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Background: Adverse skin reactions are the most common side effects of epidermal
growth factor receptor inhibitors (EGFRIs) in the treatment of cancer, significantly affecting
the survival rate and quality of life of patients. Qi Yin San Liang San Decoction (QYSLS)
comes from folk prescription and is currently used in the clinical treatment of adverse skin
reactions caused by EGFRIs. However, its therapeutic mechanism remains unclear.

Objectives: To explore the potential mechanism of QYSLS in the treatment of adverse skin
reactions caused by EGFR inhibition using network pharmacology and experimental research.

Methods: First, we verified the effectiveness of QYSLS in vivo using model mice. Second,
the related targets of adverse skin reactions associated with EGFR inhibition were
predicted by the Gene Expression Omnibus (GEO) database, and effective components
and predictive targets of QYSLS were analyzed by Traditional Chinese Medicine Systems
Pharmacology (TCMSP) and Batman-TCM databases. Gene ontology and Kyoto
Encyclopedia of Genes and Genomes pathway analyses were performed via the
Bioconductor (R) V3.8 bioinformatics software. Molecular docking studies verified the
selected key ingredients and targets. Finally, the results of network pharmacology were
verified by in vitro experiments.

Results: In the in vivo mouse model, QYSLS effectively reduced the occurrence of skin
side effects. Network pharmacological results showed that the active ingredient luteolin,
quercetin, licochalcone a, and kaempferol and the effective targets prostaglandin-
endoperoxide synthase 2 (PTGS2), matrix metallopeptidase 9 (MMP9), and C–C motif
chemokine ligand 2 (CCL2) were related to the interleukin-17 (IL-17) and tumor necrosis
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factor (TNF) pathway. Subsequently, the related active compounds and targets were
verified using HaCaT cells as an in vitro adverse reaction model. The results showed that
luteolin and quercetin increased the expression of PTGS2 and MMP9 and reduced the
expression of CCL2 in HaCaT cells treated with gefitinib.

Conclusions: The results revealed that QYSLS effectively treats EGFRI-related adverse
skin reactions through multi-target and multi-pathway mechanisms. Luteolin and
quercetin may be the core active ingredients of QYSLS in the treatment of EGFRI-
related adverse skin reactions, and their therapeutic effects are potentially mediated
through PTGS2, CCL2, and MMP9 in the IL-17 and TNF signaling pathway.
Keywords: QYSLS, EGFR inhibitor, skin adverse reaction, network pharmacology, traditional Chinese medicine
INTRODUCTION

According to the global cancer incidence and mortality data
released by The International Agency for Research on Cancer in
2020, the incidence of lung cancer (11.4% of all cancer types)
ranks second worldwide, and the mortality of lung cancer ranks
first globally (18.0% of all cancer deaths) (1). Case studies have
found that epidermal growth factor receptor (EGFR) gene
mutation accounts for approximately 70% of the pathogenesis
of non-small cell lung cancer in China (2, 3), representing the
most common mutation type. EGFR inhibitors (EGFRIs) target
non-small cell lung cancer caused by mutations in the EGFR
gene. For example, the first-generation targeted drug gefitinib
was approved to be imported to China in 2005 for the oral
treatment of locally advanced and metastatic non-small cell
lung cancer.

Clinical observation has found that EGFRIs are often
accompanied by rash and other adverse reactions, and some
patients are even forced to discontinue targeted drug therapy in
severe cases. In lung cancer treatment with EGFRIs, common
adverse reactions include rash, alopecia, abdominal pain and
diarrhea, paronychia, and pulmonary fibrosis, with the highest
incidence of rash up to 60.2% (3). Rash is closely related to
gefitinib and generally occurs within 1–2 weeks after treatment,
with the peak observed at 4–6 weeks followed by severe skin
changes at 6–8 weeks (4). Clinically, when moderate to severe
rash occurs, patients are usually complicated with local or even
systemic infection. Approximately 76% of patients with rash and
infection report negative effects on their quality of life, and 32%
experience interrupted treatment due to intolerance (5).
Although the second and third generations of targeted drugs
are better tolerated, such as afatinib and osimertinib, many
patients still present with rash symptoms (6). In addition, there
are limited treatments for rashes caused by targeted drugs. At
present, treatment plans for EGFRI-associated rash have been
developed internationally, mainly including local and systematic
treatment. Locally, Vaseline or hormone ointments are applied
externally, and antibiotics (e.g., minocycline hydrochloride) or
antihistamines (e.g., diphenhydramine) are used for systematic
treatment (7). However, long-term external use of hormone
drugs often leads to increased skin sensitivity and tenderness,
accompanied by various symptoms, such as dryness, chafing,
2

pigmentation, and even secondary infection in severe cases.
Furthermore, the beneficial effects of oral antibiotics or
antihistamines on improving the patients’ rash are limited, and
they may cause liver and kidney toxicity, affecting the patients’
quality of life and potentially aggravating their condition (8).
Therefore, finding intervention strategies that alleviate side
effects (such as rash) is essential to improving patients’ quality
of life and ensure effective treatment.

Qi Yin San Liang San Decoction (QYSLS) obtained from folk
prescription has been widely used in clinical practice and is
composed of 30 g of raw Astragalus membranaceus, 30 g of
Lonicera japonica, 30 g of Angelica sinensis, 10 g of raw licorice,
and 1 g of centipede. It has beneficial effects on qi and blood, heat
clearing, and detoxification and is clinically used to treat EGFRI-
associated acne-like rashes. However, the substance basis and
mechanism involved in the treatment of EGFRI-induced dermal
adverse reactions with QYSLS remain unknown.

In most cases, traditional Chinese medicine (TCM) achieves
therapeutic effects by targeting multiple physiological pathways
(9). Therefore, it is necessary to explore new perspectives and
novel ideas to accurately elucidate the mechanism of TCM
compounds. After years of investigation, gene regulatory
network and network pharmacology theories have been
established. In recent years, network pharmacology has been
applied to study the therapeutic effects and targets of TCM and
bioactive compounds. Network pharmacology is an emerging
discipline in the era of big data that integrates systems biology,
molecular biology, pharmacology, and a variety of network-
computing platforms. It conducts multi-level network
screening and construction from macro to micro perspectives
and uses several database platforms and computer software
programs to visualize data. Network pharmacology provides a
more direct explanation of correlations between TCM
compounds and diseases, including the molecular mechanisms
underlying multi-molecule, multi-target, and multi-pathway
interactions (10). This research model reflects the advantages
of TCM compounds in the overall regulation of the body and can
be used to reveal the effective components and molecular
mechanism of QYSLS in the treatment of adverse skin
reactions caused by EGFRIs.

In this study, a mouse model of adverse skin reactions was
established to verify the clinical effectiveness of QYSLS in the
March 2022 | Volume 12 | Article 790713
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treatment of skin-related side effects caused by EGFR inhibition.
Furthermore, its potential molecular mechanism was studied
through network pharmacology and molecular docking
technology. Finally, its effective chemical components and
molecular targets were verified through in vitro cell
experiments. The schematic diagram is shown in Figure 1.
MATERIALS AND METHODS

In Vivo Experiments
Chemicals and Drugs
Gefitinib (purity ≥ 98%) was purchased from Ark Pharm
(Arlington Heights, IL, USA, art. No. Ak-72948), with a
molecular weight of 446.90. All 5 types of Chinese medicines
of QYSLS were purchased from Beijing Yizhentang Chinese
Medicine Clinic Co., Ltd. Specifically, 1.3 l water was added to
90 g Astragalus membranaceus, 90 g Lonicera japonica, 90 g
Angelica sinensis, 30 g licorice, and 3 g centipede and decocted
Frontiers in Oncology | www.frontiersin.org 3
for 45 min. For the second decoction, 0.8 l water was added and
decocted for 30 min. Finally, the filtrate was combined and
concentrated until the crude drug concentration was 3.03 g/ml
(11, 12).

Experimental Animals
Male BALB/C NU/NU nude mice aged 4–5 weeks were used.
After 1 week of adaptive feeding, the mice were divided into 5
groups, including the blank group, gefitinib group, gefitinib+
QYSLS low-dose group (15.15 g/kg, equal clinical dose
conversion), gefitinib+QYSLS middle-dose group (30.3 g/kg,
double clinical dose conversion), and gefitinib+QYSLS high-
dose group (60.6 g/kg, quadruple clinical dose conversion).
Gefitinib was given at 9 a.m. and QYSLS at 3 p.m (11).. The
blank group was given the same dose of solvent. The drug was
administered by gavage. After 14 days of feeding, the mice were
anesthetized, and their skin conditions were recorded and
photographed. After the mice were sacrificed, the skin of each
mouse was collected for hematoxylin and eosin staining, and the
FIGURE 1 | Flowchart of the network pharmacology and experimental study of QYSLS in the treatment of adverse skin reactions caused by EGFR inhibition.
March 2022 | Volume 12 | Article 790713
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liver and spleen were weighed to calculate the liver index and
spleen index. All experimental procedures were approved by the
Animal Ethics Committee of Beijing University of Chinese
Medicine (ethical approval number: BUCM-2016103101-1008).

Network Pharmacology Study
Collection of Targets Related to Adverse Skin
Reactions Induced by EGFR Inhibition
Using “EGFRI skin normal” as keywords in the National Center for
Biotechnology Information Gene Expression Omnibus (GEO)
database (13) (https://www.ncbi.nlm.nih.gov/gds), samples were
retrieved, and the GSE74407 gene expression profile related to
EGFRI adverse skin reactions was downloaded. Nine samples were
collected, including 3 normal human keratinocyte cell lines, 3 human
keratinocyte cell lines treated with TNFa, and 3 human keratinocyte
cell lines treated with TNFa and EGFRIs. Using the R language
program to analyze two sets of samples and adjusted p-values < 0.05,
differentially expressed genes (| logFC | ≥ 2) were screened.

Constructing the Database of Candidate Compounds
The Traditional Chinese Medicine Database and Analysis
Platform (14) (TCMSP, http://tcmspw.com/tcmsp.php) was used
to determine the effective components in QYSLS. This platform is
a comprehensive database of natural component targets in China,
integrating pharmacokinetics, pharmacochemistry, and drug-
target protein-disease networks. In addition, the Batman-TCM
database (http://bionet.ncpsb.org/batman-tcm/) was used to
collect the active ingredient of centipede, and finally with OB
30% or higher and DL acuity 0.18 for the standard screening of 5
types of Chinese native medicine ingredient targets.

Generating the Protein–Protein interaction Network
The intersection targets found in STRING (15)(Version 10.5,
https://string-db.org/) were analyzed to investigate protein–
protein interactions (PPIs). Network nodes and edges represent
proteins and protein–protein binding interactions, respectively.
The PPI interactive network was constructed, and Cytoscape
software (version 3.6.0) was used for visualization. Two times
the average degree of freedomwas selected as the minimum degree
value under the Select option in Cytoscape software, and the core
targets were screened to identify the core PPI network.

Gene Ontology and Kyoto Encyclopedia of Genes
and Genomes Pathway Enrichment Analysis
Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment were performed
using Bioconductor (R) V3.8 bioinformatics software (http://
bioconductor.org/). Pathway enrichment analysis was performed
using the KEGG database to verify the functional classes of
statistically significant genes (p < 0.05). The filter count threshold
was ≥ 2, and terms with a systemic explorer score ≤ 0.05 were
collected for functional annotation clustering.

Validation of Compound–Target Interactions
Crystal structures of hub protein targets were obtained from the
RCSB PDB database (PDB, https://www.rcsb.org/). The MOL2
format structures of candidate active compounds were
Frontiers in Oncology | www.frontiersin.org 4
downloaded from TCMSP. Before docking, energy minimization
was used for ligands and acceptors, water molecules were removed
from acceptors (PDB files), polar hydrogen atoms were added,
charge and magnetic field were provided, and then the files were
saved in the PDBQT format using AutoDockTools (16) (version
1.5.6, http://autodock.scripps.edu/). The AutoDock platform was
used for molecular docking verification, and all parameters were
set to the default. The binding energy was calculated to evaluate
binding interactions between the compounds and their targets. A
binding energy less than −5 indicates a good binding interaction
between the compound and target. The results were visualized by
DS software, and the hydrogen bonds and their binding sites were
observed and analyzed.

In Vitro Experiments
Chemicals and Drugs
Luteolin, quercetin, licochalcone a, and kaempferol (purity ≥
98%) were purchased from Shanghai Yuanye Biotechnology Co.,
Ltd. HaCaT was purchased from Dingguo Changsheng
Biotechnology Co., Ltd., and it has been identified.

Cell Culture and Cell Viability Measurements
A Cell Counting Kit-8 solution (CCK-8; Dojindo, Rockville, MD,
USA, CK04) was used to evaluate the effects of luteolin,
quercetin, licochalcone a, and kaempferol on HaCaT cells.
HaCaT cells were inoculated into 96-well plates at a density of
6 × 103 cells/100 µl and treated with different concentrations of
gefitinib, luteolin, quercetin, licochalcone a, and kaempferol for
24 h. The cells were then incubated with 10 µl CCK-8 solution for
2 h. The optical density at 450 nm was determined.

qPCR Assay
After a sufficient amount of cells was collected, the supernatant
was removed and washed with phosphate-buffered saline. Total
RNA was extracted using an RNA extraction kit (DP451). An
ultraviolet spectrophotometer was used to assess RNA purity and
concentration. The extracted RNA was reverse transcribed into
cDNA. The cDNA was used as the template and amplified
following the qPCR instructions (LABLEAD, R0202). GAPDH
was used as an internal reference to calculate the relative
expression of each target mRNA.

Statistical Analysis
The results were analyzed using GraphPad Prism 8.0.2 software.
The data were expressed as the mean ± SD. One-way analysis of
variance was performed to compare the between-group
quantitative data, and p < 0.05 indicated a significant difference.
RESULTS

In Vivo Experiments
Effect of QYSLS on Cutaneous Adverse Reactions
Induced by Gefitinib
QYSLS has been successfully used for the clinical treatment of
skin rashes caused by EGFRIs. We used an EGFRI-induced
March 2022 | Volume 12 | Article 790713
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adverse skin reaction model to study the effect of QYSLS in mice.
We established a cutaneous adverse reaction model by
administering 225 mg/kg gefitinib for 14 days. The low-dose,
middle-dose, and high-dose QYSLS groups received 15.15, 30.3,
and 60.6 g/kg, respectively. The results showed that gefitinib
induced adverse skin reactions in mice, mainly characterized by
redness, desquamation of the neck, face, and limbs, and lip
Frontiers in Oncology | www.frontiersin.org 5
swelling. Treatment with different concentrations of QYSLS
alleviated the adverse skin reactions caused by gefitinib
(Figure 2A). Hematoxylin and eosin staining showed that
QYSLS treatment significantly reduced epidermal thickening
induced by gefitinib. In addition, QYSLS treatment improved
fat deposition (Figures 2B, C) and ameliorated the abnormal
increases in liver and spleen indices caused by gefitinib
A

B

C D E

FIGURE 2 | In vivo experiments showed that QYSLS effectively improved the adverse skin reactions caused by gefitinib. (A) Skin condition of the neck, limbs, face,
and lip of mice in each group. (B) H&E staining of skin tissue from mice in each group. (C) Quantitative analysis of skin epidermal thickness. (D) Liver index of mice in
each group. (E) Spleen index of mice in each group. “*” compared with Control, *p < 0.05, ****p < 0.0001. “#” compared with Gefitinib, ##p < 0.01, ###p < 0.005,
####p < 0.0001.
March 2022 | Volume 12 | Article 790713
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(Figures 2D, E). Together, these findings indicate that QYSLS
reversed the immune damage caused by gefitinib and played a
protective role. The above in vivo experimental data demonstrate
that QYSLS effectively treated adverse skin reactions and
immune damage caused by gefitinib.

Network Pharmacology Study
Genes Related to EGFRI-Induced Adverse Skin Reactions
To predict the molecular mechanisms by which drugs exert their
pharmacodynamic effects, we collected targets for EGFRI-related
adverse skin reactions from publicly available microarray data.
The search keyword was “EGFRI skin normal.” We downloaded
GSE74407 data from the GEO database. In these data, Cavani et al.
compared genetic changes in keratinocytes before and after
EGFRI treatment (17). The adjusted p-value and logFC were
used to analyze the chip data. An adjusted p-value < 0.05, log
FC > 1, or log FC < −1 were the screening conditions for
significantly different genes. A total of 374 differentially
expressed genes were identified from the microarray data of the
GEO repository, including 185 upregulated genes and 189
downregulated genes. The results are shown in Figure 3.

QYSLS Active Ingredients
QYSLS is composed of Astragalus membranaceus, Lonicera
japonica, Angelica sinensis, licorice, and centipede. In this
analysis, 117 compound nodes were screened based on OB ≥
30% and DL ≥ 0.18. The compound target network was composed
of 545 nodes and 5,120 edges, including 5 TCM component nodes,
117 compound nodes, and 423 target nodes. Therefore, we
speculate that the active compounds of QYSLS may affect
multiple targets to effectively treat EGFRI-related adverse skin
reactions. In this network, the relationship between the active
compounds of QYSLS and their targets and potential
pharmacological effects were directly explained (Figure 4).
Frontiers in Oncology | www.frontiersin.org 6
Intersection of Drug Target Genes and Disease
Target Genes
Next, Venny 2.1 was used to draw a Venn diagram of proteins,
and Figure 5A was prepared after optimization. There were 26
proteins with common targets of components and diseases. The
compound target network diagram for the treatment of EGFRI-
related adverse skin reactions with QYSLS was further
constructed, consisting of 129 nodes and 216 edges, including
123 compound nodes and 26 target nodes (Figure 5B). The main
active substances were quercetin, kaempferol, beta-carotene,
luteolin, and licochalcone a, which were screened by degree
(see Table 1 for details).

PPI Network Analysis
The crossed target protein genes were uploaded to the STRING
platform, and according to the highest screening condition of
“highest confidence (≥0.9)”, a closely connected PPI network
diagram was obtained. The network map was inputted into
Cytoscape 3.2.1 software and screened with twice the average
degree of freedom value to obtain four target proteins, including
PTGS2, CCL2, MMP9, and MYC (Figure 6).

GO and KEGG Enrichment Analysis
Bioconductor was used to upload 26 core target protein genes
and conduct enrichment analysis of GO biological processes and
KEGG signaling pathways. Thus, the potential mechanism of
QYSLSL in the treatment of EGFRI-related adverse skin
reactions was revealed. According to the results of enrichment
analysis, the biological processes, cellular component, and
molecular function involved mainly included the response to
stimulus, membrane, protein binding, and other biological
processes (Figure 7A). Similarly, the first 20 enriched KEGG
signaling pathways were screened according to the significance of
the p-value (see Table 2 for details), which mainly involved the
A B

FIGURE 3 | Collection of EGFRI-related adverse skin reaction targets. (A) Heat map of the top 40 differentially expressed genes. (B) Volcano map of the top 40
differentially expressed genes.
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IL-17 signaling pathway and TNF signaling pathway. In
Figure 7B, the size of bubbles represents the number of genes
in this pathway, and the color represents the enrichment
significance. Figure 7C shows the target-pathway network
diagram, which describes the targets involved in each pathway
in detail.

Molecular Docking Results
The interaction between important active compounds and main
targets was further studied by molecular docking. The binding
Frontiers in Oncology | www.frontiersin.org 8
affinity was less than −5.0 kcal/mol, indicating that the product
had a good interaction. The molecular docking results showed
that the active compounds luteolin, quercetin, kaempferol, and
licochalcone a had good binding effects and reliable interactions
with the conformation of the main protein targets CCL2, MMP9,
and PTGS2. The conformation of key active compounds and
major hub targets is shown in Figure 8. The binding affinity
results are shown in Table 3.

In Vitro Experiments
Effects of QYSLS on HaCaT Cell Proliferation
Cell damage is the main feature of adverse skin reactions caused
by abnormal EGFR inhibition. In our analysis, several candidate
targets were also involved in the regulation of cell damage. First,
we examined the effects of gefitinib, luteolin, quercetin,
licochalcone a, and kaempferol on the proliferation of human
keratinocyte HaCaT cells in vitro. As shown in Figures 9A–D,
different concentrations of luteolin and quercetin reversed the
inhibitory effect of gefitinib on HaCaT cell proliferation.
A

B

FIGURE 5 | Screening of QYSLS-related compounds and construction of component target network. (A) Venn diagram of targets of herbs and diseases. (B) The
compound–compound target network for QYSLS in treating EGFRI-related adverse skin reactions.
TABLE 1 | Network node characteristic parameters of main active ingredients of
QYSLS.

MOL ID The active
ingredient

Degree Betweenness
centrality

Closeness
centrality

MOL000098 Quercetin 16 0.14812009 0.49799197
MOL000422 Kaempferol 7 0.09127254 0.47509579
MOL000006 Luteolin 5 0.02057035 0.45756458
MOL000497 Licochalcone a 4 0.01706673 0.46096654
March 2022 | Volume 12 | Article 790713
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FIGURE 6 | The disease target-PPI network.
A

B C

FIGURE 7 | Component target network analysis of QYSLS in the treatment of EGFRI-related adverse skin reactions. (A) GO analysis of biological process, cellular
component, and molecular function terms was performed on major targets of QYSLS. (B) KEGG analysis for the major targets of QYSLS. (C) Target-pathway
network diagram of KEGG enrichment.
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TABLE 2 | Major targets in the KEGG pathway that are significantly enriched.

atio pvalue p.adjust qvalue geneID Count

8017 6.89E-06 0.000720553 0.000499484 MMP1/CCND1/MMP9/MYC 4
8017 8.79E-06 0.000720553 0.000499484 PTGS2/MMP1/MMP9/CCL2/CXCL10 5
8017 1.67E-05 0.000847981 0.000587817 PTGS2/CYP1A1/CYP1B1/AKR1C3 4
/8017 2.07E-05 0.000847981 0.000587817 PTGS2/MMP9/CCL2/CXCL10/IRF1 5
8017 3.19E-05 0.001045883 0.000725002 CYP1A2/CYP1A1/CYP1B1/AKR1C3 4
8017 0.000109206 0.002679772 0.001857609 PTGS2/CYP1A2/CYP1A1/CYP1B1 4
/8017 0.000114381 0.002679772 0.001857609 CALM1/CCND1/MYC/IL1A/IGFBP3 5
8017 0.000170831 0.003502042 0.002427603 PTGS2/CCND1/BCL2L1/MYC 4
/8017 0.000235742 0.004295752 0.0029778 CCND1/F3/CCL2/IL1A 4
8017 0.000283835 0.004654888 0.003226751 CYP1A2/CYP1A1/CYP1B1 3
/8017 0.000558944 0.008333344 0.005776644 PTGS2/CALM1/CCND1/MYC/CCL2 5
/8017 0.000824819 0.01127252 0.00781407 CALM1/MMP9/CCL2/IL1A 4
8017 0.001386332 0.016096794 0.01115824 CCND1/BCL2L1/IGFBP3 3
8017 0.001620746 0.016096794 0.01115824 CYP1A2/CYP1A1/CYP1B1 3
8017 0.001620746 0.016096794 0.01115824 CALM1/IL1A/IRF1 3
8017 0.001620746 0.016096794 0.01115824 CCND1/BCL2L1/MYC 3
/8017 0.00166857 0.016096794 0.01115824 CCND1/BCL2L1/MYC/WNT4 4
/8017 0.002349067 0.019863565 0.013769352 PTGS2/CYP1B1/CCND1/MMP9/MYC 5
/8017 0.002422386 0.019863565 0.013769352 PTGS2/CALM1/CCND1/MYC 4
/8017 0.002422386 0.019863565 0.013769352 BCL2L1/MMP9/MYC/IGFBP3 4
8017 0.002889058 0.022562168 0.015640013 MMP1/CCL2/IL1A 3
/8017 0.00338474 0.025231702 0.017490525 CCND1/MMP9/MYC/WNT4 4
/8017 0.003963777 0.028263454 0.019592125 PTGS2/CALM1/IRF1 3
/8017 0.005779505 0.038152748 0.026447348 CCND1/MYC/WNT4 3
8017 0.005815968 0.038152748 0.026447348 CCND1/MYC 2
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ID Description BgR

hsa05219 Bladder cancer 41/
hsa04657 IL-17 signaling pathway 94/
hsa04913 Ovarian steroidogenesis 51/
hsa04668 TNF signaling pathway 112
hsa00140 Steroid hormone biosynthesis 60/
hsa05204 Chemical carcinogenesis 82/
hsa04218 Cellular senescence 160
hsa05222 Small cell lung cancer 92/
hsa04933 AGE-RAGE signaling pathway in diabetic complications 100
hsa00380 Tryptophan metabolism 42/
hsa05163 Human cytomegalovirus infection 225
hsa05418 Fluid shear stress and atherosclerosis 139
hsa04115 p53 signaling pathway 72/
hsa00980 Metabolism of xenobiotics by cytochrome P450 76/
hsa05133 Pertussis 76/
hsa05220 Chronic myeloid leukemia 76/
hsa05225 Hepatocellular carcinoma 168
hsa05206 MicroRNAs in cancer 310
hsa05167 Kaposi sarcoma-associated herpesvirus infection 186
hsa05202 Transcriptional misregulation in cancer 186
hsa05323 Rheumatoid arthritis 93/
hsa05205 Proteoglycans in cancer 204
hsa04625 C-type lectin receptor signaling pathway 104
hsa04919 Thyroid hormone signaling pathway 119
hsa05216 Thyroid cancer 37/
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Effects of QYSLS on the mRNA Expression of
PTGS2, MMP9, and CCL2 in HaCaT Cells
The mRNA expression levels of PTGS2, MMP9, and CCL2 in the
IL-17 and TNF pathway were verified by qPCR. Luteolin and
quercetin decreased the levels of PTGS2 and MMP9 and increased
the levels of CCL2. The results are shown in Figures 10A–F.
Luteolin and quercetin in QYSLS were detected by HPLC
(Supplementary Figures S1).
DISCUSSION

Theoretical Basis of QYSLS in the
Treatment of EGFRI-Related
Adverse Skin Reactions
With the wide application of EGFRIs in the anti-tumor field, EGFRI-
associated adverse reactions have attracted increasing attention,
especially the high incidence of skin side effects. For example, the
incidence of skin rash in lung cancer patients treated with EGFRIs is
60.2%. Currently, the internationally accepted treatment regimen for
Frontiers in Oncology | www.frontiersin.org 11
EGFRI-related adverse skin reactions is unsatisfactory. Therefore,
TCM is considered to be a safe and effective alternative therapy in the
treatment of EGFRI-related adverse skin reactions. As a folk
prescription, QYSLS has been widely used in clinical settings.
QYSLS is mainly used for the treatment of acne-like rashes caused
by EGFRIs, with an effective rate of 90% (18). EGFRIs have been
clinically applied for a long time with reliable efficacy. In addition, we
achieved good efficacy in a rat model of gefitinib-induced adverse
skin reactions with QYSLS (19). To further study the efficacy and
potential mechanism of QYSLS, several in vitro and in vivo
experiments were conducted in this study. Combined network
pharmacology and molecular docking biological approaches were
used to confirm its effectiveness and molecular mechanisms.

Component Analysis of QYSLS
in the Treatment of EGFRI-Related
Adverse Skin Reactions
In this study, luteolin and quercetin were found to be the main
active ingredients involved in the treatment of EGFRI-related
adverse skin reactions. Luteolin is one of the most abundant
secondary metabolites in several medicinal plants, and it has
various pharmacological activities. As a natural flavonoid, luteolin
(3,4,5,7-tetrahydroxy flavonoids) exists in a variety of vegetables,
fruits, and medicinal plants, including broccoli, onion leaves,
carrots, peppers, cabbage, apple peels, and chrysanthemums (20).
Luteolin has been reported to have antioxidant, antimicrobial, anti-
inflammatory, chemoprophylaxis, chemotherapy, cardioprotective,
antidiabetic, neuroprotective, and anti-allergic properties (21).
Luteolin shows great potential to inhibit and even reverse skin
diseases (such as psoriasis and dermatitis) and ultra-violet-
induced diseases (such as skin cancer and photoaging) (22).
FIGURE 8 | Validation of interactions between QYSLS compounds and targets.
TABLE 3 | Virtual docking of four important active compounds in QYSLS to
adverse skin reaction targets.

Ingredients Binding energy

PTGS2 CCL2 MMP9
Luteolin -7.06 -5 -5.86
Quercetin -7.07 -5.43 -5.99
Kaempferol -7 -6.16 -6.83
Licochalcone a -7.36 -4.98 -6.87
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A variety of pharmacological activities of luteolin have been
confirmed to be related to its anti-inflammatory effect (23). The
anti-inflammatory activity of luteolin includes the inhibition of pro-
inflammatorymediators (e.g., COX-2, NO, IL-6, IL 1b, TNF-a) and
regulation of multiple signaling pathways, including NF-kB, AP-1,
and JAK-STAT (24).

Quercetin (chemical formula C15H10O7) is a polyphenolic
flavonoid widely found in nature in a variety of vegetables and
fruits, such as apples, red grapes, onions, raspberries, honey,
cherries, citrus fruits, and green leafy vegetables (25). The
regulation of inflammation is one of the core and most significant
effects of quercetin. Quercetin has been shown to have anti-
inflammatory activities in several in vivo and in vitro studies by
inhibiting inflammatory cytokines and enzymes (26). Quercetin
regulates IL-1a, IL-1b, IL-2, IL-10, MCP-1, COX2, MMP-1, and
SOCS, playing an anti-inflammatory role (27). Atopic dermatitis is a
prevalent inflammatory skin disease worldwide, and recent studies
found that quercetin regulates several pathways to treat this skin
disease (28). In conclusion, both luteolin and quercetin effectively
treat skin diseases through their anti-inflammatory effects.

Quercetin comes from licorice, Astragalus membranaceus, and
Lonicera japonica. Luteolin comes from Lonicera japonica. It can
be seen that Lonicera japonica has the most anti-inflammatory
effect, followed by licorice and Astragalus. The efficacy of
individual drugs will be further studied in future experiments.

Target Analysis of QYSLS in the Treatment
of EGFRI-Related Adverse Skin Reactions
PTGS2, also known as cyclooxygenase 2 (COX2), is a subtype of
prostaglandin-endoperoxide synthase. Prostaglandins are induced by
Frontiers in Oncology | www.frontiersin.org 12
diverse factors to produce and release prostaglandins and regulate
inflammatory responses. They exist in several tissues and are
expressed by a large number of immune cells, such as
macrophages, at inflammatory sites. PTGS2 is widely used as an
inflammatory marker of skin inflammation and is related to the
pathogenesis of skin injury (29, 30). The matrix metalloproteinase
MMP9 regulates CXCL8 and VEGFA and participates in
inflammatory responses (31). MMP9 has been shown to be
involved in skin wound healing (32). CCL2, also known as
monocyte chemotactic protein 1 (MCP-1), was one of the first
chemokines to be discovered and has been found to have a strong
chemotactic ability to recruit monocytes and macrophages (33). It
has been reported that EGFR inhibition increases IL-1 signaling by
reducing IL-1R2 and upregulating CCL2 and CCL5, thereby leading
to the infiltration of skin neutrophils (34). CCL2 is also upregulated
in EGFR△EP transgenic mice (35). Therefore, PTGS2, MMP9, and
CCL2 are target proteins related to inflammation and the
pathogenesis of skin diseases.

Pathway Mechanism Analysis of
QYSLS in the Treatment of EGFRI-Related
Adverse Skin Reactions
In this study, KEGG pathway enrichment revealed the IL-17 and
TNF signaling pathway as the most relevant pathway. It was
reported that IL-17 was upregulated in mouse skin after EGFRI
treatment with erlotinib, suggesting that IL-17A is involved in
the mechanism of EGFRI-related adverse skin reactions (35). In
our previous protein chip detection in a rat adverse skin reaction
model, the IL-17 signaling pathway was also enriched (19). The
IL-17 family is a subset of cytokines composed of IL-17A–F that
A B

C D

FIGURE 9 | Inhibitory effects of quercetin (A) luteolin (B) licochalcone a (C), and kaempferol (D) on the proliferation of HaCaT cells. The drug concentration–cell
viability curve was generated on the basis of cell viability data. All data were expressed as the mean ± SD. “*” compared with Control (The first pillar), ****p < 0.0001.
“
#
” compared with Gefitinib (The second pillar), ###p < 0.005, ####p < 0.0001.
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play a critical role in both acute and chronic inflammatory
responses. IL-17A is a marker of the T-helper cell 17
subpopulation, which protects the host from extracellular
pathogens and participates in inflammatory responses in
autoimmune diseases (36). The IL-17 signaling pathway is a
key signaling pathway in the inflammatory response of skin T
cells, B cells, and macrophages. In addition, IL-17A signaling is
an important pathogenic mechanism of psoriasis. The main
target cells of the IL-17A-related signaling pathway include
epithelial cells, keratinocytes, macrophages, T/B cells, and
fibroblasts, which activate downstream pathways mainly
through the interaction of receptors and ligands. In addition to
triggering skin inflammation, IL-17A stimulates the proliferation
of keratinocytes, which also produce a variety of antimicrobial
peptides and chemokines (37). TNFa is a cytokine that can
directly kill tumor cells and has no obvious cytotoxicity to
normal cells. It participates in systemic inflammatory response
and is one of the cytokines that constitute the acute phase
response, mainly produced by activated macrophages (38). It
has been reported that TNFa and IL-1 are involved in EGFRIs-
Frontiers in Oncology | www.frontiersin.org 13
related skin inflammatory reactions in mouse models. TNF-a
inhibitors can reduce skin inflammation caused by EGFRIs (39).
Therefore, both IL-17 and TNF signaling pathways are involved
in the pathogenesis of skin inflammation caused by EGFRIs. By
further exploring the connection between TNF signaling
pathway and IL-17 signaling pathway, we found that TNF is
not only an effector but also a promoter of inflammatory Th
differentiation, thus promoting the production of inflammatory
cytokines such as IL-17 (40). How QYSLS plays a role through
these two pathways needs further research.
CONCLUSION

QYSLS may play an anti-inflammatory role by acting on the
target proteins PTGS2, MMP9 and CCL2 related to the IL-17
and TNF signaling pathway, thereby treating the adverse skin
reactions caused by EGFR inhibition. The active components of
QYSLS are luteolin and quercetin.
A B C

D E F

FIGURE 10 | QYSLS mitigated EGFRI-induced adverse skin reactions by regulating the IL-17 and TNF pathway. qPCR was used to detect the mRNA expression
levels of PTGS2, CCL2, and MMP9 in mice treated with quercetin (A–C) and luteolin (D–F). “*”compared with Control, ***p < 0.005, ****p < 0.0001. “#”compared
with Gefitinib, ##p < 0.01, ###p < 0.005, ####p < 0.0001.
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