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Objective: To develop and validate a radiomic nomogram for individualized prediction of
hepatocellular carcinoma (HCC) in HBV cirrhosis patients based on baseline magnetic
resonance imaging examinations and clinical data.

Methods: 364 patients with HBV cirrhosis from five hospitals were assigned to the
training, internal validation, external validation-1 or external validation-2 cohort. All patients
underwent baseline magnetic resonance image (MRI) scans and clinical follow-up within
three-year time. Clinical risk factors and MRI-based features were extracted and analyzed.
The radiomic signatures were built using the radiomics-score (Rad-score) that calculated
for each patient as a linear weighted combination of selected MRI-based features.
Prognostic performances of the clinical and radiomic nomograms were evaluated with
Cox modeling in the training and validation cohorts.

Results: Eighteen features were selected for inclusion in the Rad-score prognostic
model. The radiomic signature from multi-sequence MRI yielded a concordance index
(C-index) of 0.710, 0.681, 0.632 and 0.658 in the training, internal validation, external
validation-1, external validation-2 cohorts, respectively. Sex and Child-Turcotte-Pugh
(CTP) class were the most prognostic clinical risk factors in univariate Cox proportional
hazards analyses. The radiomic combined nomogram that integrated the radiomic
signature with the clinical factors yielded a C-index of 0.746, 0.710, and 0.641 in the
training, internal validation, and external validation-1 cohorts, respectively, which was an
improvement over either the clinical nomogram or radiomic signature alone.
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Conclusion: We developed an MRI-based radiomic combined nomogram with good
discrimination ability for the individualized prediction of HCC in HBV cirrhosis patients
within three-year time.
Keywords: cirrhosis, hepatocellular carcinoma, radiomics, magnetic resonance imaging, nomogram, prediction
1 INTRODUCTION

Hepatocellular carcinoma (HCC), a primary liver cancer, is the
sixth-most common cancer and the second-leading cause of
cancer-related deaths worldwide (1). Hepatitis B virus (HBV)
cirrhosis induces a scarring of the liver and is the primary cause
of HCC in the Asian-Pacific region (2). The five-year survival
rate is higher among patients with early-stage HCC compared
with those presenting with advanced HCC (3). Thus, early
diagnosis and intervention for HCC are critical for improving
the prognosis of cirrhotic patients.

In recent years, there has been a number of studies intent on
predicting HCC in patients with chronic liver diseases, which
have used various risk-scoring systems that combine clinical
symptoms and laboratory variables (4, 5), liver stiffness
measurements by ultrasound, and MRI-based elastography
measurements (6). Despite this existing research, there are
limitations as it pertains to the predictive value and assessment
of HCC in cirrhotic patients. No single risk scoring model is
universally accepted because of unsatisfactory validation across
geographic regions, and MRI-based elastography only allows for
assessment of fibrosis and cirrhosis via estimation of liver
stiffness (7, 8). Liver biopsy is considered to be the reference
standard for fibrosis, but is not an ideal tool for screening
because of its invasiveness, cost, complications, and sampling
error. One common limitation with these predictive
hepatocarcinogenic measurements is that all HCC predictions
have been based on the risk factors of chronic hepatitis, not
cirrhosis specifically. The risk of developing HCC in patients
with cirrhosis is not the same as patients without cirrhosis (1). As
a widely validated non-invasive tool, MRI is the most powerful
imaging method to detect early liver cirrhosis and HCC in
various chronic liver diseases (9). Previous studies have shown
that contrast-enhanced T1-weighted imaging alone has the
ability to diagnose HCC in cirrhosis, without the need for
biopsy (10). MRI could also be used to diagnose cirrhosis and
grade liver fibrosis on the basis of hepatic textural alterations
after the administration of MR contrast agents (11, 12).
However, few if any studies have provided accurate
hepatocarcinogenic prediction in cirrhotic patients using
MR images.

Radiomics exploits sophisticated image analysis tools
handling medical imaging data to improve diagnostic,
predictive, and prognostic accuracy in cancer research,
providing a powerful tool in modern medicine (13–18).
Radiomics detects high-dimensional, heterogeneous imaging
features objectively and quantitatively, and may have the
potential to help predict clinical outcomes, has proven to be
able to predict clinical outcomes based on anatomical and
2

functional MRI (19). Recently, elastography displayed excellent
performance for assessing cirrhosis by using the developed deep
learning radiomics, with similar diagnostic efficacy with the liver
biopsy (13). To the best of our knowledge, our study represents
the first study to use MRI -based radiomics to predict
hepatocarcinogenic durations in patients with cirrhosis. The
aim of this study was to develop and validate a radiomic
model for the individualized prediction of HCC occurrence in
HBV cirrhosis patients based purely on baseline MRI and
clinical data.
2 MATERIALS AND METHODS

2.1 Patients
The MRI and clinical data of 11,519 patients were retrospectively
analyzed from March 2011 and August 2018 at five different
hospitals, of which 364 patients with HBV cirrhosis were
considered eligible and selected for inclusion to the training,
internal validation, external validation-1 or external validation-2
cohort. The inclusion criteria were: (1) Cirrhosis diagnosed by
clinical diagnosis and typical features on conventional MRI; (2)
Cirrhosis caused by hepatitis B virus infection; (3) No typical or
suspicious HCC on initial baseline MRI examination; (4)
Complete related clinical information (e.g., age, gender, family
history of HCC, serum HBV-DNA, CTP class, serum alpha
fetoprotein (AFP), alcohol consumption, and smoking) - for
training, internal validation, and external validation-1 cohorts.
The exclusion criteria were: (1) Cirrhosis caused by other factors
beyond hepatitis B (e.g., drug-induced cirrhosis, alcoholic
cirrhosis, hepatitis C cirrhosis, chronic passive hepatic
congestion); (2) HCC diagnosed on the initial baseline MRI
examination, or with prior history of HCC or liver surgery; (3)
Insufficient MRI quality to obtain measurements (e.g., owing to
motion artifacts, massive ascites); (4) Lack of related clinical
information for training, internal validation, and external
validation-1 cohorts.

All participants were informed about the experimental
procedure and signed a written informed consent form. The
study was approved by the local Medicine Ethics Committee.

2.2 MRI Data Acquisitions
Data from the initial baseline MRI were selected from the
patients with HBV cirrhosis, to be used for radiomic feature
extraction and radiomic signature building. Specific sequences
utilized included the T1-weighted pre-contrast, hepatic arterial
phase (HAP), portal venous phase (PVP) and equilibrium phase
(EP) of contrast enhancement and T2-weighted images for each
patient. A transverse breath-hold three-dimensional T1-
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weighted fat-suppressed spoiled gradient recalled volumetric
interpolated breath-hold examination (Siemens) or enhanced-
T1 high resolution isotropic volume examination (Philips)
sequence before and after injection of 0.1 mmol per kilogram
of body we ight of contras t mater ia l (gadol in ium
diethylenetriaminepentaacetic acid) followed by a 20 ml saline
flush (2.5 ml/s) with a high-pressure injector. The triple-phase
(HAP, PVP, and EP) of contrast enhancement axial T1-weighed
fat-suppressed images were obtained at 20, 70, and 180 seconds.
The MR examinations were performed from the five hospitals.
See Supplementary Table 1 for the scanner and protocol details.

2.3 Clinical Factors
Clinical factors and baseline MRI data acquisition were collected
within two weeks. Clinical factors included age, sex, family
history of HCC, serum HBV-DNA, Child-Turcotte-Pugh
(CTP) classification, serum alpha fetoprotein (AFP), alcohol
consumption, and smoking. See Supplementary Material 1.1
for more details. The clinical data of patients in the external
validation-2 cohort was more limited, so the clinical nomogram
assessment for this group was precluded.

2.4 HCC Surveillance and Diagnosis
The diagnosis of cirrhosis was according to typical features
demonstrated by conventional MRI (20). The diagnostic
criteria for HBV cirrhosis was according to the guidelines of
prevention and treatment for chronic hepatitis B (2019 version)
(21). The diagnosis of HCC was according to the 2018 American
Association for the Study of Liver Diseases (AASLD) guidelines
(22, 23). See Supplementary Material 1.2 for the complete
cirrhosis diagnostic standards. Two cases of cirrhosis from the
non-HCC and positive HCC subgroups are presented
in Figure 1.

2.5 Follow-Up and Clinical Endpoint
The MRI follow-up interval of all patients with HBV cirrhosis
was 3-12 months. The endpoint of the hepatocarcinogenic group
was the occurrence of HCC diagnosed by MRI examination and/
or histopathological confirmation, while the required follow-up
time of non-hepatocarcinogenic group was 36 months or greater.
Hepatocarcinogenic time was defined as the time from the first/
baseline MRI examination with cirrhosis until HCC diagnosis by
MRI examination and/or histopathological confirmation. The
flow diagram of HCC surveillance and diagnosis of patients with
HBV cirrhosis are shown in Supplementary Figure 1.

2.6 Data Processing
2.6.1 Image Pre-Processing and Liver Segmentation
Prior to liver segmentation, images were pre-processed. First,
images were co-registered using FLIRT (FMRIB’s Linear Image
Registration Tool) from the FMRIB Software Library (FSL, www.
fmrib.ox.ac.uk/fsl) and intensities were normalized using a post-
processing method (24). Specifically, T1-weighted images of
patients were registered to corresponding T2-weighted images
for motion correction. MRI intensities in each MRI protocol
were normalized so that scans of all patients in the same protocol
Frontiers in Oncology | www.frontiersin.org 3
had a similar intensity distribution, which could generate well-
defined inputs for liver segmentation and data processing. The
images of the other four hospitals were resampled according to
the standards of First Affiliated Hospital of Guangxi University
of Chinese Medicine to reduce the impact of the difference
between the scanner and protocol details of the five hospitals
on the results. Liver segmentation was performed by three
radiologists who were blinded to the clinical and/or
pathological data (Figure 2A). The whole livers were
delineated as the regions of interest (ROIs) via the ITK-SNAP
software (www.itksnap.org) by one radiologist with five years of
clinical-diagnosing experience. The whole liver was manually
drawn on each slice using the T1- weighted contrast-enhanced
three-phase images and T2-weighted data of each patient. The
other two radiologists with 10 years of experience corrected the
ROIs by consensus.

Thirty patients from First Affiliated Hospital of Guangxi
University of Chinese Medicine were randomly selected to
analyze the inter- and intra-observer reproducibility of liver
delineation and radiomic feature extraction. To ensure
reproducibility, each radiologist followed the same procedure
twice with an interval of at least 1 week to repeat the tumor
masking and generation of radiomic features. Intra-class
correlation coefficients (ICCs) were used to evaluate the intra-
and inter-observer agreement in terms of feature extraction. We
interpreted an ICC of 0.81-1.00 as almost perfect agreement,
0.61-0.80 as substantial agreement, 0.41-0.60 as moderate
agreement, 0.21-0.40 as fair agreement, and 0-0.20 as poor or
no agreement (25). An ICC above 0.6 was considered a mark of
satisfactory inter- and intra-observer reproducibility.

2.6.2 Radiomic Feature Extraction/Selection and
Radiomic Signature Building
In total, 4,282 imaging features were extracted and analyzed from
the manually segmented liver MR images from each sequence for
every patient with MATLAB (Mathworks, Natick, MA, USA)
using a developed in-house toolbox and included four groups:
(i) 13 intensity statistics features calculated from the intensity
histogram; (ii) 7 shape- and size-based features; (iii) 462 textural
features based on gray level co-occurrence texture matrices
(GLCM) and gray level run-length texture matrices (GLRLM);
and (iv) 3,800 wavelet features(8 wavelet-decomposed images,
13*8+462*8 = 3800) (Figure 2B). All features have been
described in previous studies and were in accordance with
feature definitions as described by the IBSI (14, 26–28). Five
sequences (axial fat-suppressed T2-weighed images, pre-
contrast, arterial, portal venous and equilibrium phase images)
resulted in a total of 21,410 radiomic features per patient. To
reduce any type of bias or over-fitting caused by too many
features, we used the least absolute shrinkage and selection
operator (LASSO) method to select features that were most
significant and then built a Cox model in the training cohort
based on each unimodal sequence and multimodal sequence
(Figure 2C) (29). Most of the coefficients of the covariates were
reduced to zero and the remaining non-zero coefficients were
selected by LASSO. The Rad-score was calculated for each
March 2022 | Volume 12 | Article 800787
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patient as a linear combination of selected features that were
weighted by their respective coefficients. Radiomic signatures
were built using the Rad-score (19).

2.6.3 Prognostic Validation of Radiomic Signature
Univariate Cox proportional hazards models were applied to
calculate the C-index of the radiomic signatures from five
unimodal MRI sequences and for the combined multi-
sequence MRI for prediction of non-HCC survival (over 36
months) in the training and validation cohorts. The potential
association of the radiomic signature from the combined multi-
sequence MRI for prediction of non-HCC survival was first
assessed in the training cohort, and then subsequently
validated in each of the validation cohorts by using
Kaplan-Meier survival analysis. The patients were divided into
Frontiers in Oncology | www.frontiersin.org 4
high-risk and low-risk groups based on the optimal cutoff value
of the Rad-score, which was based on the score from the Cox
regression model. Then, the same threshold values were applied
to the validation cohorts. We performed stratified analyses to
determine non-HCC survival in various subgroups for clinical
risk factors to compare high-risk and low-risk patients.

2.6.4 Assessment of Incremental Value of Radiomic
Signature in Individual HCC Prediction
To demonstrate the incremental value of the radiomic signature to
the clinical risk factors for individualized assessment of non-HCC
survival, both a radiomic model and a clinical model were
developed by multivariable Cox proportional hazard regression
analyses in the training cohort. The radiomic combined
nomogram integrated the radiomic signature and the prognostic
A

B

D

E F

C

FIGURE 1 | Case examples of the non-HCC and positive HCC subgroups. Case 1 (A, B). MR images from a 49-year-old cirrhotic patient in the non-
hepatocarcinogenic group. Axial fat-suppressed T1- and T2-weighted images show a cirrhotic liver morphology appears cirrhotic. Innumerable regenerative nodules
are present throughout the liver, without suspicious nodules. (A) No HCC was found on the baseline MRI examination. (B) Similarly, no HCC lesion was seen after
final follow-up at 70 months. Case 2 (C–F). MR images from a 34-year-old man in hepatocarcinogenic group. Axial fat-suppressed T1- and T2-weighted images
show a cirrhotic liver with nodular contour. (C) Innumerable regenerative nodules were seen throughout the liver on baseline MRI examination. (D) At 16-month
follow-up MRI, a new nodule about 3.1cm×2.0cm×2.0cm in size was clearly seen (red arrows) in segment four. The nodule appears hyperintense on T2-weighted
image and hypointense on the pre-contrast T1-weighted images, with diagnostic enhancement of the arterial phase and subsequent washout on the portal venous
and equilibrium phases. In addition, the tumor is surrounded by a fibrous capsule on the portal venous and equilibrium phases. (E) The liver explant specimen shows
the hepatocellular carcinoma (red arrows) adjacent to Glisson’s capsule. (F) At histopathology (original magnification×40, hematoxylin-eosin staining), a moderately
differentiated hepatocellular carcinoma is confirmed.
March 2022 | Volume 12 | Article 800787
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clinical risk factors into the multivariable Cox proportional
hazards model (Figure 2D). The clinical model integrated only
the prognostic clinical risk factors into the model. The
performance of the model was measured quantitatively using the
C-index. The C-index is commonly used to evaluate the
discriminative ability of prognostic models in survival analysis.
The value of the C-index can range from 0.5, which indicates no
discriminative ability, to 1.0, which indicates a perfect ability to
distinguish between patients who experience disease progression
or death from those who do not. Bootstrap analyses with 1,000
resamples were used to obtain C-index statistics that were
corrected for potential overfitting. The prognostic performances
of the clinical model and radiomic model were evaluated in the
training cohort and then tested in the validation cohort. The
performance of the radiomic model was compared with that of the
clinical model by likelihood ratio test (30). To provide the clinician
with a quantitative tool for individualized assessment of HCC
prediction, we built the radiomic nomogram on the basis of the
multivariable Cox proportional hazards model in the training
cohort. The nomogram calibration curves were assessed by
plotting the observed survival fraction against the nomogram-
assessed probabilities.

2.6.5 Statistical Analysis
Statistical analysis of the radiomic signature was performed using
the following R packages in R statistical software version 3.3.3
(http://www.R-project.org). The “glmnet” package was used to
perform the LASSO Cox regression model analysis. The
“survival” package was used for Kaplan–Meier survival
analyses. The “rms” package was used for Cox proportional
Frontiers in Oncology | www.frontiersin.org 5
hazards regression, nomograms, and calibration curves. The
“cutp” function of the “survMisc” package was used to
calculate the optimal cutoff value of the Rad-score. The Hmisc
package was used for comparisons between C-indices. The
Resource Selection package was used to apply Hosmer–
Lemeshow tests. All statistical tests were two-sided, and p-
values <0.05 were considered significant.
3 RESULTS

3.1 Clinical Characteristics
In total, 364 patients with HBV cirrhosis were deemed eligible
and selected for the four cohorts in this study. 163 and 56
patients were randomly assigned to the training cohort and
internal validation cohort, respectively. 91 and 54 patients were
respectively assigned to external validation-1 cohort and external
validation-2 cohort. Demographic and clinical characteristics for
these cohorts are listed in Table 1. A total of 131 (36.0%) patients
had an HCC occurrence within the follow-up period, including
61 patients from the training cohort, and 21, 26, and 24 patients
from the internal validation cohort, external validation-1 cohort,
and external validation-2 cohort, respectively. The remaining
233 patients had non-hepatocarcinogenesis within the follow-up
time (non-HCC survival). There were no significant differences
in the clinical characteristics between the four cohorts. For HCC
prediction, we defined sex and CTP class, which both reached p-
values less than 0.05 in the univariate Cox proportional hazards
analyses, as the main prognostic clinical risk factors and used
them for further analyses. The results of univariate Cox
A B

D

C

FIGURE 2 | Flowchart of the study. (A) Liver segmentation is performed on axial T2-weighted and contrast-enhanced T1-weighted imaging. Pre-contrast, pre-
contrast phase; HAP, hepatic arterial phase; PVP, portal venous phase; EP, equilibrium phase; T2WI, T2 weighted imaging. (B) Four types of features are extracted
from within the defined liver areas on the MR images, including quantify intensity, shape, texture and wavelet texture of the entire liver. (C) The LASSO method was
applied to select suitable features and the selected features were used to calculate the Rad-score for the radiomic nomogram. (D) The radiomic signature
incorporated the prognostic clinical risk factors in a final radiomic nomogram for individual evaluation.
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proportional hazards analyses for all clinical factors are listed in
Supplementary Table 2.

3.2 Radiomic Feature Extraction/Selection
and Radiomic Signature Building
A total of 21,410 imaging features were extracted from the
manually segmented liver MR images from the five sequences
from each patient. Satisfactory inter- and intra-observer
reproducibility of tumor masking and radiomic feature
extraction was achieved with ICC>0.6 both among the masks
from the all radiologists at baseline and between the masks from
the same radiologist at baseline and at least 1 month later.

Of these, five radiomic signatures from unimodal (single
sequence) MRI including four-phase (precontrast, arterial,
portal venous, and equilibrium phases) and T2-weighted series
were further constructed. To build the radiomic signature from
multi-sequence MRI (combined sequences), 18 features were
selected from all features for inclusion in the Rad-score
prognostic model (Supplementary Table 3). The Rad-score
calculated from multi-sequence MRI for each patient in the
training cohort and the three validation cohorts is shown
in Figure 3.

3.3 Validation of Radiomic Signature
In the training cohort, the radiomic signature from multi-
sequence MRI yielded the highest C-index, which was 0.710
(95% confidence interval (CI): 0.635-0.784). In the internal
validation cohort, external validation-1 cohort, and external
Frontiers in Oncology | www.frontiersin.org 6
validation-2 cohort, the radiomic signature from multi-
sequence MRI yielded a C-index of 0.681 (95% CI: 0.549-
0.813), 0.632 (95% CI: 0.518-0.746), and 0.658 (95% CI: 0.535-
0.781), respectively. The C-index of radiomic signatures from
unimodal MRI is shown in Table 2. The performance of each T1-
weighted sequence was better than that of the T2-weighted
sequence. The performance of multi-sequence MRI was better
than that of unimodal MRI. A log-rank test was used to select the
Rad-score with statistical significance. The Rad-score value of
-0.0586 was used to divide patients into high-risk and low-risk
HCC groups. Kaplan-Meier survival analysis showed that the
low-risk group with the lower Rad-score had a significantly
better non-HCC survival than that of the high-risk group with
a high Rad-score (p = 1.26×10-5, Figure 4A) in the training
cohort; and the result was subsequently validated in the internal
validation cohort (p = 0.0084 Figure 4B), the external validation-
1 cohort (p = 0.0026 Figure 4C), and the external validation-2
cohort (p = 0.0050 Figure 4D). Significant discrimination for
non-HCC survival in high-risk and low-risk patients was
observed in the prognostic clinical risk factors when subgroup
analyses were performed Figure 5.

3.4 The Incremental Value of the Radiomic
Signature When Added to the Clinical Data
in the Training Cohort and Validation of
the Nomograms
The clinical nomogram in the training cohort, including sex and
CTP class, yielded a C-index of 0.639 (95% CI: 0.577-0.701). We
TABLE 1 | Characteristics of patients in the training and validation cohorts.

Characteristic Training cohort
(N=163)

Internal Validation cohort
(N=56)

1st External Validation cohort
(N=91)

2nd External Validation cohort
(N=54)

p-
value

Age (years) 51 (44–61) 52 (46-63) 51 (44-59) 57 (47-63) 0.254
Median (IQR)
Follow-up
(months)

36 (18-44) 38 (14-52) 39 (33-45) 36 (28-57) 0.305

Median (IQR)
Gender
Male 129 (79.1%) 45 (80.4%) 61 (67.0%) 39 (72.2%) 0.128
Female 34 (20.9%) 11 (19.6%) 30 (33.0%) 15 (27.8%)
FH of HCCa - 0.594
Yes 16 (9.8%) 3 (5.4%) 8 (8.8%)
No 147 (90.2%) 53 (94.6%) 83 (91.2%)
HBV-DNA level - 0.459
<104 102 (62.6%) 40 (71.4%) 57 (62.6%)
≥104 61 (37.4%) 16 (28.6%) 34 (37.4%)
AFP 6.0 (3.0-12.0) 4.0 (3.0-13.25) 7.0 (3.0-12.0) - 0.690
Median (IQR)
CTP classb - 0.522
A 142(87.1%) 44(78.6%) 76 (83.5%)
B or C 21(12.9%) 12(21.43%) 15 (16.5%)
Drinking - 0.156
<40g/d 138 (84.7%) 45 (80.4%) 83 (91.2%)
40-80g/d 25 (15.3%) 11 (19.6%) 8 (8.8%)
Smoking - 0.148
No 134 (82.2%) 48 (85.7%) 83 (91.2%)
Yes 29 (17.8%) 8 (14.3%) 8 (8.8%)
March 2022 | Volume 12 | Article
Chi-Square or Fisher Exact tests, as appropriate, were used to compare the differences in categorical variables (Gender, FH of HCC, SerumHBV-DNA level, CTP class, Drinking, Smoking),
while Kruskal-Wallis test was used to compare the differences in age, Serum AFP, and Follow-up. The value for Serum HBV-DNA level (<104&≥104), CTP class (A vs. B/C), Drinking alcohol
(<40g/d and 40-80g/d), and smoking (non-smoking vs. smoking) were according to previous studies. FH of HCCa, family history of HCC; CTP classb, Child-Turcotte-Pugh classification.
Clinical data were lacking for the external validation-2 cohort.
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created a radiomic nomogram that integrated the radiomic
signature from multi-sequence MRI with the prognostic
clinical risk factors (Figure 6) and found that the final model
provided a C-index of 0.746 (95% CI: 0.672-0.822) and showed
strong calibration (Figures 7A, D). Hence, the radiomic
nomogram appeared to be more accurate than the clinical
nomogram for evaluating HCC risk (p = 6.175×10-7).

The results were then tested in the internal validation cohort
and the external validation-1 cohort (clinical data were lacking
for the external validation-2 cohort, precluding assessment). The
clinical nomogram yielded a C-index of 0.640 (95% CI: 0.532–
0.748) and 0.562 (95% CI: 0.461–0.662). The radiomic
nomogram that integrated the radiomic signature with the
clinical factors showed an improvement over the clinical
nomogram alone (C-index: 0.710; 95% CI: 0.578-0.842) and
0.641 (95% CI: 0.527-0.755). The calibration curve for the
probability of non-HCC survival showed good agreement
Frontiers in Oncology | www.frontiersin.org 7
between the nomogram-evaluated and actual survival
(Figure 7).The C-index of the clinical model and the radiomic
combined nomogram for prediction of non-HCC survival in the
primary cohort and validation cohorts are listed in Table 3.
4 DISCUSSION

In this study, we developed and validated a radiomic nomogram
that integrated a MRI-based radiomic signature with prognostic
clinical risk factors to predict HCC in HBV-related cirrhosis. The
MRI-based radiomic signature was extracted large volumes of
quantitative features from conventional MR images. The clinical
risk factors were sex and CTP class of cirrhosis in this study.

In the study, the performance of each T1-weighted sequence
was better than that T2-weighted sequence, and the radiomic
signature from multi-sequence MRI yielded the highest C-index,
TABLE 2 | C-index of radiomic signatures from unimodal (single-sequence) MRI and multi-modality (combined sequences) MRI for prediction of non-HCC survival at
3 years.

Modality Training Internal validation External validation-1 External validation-2

pre-contrast 0.680 (0.548-0.812) 0.668 (0.536-0.800) 0.492 (0.378-0.606) 0.416 (0.293-0.539)
HAP 0.699 (0.625-0.775) 0.672 (0.540-0.804) 0.526 (0.412-0.640) 0.475 (0.352-0.598)
PVP 0.691 (0.616-0.766) 0.654 (0.523-0.796) 0.586 (0.472-0.699) 0.440 (0.317-0.562)
EP 0.691 (0.616-0.766) 0.646 (0.514-0.777) 0.505 (0.391-0.619) 0.421 (0.298-0.544)
T2WI 0.668 (0.593-0.743) 0.604 (0.472-0.736) 0.478 (0.365-0.592) 0.591 (0.468-0.714)
ALL 0.710 (0.635-0.784) 0.681 (0.549-0.813) 0.632 (0.518-0.746) 0.658 (0.535-0.781)
March 2022 | Volum
The bold values indicate that the performance of the model based on multi-modality (combined sequences) MRI is the best.
pre-contrast, pre-contrast phase; HAP, hepatic arterial phase; PVP, portal venous phase; EP, equilibrium phase; T2WI, T2 weighted imaging.
A

B DC

FIGURE 3 | The Rad-score calculated from multi-sequence MRI including four-phase (precontrast, arterial, portal venous, and equilibrium phases) and T2-weighted
series for each patient in the training cohort and the three validation cohorts. Rad-score for each patient in the training cohort (A), the internal validation cohort (B),
the external validation-1 cohort (C), and the external validation-2 cohort (D). Blue bars show scores for patients who survived at least 36 months without
hepatocarcinogenesis (non-HCC survival), while pink bars show scores for those who developed hepatocarcinogenesis (positive HCC diagnosis).
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better than that of single-sequence. Multi-sequence MRI
provides more information about signals and blood supply of
cirrhosis than single-sequence in clinical practice and the results
reflect this trend. It is well known that multifocal HCC is
frequently found, including multicentric carcinogenesis with
multiple independent neoplasms or intrahepatic metastases
from a single cancer (31). MR elastography has shown
excellent performance for assessing fibrosis and cirrhosis by
also incorporating deep learning radiomics in recent study (13).
Frontiers in Oncology | www.frontiersin.org 8
LASSO is designed to avoid overfitting and is suitable to
analyze a large mass of radiomic features with a relatively
small sample, which makes this model easier to interpret and
allows for the identification of features strongly associated with
hepatocarcinogenesis (32). Radiomics makes it possible to use
MRI to predict HCC in cirrhotic patients by using LASSO in the
study. The Rad-score value of -0.0586 was used to divide patients
into high-risk and low-risk HCC groups when subgroup analyses
were performed in the prognostic clinical risk factors.
A B

D E F

C

FIGURE 5 | Stratified analyses were performed to estimate non-HCC survival in various subgroups, comparing low-risk patients [blue lines (0)] and high-risk patients
[red lines (1)]. Stratified analyses for CTP class [type A, dotted lines (p1); type B/C, solid lines (p2)] for the training cohort (A), internal validation cohort (B), and
external validation cohort (C). Stratified analyses for sex [Male, dotted lines (p1); Female, solid lines (p2)] in the training cohort (D), internal validation cohort (E), and
external validation cohort (F).
A B

DC

FIGURE 4 | Kaplan-Meier survival analysis of the high-risk and low-risk patients for developing HCC in the training cohort and the three validation cohorts.
Significant discrimination between the high-risk (red-dashed line [1]) and low-risk (blue line [0]) patients for developing HCC by using the Rad-score in the training
cohort (A), the internal validation cohort (B), the external validation-1 cohort (C), and the external validation-2 cohort (D).
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Furthermore, the radiomic signature successfully classified
patients according to their risk for development of HCC.

The risk of hepatocarcinogenesis in patients with chronic
HBV infection varies according to age, sex, degree of liver
damage, level of viral replication, and a family history of HCC.
In this study, being male was an independent risk factor for
hepatocarcinogenesis in HBV cirrhosis. Previous studies have
Frontiers in Oncology | www.frontiersin.org 9
shown that, men on average consume more alcohol, smoke more
cigarettes, and have increased iron stores (33). Furthermore, the
estrogen signaling pathway, reduced adiponectin levels, and
overexpressed sex-determining region on Y chromosome are
also associated with the increased incidence of male
hepatocarcinogenesis (34–36). The CTP class of cirrhosis was
another independent risk factor for HCC development in our
A B

D E F

C

FIGURE 7 | The calibration curve for the probability of non-HCC survival showed good agreement between the nomogram-evaluated and actual survival at two and
three years in the training cohort and the validation cohorts. The calibration curve of the radiomic nomogram for predicting non-HCC survival at (A) two years and (D)
three years in the training cohort, at (B) two years and (E) three years in the internal validation cohort, and at (C) two years and (F) three years in the external
validation-1 cohort. Actual non-HCC survival (NHS) is plotted on the y-axis; nomogram-predicted probability of non-HCC survival is plotted on the x-axis. The solid
line represents the performance of the radiomic model. Dashed line indicates a perfect prediction by an ideal model. A closer fit of the solid line to the dashed line
represents a better prediction.
FIGURE 6 | The radiomic nomogram developed, tested, and validated in this study—including Rad-score and key clinical variables (sex and CTP class) —for two-
and three-year non-HCC survival (NHS) in patients with HBV cirrhosis. The nomogram allows the user to obtain the probability of two- and three-year non-HCC
survival corresponding to a patient’s combination of covariates. As an example, one can locate the patient’s sex and draw a line straight upward to the “Points” axis
to determine the score associated with that level of sex. One can then repeat the process for each variable, and sum the scores achieved for each covariate, and
locate this sum on the “Total Points” axis. Then, one can draw a line straight down to determine the likelihood of the two- and three-year non-HCC survival.
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study. The reason may be that the relative enhancement of triple-
phase MR images in patients with CPT A cirrhosis was
significantly higher than patients with CPT B or C cirrhosis.
High levels of HBV DNA are known to be another major risk
factor for HCC. As such, antiviral therapy could reduce the risk
of developing cirrhosis and HCC (37). However, HBV DNA load
was not an independent clinical rick factor for predicting HCC in
our study. It concerned to the regularity and exact dosage of
patients received antiviral treatment cannot be accurately tracked
in our study. Previous studies have shown that the potential for
serum AFP levels in predicting HCC is mitigated by individual
variation of AFP levels, related to genetic variations and heredity
factors (38, 39). In this study, AFP was not an independent
clinical rick factor for predicting hepatocarcinogenesis in
patients with HBV cirrhosis.

In this study, the combined nomogram model was composed
of MRI signatures and some basic clinical risk factors, which
showed improved discrimination performance over the clinical
risk factors alone in both the training and validation cohorts. Of
the currently available prediction tools, the nomogram approach
can provide high accuracy and excellent discrimination
capabilities for predicting relevant outcomes (40). One
previously developed nomogram demonstrated discrimination
characteristics for predicting hepatocellular carcinoma risk,
which is highly correlated with the corresponding actual risks
(41). This combined nomogram would allow clinicians to
consider the calculated probability of predicting HCC, along
with their own clinical experience in order to make an informed
decision with the patient for a rational surveillance plan. Hence,
MR images and the clinical risk factors play an important role in
the diagnosis and monitoring of liver cirrhosis and HCC. Some
literature has also reported that radiomic signature integration of
clinical data into radiomic algorithms can improve the accuracy
of tumor prediction and personalized medicine (42).

We acknowledge some limitations to our study. First,
recognized limits inherent to any retrospective cohort study
would apply. Selection bias is inevitable, because the atypical
or early cirrhosis patients lack of typical MRI features or not
biopsy-proven were not included in our study. Second, since it is
difficult to confirm the precise location of carcinogenesis, the
entire liver was manually selected as the region of interest in MR
images circumvent large vessels and bile ducts in this study. The
ROIs manually drawn on each slice of MR images were very time
consuming, semi-automatic or automatic drawn will be used in
future studies. Third, the C-index of the radiomic combined
model was not higher than 0.8, but this MRI-based nomogram
provided a novel, non-invasive method for the individualized
prediction of HCC in cirrhotic patients. We will increase the
amount of data, add the variety of data (e.g. using imaging
genomics), and unify MR acquisition parameters to improve
Frontiers in Oncology | www.frontiersin.org 10
reliability of the model in the future prospective study.
Additionally, there were some unavoidable aspects that would
slightly affect the calculated hepatocarcinogenic time. For
example, the MR follow-up interval was variable at 3-12
months, and not unified. Suspicious liver nodules required the
development of diagnostic MR features of HCC, which may be
delayed until subsequent follow-up. Finally, the entire patient
cohort, although derived from multiple centers, was comprised
solely of HBV cirrhosis patients. So, the application of radiomics
at earlier stages of liver fibrosis and other causes of cirrhosis
should be validated in future studies.
5 CONCLUSION

This study developed, tested, and validated a straightforward
combined nomogram based on HBV-cirrhosis MRI data and key
clinical risk factors. This MRI-based nomogram provided a
novel, non-invasive method for the individualized prediction of
HCC development in cirrhotic patients.
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