phosphorylation of
the immunoreceptor tyrosine inhibitory motif (ITIM) and
immunoreceptor tyrosine switching motif (TISM) of PD-1, and
then inhibit T cell activation by recruitment of protein tyrosine
phosphatase Src homology 1 domain tyrosine phosphatases (SHP-1)
and SHP-2, or by up-regulating the expression of ATF-like alkaline
leucine zipper transcription factor (BATF) (34). PD-1/PD-L1
immune checkpoint inhibitors (ICIs), by binding to PD-1 or
PD-L1, block the binding of PD-L1 on the surface of tumor cells
and PD-1 on the surface of immune cells, as shown in Figure 1,
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to relieve the inhibitory effect of tumor cells on the immune system
and restore killing effect of the immune system on tumor cells
(35, 36).

DRUG RESISTANCE-RELATED
MECHANISMS OF ANTI-PD-1/PD-L1
IMMUNOTHERAPY

Attenuate Recognition of Tumor Antigens
by Immune Cells
The frequency of gene mutations in tumor cells is high, which
can cause abnormal expression of related molecules for
processing and presenting tumor antigens, such as the
downregulation of major histocompatibility complex (MHC)-I
Frontiers in Oncology | www.frontiersin.org 3
molecule expression. Abnormal expression of these molecules
will cause immune cells to fail to recognize tumor cells usually,
thereby mediating the immune tolerance of tumor-associated
antigens, resulting in immune cells not being able to effectively
identify and kill tumor cells (37, 38).

Inhibit Activation of Immune Cells
Tumor cells can release various immunosuppressive factors,
such as adenylate, indoleamine 2,3-dioxygenase 1 (IDO),
prostaglandin E2 (PEG2), interleukin-10 (IL-10), and
transforming growth factor-b (TGF-b), to inhibit the activation
of immune cells (39). At the same time, tumor cells can also
promote the expression of immunosuppressive molecules, such
as PD-1, PD-L1, PD-L2, CTLA-4, and further inhibit the
activation of immune cells (40).
FIGURE 1 | A schematic diagram of the molecular mechanism using PD-1/PD-L1 ICIs to rescue T cell functions. PD-1, programmed cell death-1; PD-L1, programmed
death-ligand 1; ICIs, immune checkpoint inhibitors; TCR, T cell receptor; Ag, antigen; MHC, major histocompatibility complex.
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Promote Production of Suppressive
Immune Cells and Molecules
Tumor cells can induce the production of immunosuppressive
cells, such as T regulatory cells, natural killer T (NKT) cells, and
bone marrow-derived immunosuppressive cells (41, 42). Immune
cells can play an immunosuppressive role by contacting other cells
and releasing corresponding inhibitory immunoregulatory factors.
By up-regulating molecules related to the signal axis, such as PD-
L1/PD-1, Fas ligand (FASL)/FAS, inhibitory regulatory factors can
mediate the depletion of T cells (37).

Affect Tumor Stromal Cells and
Change TME
In tumor microenvironment (TME), tumor cells can promote the
proliferation and aggregation of fibroblasts, macrophages, bone
marrow-derived immunosuppressive cells, T regulatory cells, and
NKT cells, and change tumors by contacting each other or secreting
cytokines to inhibit the normal function of the immune system in
killing tumor cells. TME may weaken the ability of the immune
system to recognize and kill tumor cells (42, 43).
IMMUNOTHERAPY EFFICACY
PREDICTION RELATED BIOMARKERS

Different NSCLC patients acquire different efficacy of anti-PD-1/
PD-L1 immunotherapy due to individual differences. It is
Frontiers in Oncology | www.frontiersin.org 4
essential to find suitable biomarkers for predicting efficacy and
screen out patients ideal for immunotherapy. At present, the
commonly used clinical and immunological efficacy prediction
biomarkers mainly include PD-L1 expression, TMB,
microsatellite instability-high (MSI-H)/deficient mismatch
repair (dMMR), etc. However, each has its corresponding
shortcomings, so a combination of several biomarkers is
usually used to improve the efficacy of predicting. This article
focuses on the following predictive biomarkers related to anti-
PD-1/PD-L1 immunotherapy (as shown in Table 1 and
Figure 2): PD-L1, TMB, MSI-H/dMMR, tumor DNA-related
biomarkers, peripheral blood-related biomarkers, intestinal
flora-related biomarkers, TME-related biomarkers, T cell-
related biomarkers, and immunohistochemistry (IHC)
related biomarkers.

PD-L1 Expression Level
The expression level of PD-L1 in tumor tissues of patients is one
of the most important biomarkers for whether patients choose
ICIs therapy. At present, most studies have shown that NSCLC
patients with high PD-L1 expression have a better therapeutic
effect receiving anti-PD-1/PD-L1 immune treatment (44, 45).
The commonly used indicator of PD-L1 expression level in
NSCLC is TPS, TPS= (PD-L1 staining positive tumor cells)/
(total live tumor cells) *100% (29). However, there is still
controversy about the predictive efficacy of tumor PD-L1
expression. Studies have shown that the expression of PD-L1
TABLE 1 | Summary of predictive biomarkers using PD-1/PD-L1 ICIs in NSCLC.

Category Sub-Category Biomarker Example

Tumor DNA Biomarkers dMMR/MSI-H -
TMB -
DNA repair genes POLD1, POLE, MSH2
Other genes STK11, MHC, B2M, EGFR

Protein Biomarkers PD-L1 -
Tumor neoantigens -
Other immune checkpoints CTLA-4, LAG3, TIM3

TME related Factors Immune cells infiltration CD4+ T cells, CD8+ T cells
Cytokines or chemokines TGF, TNF, interleukin
Stromal composition Cancer-associated fibroblast

T cell Biomarkers Effector T cell CD4+ T cells, CD8+ T cells
T cell inflamed GEP CCL5, CXCL13
TILs CD8+ T cells, NK cells
TCR sequencing CDR3

Blood DNA Biomarkers bTMB -
cfDNA SNV, fragment, CNV

Cell Biomarkers Flow cytometry cell immunophenotyping CD4+ T cells, CD8+ T cells
Flow cytometry TCR immunophenotyping CDR3

Other Blood Biomarkers Exosomal PD-L1 -
Cytokines TGF, TNF, interleukin

Gut Microbiota Bacteroides -
Bifidobacterium -

　 　 Akkermansia muciniphila -
February 2022 |
PD-1, programmed cell death-1; PD-L1, programmed death-ligand 1; ICIs, immune checkpoint inhibitors; NSCLC, non-small cell lung cancer; dMMR, deficient mismatch repair; MSI-H,
microsatellite instability-high; TMB, tumor mutational burden; POLD1, DNA polymerase delta 1, catalytic subunit; POLE, DNA polymerase epsilon, catalytic subunit; MSH2, mutS homolog
2; STK11, serine/threonine kinase 11; MHC, major histocompatibility complex; B2M, beta-2-microglobulin; EGFR, epidermal growth factor receptor; CTLA-4, cytotoxic T lymphocyte-
associated molecule-4; LAG3, lymphocyte-activation gene 3; TIM3, T cell immunoglobulin and mucin domain-containing protein 3; TME, tumor microenvironment; CD, cluster of
differentiation; TGF, transforming growth factor; TNF, tumor necrosis factor; GEP, gene expression profiling; CCL5, C-C motif chemokine ligand 5; CXCL13, C-X-C motif chemokine ligand
13; TILs, tumor-infiltrating lymphocytes; NK cell, natural killer cell; TCR, T cell receptor; CDR3, complementarity determining region 3; bTMB, blood tumor mutational burden; cfDNA,
circulating-free DNA; SNV, single nucleotide variant; CNV, copy number variation.
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in some NSCLC patients is low or even negative, but the effect of
anti-PD-1/PD-L1 treatment is better (46). On the contrary, some
patients have higher expression of PD-L1, and the therapeutic
effect of anti-PD-1/PD-L1 therapy is poor.

TMB
TMB has an excellent predictive value for the efficacy of
immunotherapy. Studies have shown that TMB is an
independent prognostic factor related to the effectiveness of
immunotherapy and is not affected by the expression level of
other indicators (such as PD-L1) (14). At present, many studies
have shown patients with high TMB in tumors have a better
therapeutic effect on anti-PD-1/PD-L1 immunotherapy (47, 48),
and the same is true for NSCLC patients (49). Detection of TMB
in the blood (bTMB) is also a new TMB detection method.
Studies have shown that bTMB is related to the immune
therapeutic efficacy of NSCLC (50), but more studies are still
needed to verify it. Although both the expression level of PD-L1
and TMB are related to the efficacy of patients receiving
immunotherapy, studies have shown that there is no exact
correlation between PD-L1 expression and TMB (51).

MSI-H/dMMR
Current studies have shown that MSI-H/dMMR can predict the
efficacy of immunotherapy for gastric cancer and colon cancer,
but the incidence of MSI-H/dMMR in lung cancer is low (52).
Frontiers in Oncology | www.frontiersin.org 5
Therefore, further research needs whether MSI-H/dMMR can be
used as a predictive biomarker for NSCLC immunotherapy. At
present, the standard measure commonly used to judge MSI-H is
the Bethesda method (53). Research by Vanderwalde et al.
showed that patients with MSI-H have a higher probability of
having high TMB, but not vice versa (54).
Tumor DNA-Related Biomarkers
In addition to classic prediction biomarkers of immune efficacy,
such as TMB and MSI-H/dMMR described above, studies have
shown that the existence of specific driver gene mutations is
related to the effectiveness of immunotherapy. For example, the
typically favorable genes in NSCLC are TP53 (tumor protein
p53), KRAS (KRAS proto-oncogene, GTPase), etc. Common
negative genes include EGFR (epidermal growth factor
receptor), MET (MET proto-oncogene, receptor tyrosine
kinase), ALK (ALK receptor tyrosine kinase), etc. Patients with
favorable gene mutations will have better therapeutic effects
when receiving immunotherapy, while patients with negative
gene mutations will have poorer efficacy. But a larger cohort is
still needed for verification (19, 55). It has been reported that
patients with driver gene mutations usually have lower TMB,
while patients with high TMB usually have negative driver genes
(56). Research by Garassino et al. showed that, regardless of
EGFR/ALK mutation status, Durvalumab (anti-PD-L1
FIGURE 2 | Predictive biomarkers of therapeutic efficacy using PD-1/PD-L1 ICIs in NSCLC. PD-1, programmed cell death-1; PD-L1, programmed death-ligand 1;
ICIs, immune checkpoint inhibitors; NSCLC, non-small cell lung cancer; TCR, T cell receptor; Ag, antigen; MHC, major histocompatibility complex; bTMB, blood-
based tumor mutational burden; cfDNA, circulating-free DNA; TILs, tumor-infiltrating lymphocytes; TME, tumor microenvironment; dMMR, deficient mismatch repair;
MSI-H, microsatellite instability-high; POLD1, DNA polymerase delta 1, catalytic subunit; POLE, DNA polymerase epsilon, catalytic subunit; MSH2, mutS homolog 2;
STK11, serine/threonine kinase 11; B2M, beta-2-microglobulin; EGFR, epidermal growth factor receptor; TMB, tumor mutational burden; IHC, immunohistochemistry.
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monoclonal antibody) has an excellent therapeutic effect for
patients with greater or equal to 25% PD-L1 expression (57).

Tumor cells are prone to generate new mutations due to
genome instability. The tumor-specific antigens produced by
new mutations are called tumor neoantigens (58). Current
studies have shown that tumor neoantigen is highly
immunogenic and can activate CD4+ and CD8+ T cells to
produce an immune response, which is expected to become a
predictive biomarker in cancer immunotherapy (59).

Peripheral Blood-Related Biomarkers
We divide peripheral blood-related immunotherapy efficacy
biomarkers into three categories: blood DNA-related biomarkers,
blood cell-related biomarkers, and other blood-related biomarkers.

Blood DNA-related biomarkers mainly include bTMB and
circulating-free DNA (cfDNA). Wang Z et al. mainly used Next-
Generation Sequencing technology and optimized algorithms to
explore the relationship between bTMB and TMB in tumor tissue,
indicating that bTMB can be used as an efficacy prediction
biomarker of anti-PD-1/PD-L1 immunotherapy in NSCLC (60).
The Brazos-Vázquez EM et al. team reviewed the application of
liquid biopsy in immunotherapy of NSCLC patients, including
circulating tumor cells (CTCs), cfDNA, and exosomes. It showed
that liquid biopsy tools are expected to become promising predictive
biomarkers for immunotherapy (61). Giroux Leprieur E et al.
performed whole-exome sequencing on ctDNA to calculate
bTMB and identify critical features, such as single nucleotide
variants (SNVs), copy number variations (CNVs), to predict the
efficacy of ICIs on advanced lung adenocarcinoma (62). Nabet BY
et al. demonstrated that ctDNA and peripheral CD8+ T cell levels
ahead of ICIs treatment are independently associated with durable
clinical benefit for NSCLC patients receiving ICIs (63).

Blood cell-related biomarkers mainly include immune cell and T
cell receptor (TCR) immunophenotyping by flow cytometry. The
immune cells in peripheral blood can be classified through flow
cytometry, and their number can be calculated (64). The type and
number of immune cells (65), and TCR immunophenotyping (66),
are both closely related to the efficacy of anti-PD-1/PD-L1
immunotherapy. Fumet JD et al. evaluated the role of CD8 under
anti-PD-1 therapy and demonstrated that CD8 was a promising
prognostic and predictive factor in NSCLC (67). The study result of
Gettinger SN et al. showed CD3+ TILs related signal was associated
with favorable response to ICIs therapy in NSCLC (68). The research
of Anagnostou V et al. indicated that TCR clonal expansions within
the tumor tissue or in circulating T cells were critical indicators to the
therapeutic response of ICIs in NSCLC (69).

Other blood-related biomarkers mainly include exosomal PD-
L1 and cytokines. Xie F et al. showed that exosomal PD-L1 plays a
vital role in developing drug resistance in immunotherapy (70).
Exosomal PD-L1 may potentially become a target for overcoming
resistance to anti-PD-1/PD-L1 therapy (70). Current studies have
shown that circulating exosomes play an essential role in
developing tumors and the immune process of anti-tumor and
have a good efficacy predictive value of patients receiving ICIs (71,
72). Interferon-gamma (IFN-g), tumor necrosis factor (TNF), and
other cytokines also play an essential role in the process of anti-
PD-1/PD-L1 immunotherapy (73). All the above results indicate
Frontiers in Oncology | www.frontiersin.org 6
that peripheral blood-related biomarkers are promising indicators
for predicting the therapeutic effect of ICIs.

Biomarkers Related to Intestinal Flora
The predictive biomarkers related to intestinal flora of
immunotherapy efficacy mainly include Bacteroides,
Bifidobacterium, Akkermansia muciniphila. Vétizou M et al.
showed that the anti-tumor effects of CTLA-4 blockers depend
on the subclassification of Bacteroides species (74). The gut
microbiome determines the different degrees to which ICIs can
elicit the anti-cancer immune response (75). Current studies
have shown that the type and quantity of intestinal microbes are
closely related to the therapeutic effect of receiving ICIs.

TME-Related Biomarkers
TME-related biomarkers mainly include other kinds of immune
checkpoints, immune cells infiltration, and cytokines or
chemokines. In addition to PD-1/PD-L1 ICs discussed explicitly
in this article, common ICs include CTLA-4, LAG3, TIM3
(hepatitis A virus cellular receptor 2), and TIGIT (T cell
immunoreceptor with Ig and ITIM domains), which also play
essential roles in the process of anti-PD-1/PD-L1 immunotherapy
(76, 77). The composition of immune cells in TME, such as CD8+
T cell, T regulatory cell, and the ingredient of cytokines and
chemokines, are also closely related to the efficacy of anti-PD-1/
PD-L1 immunotherapy (78, 79).

T Cell-Related Biomarkers
T cell-related efficacy prediction biomarkers mainly include
effector T cell, T cell inflamed gene expression profile (GEP),
tumor-infiltrating lymphocytes (TILs), and TCR sequencing.
The composition of effector T cells, such as CD4+ T cell,
CD8+ T cell, T regulatory cell, T cell inflamed GEP, TILs
composition, and TCR repertoire diversity, are closely related
to the efficacy of anti-PD-1/PD-L1 immunotherapy (66, 78, 80).
At present, most studies have shown that higher CD8+ T cell
infiltration and lower T regulatory cell infiltration in tumor
tissues indicate a better anti-PD-1/PD-L1 immunotherapy
efficacy and better prognosis (81). The study by Han J et al.
showed that TCR diversity and clonality in PD-1+ and CD8+ T
cells of peripheral blood could be used as predictive biomarkers
for the efficacy of anti-PD-1/PD-L1 immunotherapy (82).
CONCLUSION

Immunotherapy is a vital tumor therapeutic method, which is
widely used in the treatment of NSCLC. However, the immune
system is one of the most complex systems in the human body,
and the related mechanisms of immunotherapy are also very
complex. Specific immunotherapy efficacy and drug resistance-
related mechanisms still need a long time to explore. The most
urgent problem is finding relatively stable predictive biomarkers
for immunotherapy efficacy and screening out patients suitable
for immunotherapy. It is believed that with the development of
immunotherapy and biotechnology, immunotherapy will open
up a new era of tumor therapy.
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