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Ferroptosis is a novel characterized form of cell death featured with iron-dependent lipid
peroxidation, which is distinct from any known programmed cell death in the biological
processes and morphological characteristics. Recent evidence points out that ferroptosis
is correlated with numerous metabolic pathways, including iron homeostasis, lipid
metabolism, and redox homeostasis, associating with the occurrence and treatment of
hematological malignancies, such as multiple myeloma, leukemia, and lymphoma.
Nowadays, utilizing ferroptosis as the target to prevent and treat hematological
malignancies has become an active and challenging topic of research, and the
regulatory network and physiological function of ferroptosis also need to be further
elucidated. This review will summarize the recent progress in the molecular regulation
of ferroptosis and the physiological roles and therapeutic potential of ferroptosis as the
target in hematological malignancies.
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INTRODUCTION

Death is an irreversible regulation process in the living cells, and different ways of death relate to the
distinct physiological functions. Cell death is divided into programmed cell death and cell necrosis.
Programmed cell death is an actively induced and tightly controlled process of cell suicide in
response to various signal stimuli. In contrast, cell necrosis is an acute, spontaneous and passive
death caused by unrepairable stress under pathological conditions, such as physical, chemical,
hypoxia, or insufficient energy (mainly ATP) (1–6). When the cell is necrotic, the integrity of the
cytoplasmic membrane is destroyed, and the barrier function to Na+, Ca2+, and water will be lost.
Water flowing into the cell could lead to cytoplasmic swelling and nucleus pyknosis, eventually
leading to cell rupture (7). The most canonical way of programmed cell death is apoptosis, which
relates to cell contraction, chromatin condensation, and the formation of apoptotic bodies. With the
continuous advancement of research on the manner of cell death, it has been found that in addition
to apoptosis, programmed cell death also comprises autophagy, programmed necrosis, pyroptosis,
and ferroptosis. Ferroptosis is a new form of cell death discovered by Stockwell in searching for
small molecules targeted at RAS protein mutations related to cancer. Its morphological
characteristics are different from any known form of cell death, as shown in Figure 1 (8). Iron-
dependent cell membrane lipid peroxidation will lead to ferroptosis. At this time, the cell’s
mitochondrial membrane density will increase, while the mitochondrial cristae will decrease or
disappear, and the mitochondrial outer membrane will rupture, but the nucleus will remain normal
(9, 10). Since ferroptosis was defined as a new form of cell death in 2012, more and more researchers
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have garnered significant attention on ferroptosis and
continuously identified the correlation of ferroptosis with
cancer and tumor immunity. This review will summarize
recent progress on the regulatory mechanism of ferroptosis and
the pathological manifestations related to ferroptosis and
propose potential treatment strategies.
MECHANISM OF FERROPTOSIS

Lipid Peroxidation Leads to Ferroptosis
The most apparent feature of ferroptosis in cells is lipid
peroxidation. In the process of ferroptosis, the initial and
essential step is that ACSL4, as a member of the acyl-CoA
synthase long-chain family (ACSL) family, specifically catalyzes
polyunsaturated fatty acid (PUFA), such as arachidonoyl (AA)
and adrenoyl moieties (AdA), to form a long-chain acyl-CoA,
namely PUFA-CoA (11). Downregulation of ACSL4 expression
or pharmaco log ica l inh ib i t ion of ACSL4 act iv i ty
(thiazolidinediones or triacsin C, etc.) can prevent ferroptosis
(12–14). Lysophosphatidylcholine acyltransferase 3 (LPCTA3)
then selectively uses phosphatidylethanolamine (PE) or
phosphatidylcholine (PC) located on the endoplasmic
reticulum as the receptor for acylated PUFA to generate
Frontiers in Oncology | www.frontiersin.org 2
PUFA-PE or PUFA-PC (15). Lipids with unsaturated fatty
acids are typical peroxidation targets because carbon-carbon
double bonds are susceptible to reactive oxygen species (ROS).
According to different peroxidation mechanisms, lipid
peroxidation can be divided into enzymatic and non-enzymatic
types. It is currently considered that the enzyme pathway is
mainly accomplished by lipoxygenase (LOX), which is a class of
dioxygenases containing non-heme iron and can directly
catalyze the peroxidation of PUFA-PE (13, 16, 17). Six LOX
species have been identified in the human genome and referred
to as 5-LOX, 12-LOX, 15-LOX-1, 15-LOX-2, 12R-LOX, and
eLOX3 according to their oxidation positions on the
arachidonic acid carbon chain (11, 18). When LOX is
overexpressed, cells appear to be sensitive to ferroptosis,
whereas inhibiting LOX activity, in turn, protects cells from
RSL3-induced ferroptosis (19). The enzymatic lipid peroxidation
is the reaction where enzymes specially select and catalyze
substrates to generate the products. In non-enzymatic lipid
peroxidation, free and unstable ferrous ions react with
hydrogen peroxide to generate ferric ions and strongly
oxidizing hydroxyl radicals (OH.). Hydroxyl radicals abstract
the first hydrogen in the PUFA and form resonantly stable
carbon-centered lipid radical (PUFA-R.), which can react with
molecular oxygen to form lipid hydroperoxyl radical (PUFA-
ROO.). Another hydrogen can be extracted by lipid peroxidation
FIGURE 1 | Morphological Features of different programmed cell death.
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radical from the adjacent unsaturated fat chain, leading to the
formation of lipid peroxides (PUFA-ROOH) and new resonant
carbon center radicals. In this cycle, the chain reaction continues
to proceed and generates new lipid peroxides until the
concentration of PUFA-ROO is high enough for two PUFA-
ROO to contact each other so that a new bond is formed (20–22).
Lipid peroxidation can generate unstable hydroperoxyl groups in
PUFA and promote oxidative truncation of PUFA-ROOH,
creating electrophiles such as aldehydes and Michael receptors.
The electrophilic products then attack proteins on the cell
membrane, causing plasma membrane rupture and cell death
(23, 24).

As a natural fat-soluble antioxidant, a-tocopherol can disrupt
the chain reaction in lipid peroxidation and inhibit ferroptosis,
owing to its high affinity for unpaired electrons (25, 26).
Liproxstatin-1 and ferrostatin-1, two ferroptosis inhibitors
identified by high throughput screening, have the
characteristics of free radical-trapping antioxidants (RTA), and
hence preventing ferroptosis by scavenging free radicals (8, 27,
28). Recent studies have demonstrated that cytochrome P450
oxidoreductase (POR) and cytochrome B5 reductase 1 (CYB5R1)
can transfer electrons from NAD(P)H to downstream proteins
such as cytochrome P450 (CYP), which incorrectly transfer
electrons to molecular oxygen to generate hydrogen peroxide.
The Fenton reaction between hydrogen peroxide and ferrous
ions can induce ferroptosis (29). When intracellular expression
of POR or CYB5R1 was downregulated, the H2O2 content was
reduced, while the cell survival rate was remarkably increased
(29, 30).
Lipid Peroxidation Defense System
As lipid supports the structure of the cell membrane or organelle
membrane, lipid peroxidation can significantly change the
physical properties of the lipid bilayer. As a marker and
necessary prerequisite of ferroptosis, the accumulation of lipid
peroxidation is regulated by various redox systems in cells
(Figure 2) (21).

GPX4-GSH System
As a negative regulator for ferroptosis, GPX4 utilizes two
reduced glutathione molecules (g-glutamyl-cysteinyl-glycine,
GSH) as the electron donor to reduce lipid peroxides (such as
AA-OOH) into corresponding alcohols (AA-OH) and produce a
molecule of oxidized glutathione (GSSG), reducing lipid
peroxidation and preventing ferroptosis (31, 32).

The production of GSH in cells is inseparable from the
system Xc-, a heterodimer composed of SLC3A2 and SLC7A11,
which can execute the antiport of cystine and glutamate on the
cell membrane, namely takes one molecule of cystine into the
cell and releases one molecule of glutamate from the cell (33).
Cystine transported into the cell is rapidly reduced to cysteine,
which is involved in GSH synthesis and other physiological
reactions. The g-glutamylcysteine synthase (g-GCS) performs
the first and rate-limiting step in the process of GSH synthesis:
synthesis of L-g-glutamylcysteine from L-cysteine and L-
glutamate in the presence of ATP, while GSH synthase
Frontiers in Oncology | www.frontiersin.org 3
catalyzes the synthesis of GSH from glycine and g-
glutamylcysteine (34, 35). After erastin treatment, ferroptosis-
inducing agents56 (FIN56) can inhibit GPX4 and cells exhibit
susceptibility to ferroptosis. When GPX4 is overexpressed,
FIN56-induced ferroptosis would be impeded (36). Similarly,
dihydroartemisinin (DHA) can also promote ferroptosis in
glioblastoma through targeted downregulation of GPX4 and
accumulation of lipid peroxidation (37). Albeit GPX4-deficient
hematopoietic stem cells are prone to suffer from ferroptosis in
vitro, GPX4-deficient mice still retain general function, owing
to the antioxidant function of lipophilic vitamin E. Moreover,
GPX4 combined with vitamin E can also prevent hepatocellular
disease (38, 39).

FSP1-CoQ10 System
FSP1-CoQ10 system can antagonize ferroptosis in GPX4-GSH
system-independent mechanism. Doll and Bersuker’s teams
almost simultaneously demonstrated that FSP1 was strongly
associated with ferroptosis (40, 41). FSP1 mainly contains two
distinct structural domains, the N-terminal short hydrophobic
region and FAD-dependent NAD(P)H redox region, and
participates in ferroptosis through reduction of ubiquinone
(also known as coenzyme Q10, CoQ10) and formation of
panthenol (CoQ10H2), which is a reduced form of the fat-
soluble antioxidant ubiquinone and can trap and reduce lipid
peroxidation radicals (42). In addition, the overexpression of
FSP1 in most tumor cells, and the treatment with the inhibitor of
FSP1 (iFSP1), can make cells sensitive to RSL3 (43). Meanwhile,
Bersuker et al. identified that FSP1 was a negative regulator of
ferroptosis in screening for the synthesis of lethal CRISPR-Cas9,
and the localization of FSP1 to the plasma membrane by
myristoylation was necessary for its inhibition of ferroptosis
(31). Subsequent studies demonstrated that FSP1 plays a role
in membrane repair and resistance to ferroptosis in the
panthenol-independent and ESCRT-III-dependent manner
(44). Knockdown of FSP1 inhibits the expression of ESCRT-III
subunits (CHMP5 and CHMP6), but the exact mechanism
remains unclear. Furthermore, mice with knockout of the FSP1
gene did not show any abnormalities before at least one-year-old
(45). In conclusion, promoting ferroptosis in tumor cells via
targeting inhibition of FSP1would be a potential strategy for
cancer therapy. Consistently, the development of FSP1 inhibitors
is also of great significance for clinical research.

GCH1-BH4 System
Human GCH1 is a 270 kD complex composed offive dimers that
catalyzes the conversion of guanosine triphosphate (GTP) to
dihydroneopterin triphosphate (H2NTP), which is the first and
rate-limiting step in the biosynthesis of BH4 (46). H2NTP was
then transformed into BH4 by 6-pyruvoyl tetrahydrobiopterin
synthase (PTS) and sepiapterin reductase (SPR). Kraft found that
GCH1 was related to ferroptosis through CRISPR-Cas9
overexpression screening. GCH1 prevents the peroxidation of
phosphatidylcholine with two polyunsaturated fatty acid chains
to prevent ferroptosis through the antioxidant action of BH4,
and BH4 may also be involved in the pathway of FSP1-CoQ10 as
a biosynthetic precursor of CoQ10 (47). Dihydrofolate reductase
January 2022 | Volume 12 | Article 834681
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(DHFR) participates in the regulation of ferroptosis by
regenerating oxidized BH4 and the combination of inhibition
of DHFR by methotrexate (MTX) with inhibition of GPX4 by
RSL3 can promote ferroptosis (48, 49). In summary, BH4 is the
core element of this system for ferroptosis resistance. In addition
to GCH1 and DHFR, there are other factors mediating
ferroptosis through BH4, and the imbalance of BH4 levels may
be associated with the occurrence of ferroptosis-related diseases.

iPLA2b
Ca2+-independent phospholipase A2b (iPLA2b) can specifically
hydrolyze sn-2 acyl bonds of phospholipids, which has been
recently identified as a regulator of ferroptosis. When ferroptosis
occurs, the characteristic product of lipid peroxidation, 15-
hydroperoxy-arachidonoyl-phosphatidylethanolamine (15-
HpETE-PE), is hydrolyzed by iPLA2b, which impedes
subsequent ferroptosis-related effects. Decreased iPLA2b
expression in cells was significantly more sensitive to RSL3-
induced ferroptosis and showed higher ferroptosis markers
associated with PE (50). The interaction of iPLA2b with
various membrane substrates was simulated by computational
modeling, and it was found that 15-HpETE-PE was more
exposed to the membrane surface, close to the catalytic site
(50). When the R747W mutation occurred in the catalytic
Frontiers in Oncology | www.frontiersin.org 4
domain, the interaction with the membrane was diminished,
leading to a decline in the catalytic capacity of 15-HpETE-PE and
the inhibition of ferroptosis in cells. It is demonstrated that the
reduced enzyme activity may be linked to neurological diseases,
including Parkinson’s disease in particular. Besides, iPLA2b was
further identified as a regulator of p53-mediated ferroptosis,
independent of GPX4 and FSP1, inhibiting ferroptosis by
eliminating AlOX12-catalyzed lipid peroxidation. Notably, like
FSP1, the lack of iPLA2b has no impact on cell function or tissue
development, suggesting that it may be a potential target for
inducing ferroptosis in tumor cells (51).

DHODH
Mitochondria is the indispensable organelle in eukaryotes where
oxidative phosphorylation, energy generation, and important
other functions such as signal transmission and energy
metabolism occur. Mao et al. recently demonstrated that
dihydroorotate dehydrogenase (DHODH) mediated the
regeneration of panthenol in mitochondria to restore peroxide-
damaged mitochondrial lipids and inhibition of ferroptosis by
DHODH was independent of DHODH’s function in pyrimidine
synthesis (52). DHODH can also produce panthenol to repair
peroxide lipids, but DHODH targets mitochondrial membrane
lipids instead of cytoplasmic lipids. GPX4 is subdivided into
FIGURE 2 | Regulatory pathways of ferroptosis. The proteins in yellow are key defense systems; the red line represents inhibiting effect (as in Figure 4).
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cytoplasmic and mitochondrial types, which are referred to as
GPX4cyto and GPX4mito, respectively. GPX4mito and DHODH
protect the mitochondria against oxidative damage independent
of GPX4cyto and FSP1. Mao also demonstrated that Brequinar, an
inhibitor of DHODH, impeded the proliferation of tumor cells
with low GPX4 expression. In addition, combined use of
ferroptosis inducers could inhibit the growth of tumor cells
with high GPX4 expression, implying a new approach for
cancer treatment (52).
METABOLIC REGULATION OF FE2+

Iron is a vital transition metal with redox activity in the body,
which has implications in biological processes such as oxidative
phosphorylation, DNA synthesis, and cell signaling (53, 54).
Excessive or inadequate iron levels can lead to the loss of protein
function, abnormalities in intracellular signaling, as well as out-
of-control of metabolic networks, thus interfering with normal
physiological processes (55). Ferrous ions are reported to be
involved in the Fenton reaction and promote lipid peroxidation
when ferroptosis occurs. In addition, reactive oxygen species
(ROS) that trigger the Fenton reaction are also related to
iron (56).

In a natural evolution, organisms have evolved multiple
regulatory pathways of iron homeostasis. Most of the ferric
ions in nutrients are absorbed by the brush border of duodenal
cells, reduced to ferrous ions by duodenal cytochrome b (Dcytb),
then transported to intestinal cells by Divalent metal ion
Transporter 1 (DMT1) (57). In intestinal cells, a part of ferrous
ion is fixed by ferritin, while the other parts are utilized by the
ferroportin (FPN, also known as SLC40A1) and transported into
the blood. Ferrous ions are oxidized to ferric ions in the blood by
Hephaestin (HEPH) or Ceruloplasmin (CP) (53, 58). Transferrin
(Tf) can bind two ferric ions and enter into cells through
endocytosis after forming a complex with transferrin receptor
(TfR). In the acidic environment of the Endosome, ferric ions are
dissociated from Tf and reduced to ferrous ions by a six-
transmembrane epithelial antigen of the prostate 3 (STEAP3),
and then are transported to the cytoplasm by DMT1, while Tf
and TfR can be recycled for the next transfer (57, 59, 60). Ferric
ions entering the cytoplasm can function in the various
physiological processes or stay in ferritin.

Increased TfR expression was found in erastin-induced
ferroptosis and p53 induced ferroptosis, suggesting that TfR is
positively associated with ferroptosis (61, 62). In addition, it has
been found that knockdown of FPN in neuroblastoma promotes
ROS-dependent ferroptosis, and the downregulation of FPN
expression leads to ferroptosis in the hippocampal area of rats
and other diabetic cognitive dysfunction (63, 64). The storage of
iron ions in cells is undertaken by ferritin, which is composed of
a heavy chain (FTH) and a light chain (FTL) and forms a “labile
iron pool (LIP)” of 12 or 24 polymers through the weak
interaction. The storage pool can store more than 4500 ferrous
ions. Ferritins from different species are distinct in ferritin size,
amino acid sequence, iron access channel, and iron-binding site.
Frontiers in Oncology | www.frontiersin.org 5
However, from the aspects of shape and structure, they are all
“pools” formed by orderly arranged helixes (65, 66). The iron
storage pools control the concentration of free ferrous ions in the
cytoplasm, which determines whether it acts as a beneficial
cofactor or as a toxic-free radical catalyst in the cell and is key
for the fate of the cell (Figure 3).

Nuclear Receptor Coactivator-4 (NCOA4) mediates the
degradation of ferritin in an autophagy-dependent pathway
where iron is isolated from ferritin and the accumulated free
ferrous ions in the cytoplasm promote erastin-induced
ferroptosis (67). Nuclear factor-erythroid 2-related factor 2
(NRF2) regulates the expression of FPN1, FTH, and FTL at the
transcriptional level and promotes the stability of the
intracellular iron environment (68). TfR and ferritin
translation regulation at the transcriptional level in a cell
operates through IRE-IRP. Iron regulatory proteins (IRPs) can
be classified into IRP1 and IRP2. IRP1 can be converted between
apo-form and holo-form, wherein the former can bind mRNA,
and the latter has aconitase activity and is the main active form of
IRP1 (69, 70). IRP2 is widespread in mammals and is the main
executor of IRE-IRP iron regulation (69, 71). When the
intracellular iron concentration is inadequate, IRP will bind to
the 3’ untranslated regions of mRNA (UTR) of TfR with a high
affinity and specific manner to enhance the stability of the
mRNA and the expression level of TfR, resulting in increased
iron transport into the cell (72). When intracellular iron is
abundant, IRP binds to the 5’ UTR of ferritin and TfR,
preventing their translation. IRP is at the control of
intracellular iron level and H2O2, oxygen concentration, and
oxidative stress signal (72, 73).
REGULATORY MECHANISMS
ASSOCIATED WITH FERROPTOSIS

Effect of Ether Phospholipid on
Ferroptosis
Unlike typical fatty acids, which are connected to the glycerol
framework via two ester bonds, the sn-1 position of ether
phospholipids (ePLs) is linked to the aliphatic chain via the
ether bond, while the position of sn-2 is linked to the
polyunsaturated fat chain by an ester bond (74, 75). Carbons
adjacent to ether bonds can be bonded in two ways: the first is a
carbon-carbon single bond to form an alkyl ether; another is a
carbon-carbon double bond for the formation of vinyl ethers
(also known as acetal phospholipids). Zou et al. found that
peroxisome composition was associated with ferroptosis using
genome-wide CRISPR-Cas9 suppressor screens, in combination
with the protein network database STRING and the pathway
analysis algorithm they developed. Furthermore, they found
utilizing lipidomics that polyunsaturated ether phospholipids
(ePLs) generated by the peroxisome pathway act as substrates
of lipid peroxidation to induce ferroptosis (76). When the
expression of ether phosphol ipid-related synthases
Alkyldihydroxyacetonephosphate synthase (AGPS) and Fatty
acyl-CoA reductase 1 (FAR1) in peroxisome was inhibited, the
January 2022 | Volume 12 | Article 834681
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cells would exhibit the resistance to ferroptosis until they were
re-expressed. In another study, Cui et al. established the
regulatory pathway of ferroptosis involving FAR1 as FAR1-
ether lipid-TMEM189 (77). FAR1 promotes ferroptosis by
reducing fatty acids to generate fatty alcohols necessary for
synthesizing alkyl ether lipids and acetal phospholipids (77).
Cui found that aceta l phosphol ipids generated by
plasmanylethanolamine desaturase (transmembrane protein
189, TMEM189) inhibited the expression of FAR1 and
subsequent ferroptosis (78). Cui had characterized the
inhibitory effect of TMEM189 on ferroptosis in different cancer
cells. In contrast, Zou claimed that TMEM189 was not involved
in ferroptosis regulation. The two contrary results may be
explained by different cancer cell lines used in the experiment
that expressed discrepant levels of TMEM189. This indicates that
the level of TMEM189 protein in different cancer cells results in
differences in the regulatory network between cancer cells.
Further studies are needed to determine whether the
differences in TMEM189 protein levels among varying cancer
cell lines are regulated at the gene level, transcription level, or
post-translational modification level, which may also contribute
to elucidating the role of TMEM189 in ferroptosis.

UPS
The ubiquitin-proteasome system (UPS) is closely linked to
ferroptosis through targeting protein for degradation. The tumor
Frontiers in Oncology | www.frontiersin.org 6
suppressor BRCA1-associated protein 1 (BAP1), a member of the
UCH family of deubiquitinase, is negatively associated with many
tumors (79–81). BAP1 acts on system Xc- and cleaves the mono-
ubiquitin from lysine 119 of histone 2A (H2AK119Ub) in the
SLC7A11 gene, thereby inhibiting the transcription of SLC7A11
and resulting in reduced cystine transport, decreased GSH
production, lipid peroxide accumulation, and ultimately
promoting the occurrence of ferroptosis (82, 83). Further
research has demonstrated that the polycomb repressive
complex 1 (PRC1), as the main E3 ubiquitin ligase of H2AUb,
can enhance the binding of H2AUb to the SLC7A11 promoter and
synergistically inhibit the expression of SLC7A11 with BAP1 (84).
In addition, mono-ubiquitination of lysine 120 of histone 2B
(H2BK120Ub) activates SLC7A11 expression, while p53 reduces
H2BK120Ub level via promoting nuclear translocation of the
deubiquitinase USP7, and finally promoting the occurrence of
ferroptosis (85). Studies have shown that SLC7A11 is also
positively regulated by deubiquitinase, and OTUB1, a
deubiquitinase, can interact directly with SLC7A11 and repress
ferroptosis by stabilizing SLC7A11. When the OTUB1 was
inactivated, SLC7A11 levels diminished, and ferroptosis was
promoted. It was also found that the cluster of differentiation-44
(CD44) could enhance the interaction of OTUB1 with SLC7A11
and prevent ferroptosis (86).

It has been demonstrated that deubiquitinase USP35 is
overexpressed in human lung cancer tissues and cell lines.
FIGURE 3 | Regulation of iron transport in vivo.
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Meanwhile, knockdown of USP35 can promote the degradation
of FPN in lung cancer cells and reduce iron exportability that
makes cancer cells sensible to ferroptosis, enhancing the
chemotherapy effect on lung cancer cells (87). USP11 can
stabilize NRF2 by deubiquitination, and USP11 inactivation
can promote NRF2 degradation, making cells prone to
ferroptosis and reproduction repressed (Figure 4) (88).

AMPK
AMPK is an AMP-dependent protein kinase that regulates the
generation and consumption of ATP to maintain intracellular
energy homeostasis. Under energy stress, AMPK is activated and
inhibits the physiological processes that consume energy directly
or indirectly. Gan et al. recently identified a new mechanism on
ferroptosis inhibition in which under energy-deficient conditions,
activation of AMPK mediated phosphorylation of acetyl-CoA
carboxylase (ACC) and ACC inactivation inhibited the
conversion of acetyl-CoA to malonyl-CoA that can generate
unsaturated fatty acids and participate in lipid peroxidation.
Inhibiting the synthesis of unsaturated fatty acids would
ultimately prevent ferroptosis (89–91). Beclin1, the first
autophagy-associated protein discovered in mammals, acts as
the core of the class III phosphatidylinositol 3-kinase (PtdIns3K)
Frontiers in Oncology | www.frontiersin.org 7
complex to promote the nucleation of autophagosomes (92). Song
et al. found that Beclin1 induced ferroptosis independently of the
PtdIns3K complex and could form Beclin1-SLC7A11 complex
when phosphorylated at Ser90/93/96 by AMPK. This process
directly inhibited the cystine transport function of system Xc-,
leading to the accumulation of lipid peroxidation and ferroptosis
increase (91, 93, 94). Overexpression of Beclin1 in cancer cells
promoted the effect of system Xc- inhibitors on ferroptosis and
also promoted the effect of ferroptosis on anticancer in vivo (94).
To sum up, AMPK has positive and negative regulatory roles in
ferroptosis, so better understanding and accurately judging of the
roles of AMPK may be of great but the far-reaching significance
for target ferroptosis to treat tumors.
ROLE OF FERROPTOSIS IN
HEMATOLOGIC MALIGNANCIES
TREATMENT

Leukemia
Leukemia is a malignant disease arising from the unlimited
proliferation of hematopoietic stem cells, as malignant clones
FIGURE 4 | Metabolic regulation associated with ferroptosis.
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of cells could hinder the normal function of hematopoietic cells
and affect the development of non-hematopoietic cells.
Compared with other tumor cells, leukemia cells display higher
transferrin expression and iron content, which causes the
accumulation of ROS in leukemia cells more easily and
ferroptosis occurs after cells undergo irreparable peroxidative
damage. Thereby, promoting ferroptosis via further enhancing
the iron content in leukemia cells seems to become a feasible
strategy for leukemia treatment, which is also one of the hotspots
in this field (95–97).

It has been found that Dihydroartemisinin (DHA), a
derivative of the natural drug artemisinin, can induce
ferroptosis in acute myeloid leukemia (AML) cells, owing to
the capability of activating the phosphorylation of AMPK.
Subsequently, AMPK inhibits the mTOR pathway and
promotes autophagy, leading to autophagy-dependent
degradation of FTH protein and the release of large amounts
of free iron, which ultimately induces ferroptosis in AML cells
(98). RSL3, as a small molecule inhibitor targeting GPX4, can
also trigger a variety of programmed cell deaths, including
ferroptosis in AML cells, and enhances the tumor suppressor
effect of first-line chemotherapy drugs (cytarabine and
adriamycin) on AML cells (99). Similarly, Balasubramanian
et al. found that NRF2 may be a new target for the treatment
of AML. Using Brusatol, an inhibitor of NRF2, could reduce the
ability of NRF2 to eliminate ROS and increase the sensitivity of
cytarabine and daunorubicin to AML (100). Ferroptosis induced
by iron loading in leukemia cells exert a therapeutic effect, while
the occurrence and poor prognosis of leukemia have been
identified to be related to intracellular iron accumulation, such
as inhibition of red blood cell differentiation when the iron is
excessive (101). Therefore, much effort was focused on reducing
of the amount of iron in cells. For example, iron chelating agents
(DFO and DFX) have been used clinically to reduce the
intracellular iron load (102). There are currently relatively few
studies on treating leukemia with ferroptosis, and more
experiments are required to elucidate the relationship between
ferroptosis and leukemia treatment.
Lymphoma
Diffuse large B-cell lymphoma (DLBCL) is one of the most
frequent lymphatic malignancies, with the highest incidence in
the non-Hodgkin lymphoma (NHL) family (103, 104). Since
Cystine is a crucial negative regulator in the ferroptosis system,
the lack of cystine in cells lead to the inhibition of GSH
production, which ultimately gives rise to redox imbalance and
ferroptosis. Therefore, the inability of lymphocytes to synthesize
cystine has been regarded as a breakthrough point for the
treatment of lymphoma. At an early stage, Gout et al. revealed
that sulfasalazine could be used as a system Xc- inhibitor to
significantly reduce the growth of DLBCL in the abdominal
cavity of rats (105). Stockwell et al. optimized imidazole-ketone-
erastin (IKE) with stronger metabolic stability and water
solubility, based on canonical system Xc- inhibitor erastin. IKE
could inhibit the growth of DLBCL in mice with more potent
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therapeutic effects through nanoparticle delivery (106). What’s
more, Stockwell et al. indicated that inhibition of GPX4 activity
also promoted the death of DLBCL cell lines (36). Consistently,
GPX4 can reduce lipid peroxides and inhibit ferroptosis, and its
overexpression has been demonstrated to be associated with
poor prognosis in DLBCL patients (107).

Multiple Myeloma
Multiple myeloma (MM) is a malignant proliferative disease in
plasma cells, accounting for 10% of hematological malignancies
(108). MM is associated with the accumulation of atypical
plasma cells in bone marrow, abnormal production of
monoclonal immunoglobulin, and increased serum calcium
levels (109). GPX4 and SLC7A11 are key regulators of
ferroptosis and are highly expressed in MM cells. A novel
immunosuppressant Fingolimod (FTY720), can promote
ferroptosis by reducing GPX4 and SLC7A11 mRNA and
protein levels in U66 cells, enhancing ferroptosis and
autophagy through the PP2A/AMPK pathway (110). In MM
cells, high proteasome activity is the determinant for degrading
misfolded immunoglobulin to ensure expected survival. As a
proteasome inhibitor, Bortezomib has been clinically used to
treat MM patients (111). However, the autophagy process
activated by the accumulation of misfolded immunoglobulin in
cells exhibits the resistance of MM against Bortezomib (112).
Studies have shown that iron exposure can reduce the activity of
the proteasome, hence increasing the efficacy of Bortezomib and
Carfilzomib (the second generation of proteasome inhibitors
used for MM therapy) in MM cells and leading to severe MM
cell death by promoting ferroptosis (113). In order to overcome
the drug resistance of Bortezomib, docosahexaenoic acid or
eicosapentaenoic acid in combination with Bortezomib were
used to enhance the sensitivity of MM cells to Bortezomib
(Table 1) (114). Specifically, docosahexaenoic acid and
eicosapentaenoic acid can modulate the redox balance in MM
cells by reducing the content of GSH in MM cells, thus
improving the therapeutic effect of Bortezomib. These
combined therapeutic results provide a novel theoretical basis
and therapeutic schedule for overcoming MM resistance to
Bortezomib and further benefit clinical treatment.
TABLE 1 | Inducers or inhibitors of ferroptosis in hematologic malignancies.

Cancer Inhibitors/Inducers Targeted sites

Leukemia DHA AMPK
RSL3 GPX4
Brusatol NRF2
DFO; DFX Fe2+

Lymphoma Sulfasalazine system Xc-
IKE system Xc-
RSL3 GPX4

Multiple
myeloma

FTY720 GPX4;
SLC7A11

Bortezomib; Carfilzomib Proteasome
Docosahexaenoic acid; Eicosapentaenoic
acid

GSH
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CONCLUSION AND PERSPECTIVE

In recent years, with the deep research on ferroptosis, several
pathways other than GPX4-GSH have been identified to
modulate lipid peroxidation directly. Meanwhile, large
amounts of experiments have also been conducted to elucidate
the roles of ferroptosis in hematological malignancies. However,
many questions in the ferroptosis field remain to be addressed.
For example, to what extent does lipid peroxidation lead to cell
rupture and ferroptosis? Are other lipid peroxidation regulatory
pathways associated with GPX4-GSH synergistic or merely
complementary to GPX4? How can ferroptosis be used as a
target of cancer therapy further (In Table 2 we summarize the
inhibitors or inducers associated with ferroptosis)? How to avoid
the side effects of ferroptosis-related drugs (e.g., the toxic side
effects of increased iron intake in leukemia treatment)? In
conclusion, as a new modality of regulatory cell death,
ferroptosis brings new possibilities for cancer treatment.
However, further research is required for elaborating the
Frontiers in Oncology | www.frontiersin.org 9
mechanism of ferroptosis and its implications in cancer, which
is of great scientific significance.
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1. Szabó C. Mechanisms of Cell Necrosis. Crit Care Med (2005) 33(12):4–5.

doi: 10.1097/01.CCM.0000187002.88999.CF
2. Padanilam BJ. Cell Death Induced by Acute Renal Injury: A Perspective on

the Contributions of Apoptosis and Necrosis. Am J Physiol-Renal Physiol
(2003) 284(4):F608–F27. doi: 10.1152/ajprenal.00284.2002

3. Ranganath RM, Rao Nagashree N. Role of Programmed Cell Death in
Development. Int Rev Cytol (2001) 202:159–242. Academic Press. doi:
10.1016/S0074-7696(01)02005-8

4. Hirschhorn T, Stockwell BR. The Development of the Concept of Ferroptosis. Free
Radical Biol Med (2019) 133:130–43. doi: 10.1016/j.freeradbiomed.2018.09.043

5. Sen S. Programmed Cell Death: Concept, Mechanism and Control. Biol Rev
(1992) 67(3):287–319. doi: 10.1111/j.1469-185X.1992.tb00727.x

6. Daneva A, Gao Z, Van Durme M, Nowack MK. Functions and Regulation of
Programmed Cell Death in Plant Development. Annu Rev Cell Dev Biol
(2016) 32(1):441–68. doi: 10.1146/annurev-cellbio-111315-124915
7. Barros LF, Hermosilla T, Castro J. Necrotic Volume Increase and the Early
Physiology of Necrosis. Comp Biochem Physiol Part A: Mol Integr Physiol
(2001) 130(3):401–9. doi: 10.1016/S1095-6433(01)00438-X

8. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE,
et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death.
Cell (2012) 149(5):1060–72. doi: 10.1016/j.cell.2012.03.042

9. Jiang X, Stockwell BR, Conrad M. Ferroptosis: Mechanisms, Biology and
Role in Disease. Nat Rev Mol Cell Biol (2021) 22(4):266–82. doi: 10.1038/
s41580-020-00324-8

10. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis: Process and
Function. Cell Death Differ (2016) 23(3):369–79. doi: 10.1038/cdd.2015.158

11. Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR.
Peroxidation of Polyunsaturated Fatty Acids by Lipoxygenases Drives
Ferroptosis. Proc Natl Acad Sci USA (2016) 113(34):E4966–E75. doi:
10.1073/pnas.1603244113

12. D'Herde K, Krysko DV. Oxidized PEs Trigger Death. Nat Chem Biol (2017)
13(1):4–5. doi: 10.1038/nchembio.2261
TABLE 2 | Molecular compounds that regulate ferroptosis.

Molecular compound Targeted sites Function

Inhibitor a-Tocopherol PUFA-ROO· Blocks the lipid peroxidation caused by Fenton reaction
Vitamin E PUFA-ROO· Blocks the lipid peroxidation caused by Fenton reaction
Liproxstatin-1 PUFA-ROO· Blocks the lipid peroxidation caused by Fenton reaction
Ferrostatin-1 PUFA-ROO· Blocks the lipid peroxidation caused by Fenton reaction
DFO Fe2+ Consumption of iron
DFX Fe2+ Consumption of iron
CoQ10 Lipid peroxidation Repairs lipid peroxide

Inducer Erastin system Xc- Prevents cystine from entering cells
IKE system Xc- Prevents cystine from entering cells
Sulfasalazine system Xc- Prevents cystine from entering cells
Sorafenib system Xc- Prevents cystine from entering cells
FIN56 GPX4 Induces GPX4 degradation
RSL3 GPX4 Covalently inhibits GPX4, leading to accumulation of lipid peroxides
iFSP1 FSP1 Consumption of CoQ10 leads to a decrease in GPX4 activity
MTX DHFR Inhibits DHFR activity and reduce BH4 production
Docosahexaenoic acid GSH Consumption of GSH
Eicosapentaenoic acid GSH Consumption of GSH
Brequinar DHODH Decreases DHODH activity and resultes in accumulation of mitochondrial peroxide lipids
January 2022 | Volume 12 | Article 834681

https://doi.org/10.1097/01.CCM.0000187002.88999.CF
https://doi.org/10.1152/ajprenal.00284.2002
https://doi.org/10.1016/S0074-7696(01)02005-8
https://doi.org/10.1016/j.freeradbiomed.2018.09.043
https://doi.org/10.1111/j.1469-185X.1992.tb00727.x
https://doi.org/10.1146/annurev-cellbio-111315-124915
https://doi.org/10.1016/S1095-6433(01)00438-X
https://doi.org/10.1016/j.cell.2012.03.042
https://doi.org/10.1038/s41580-020-00324-8
https://doi.org/10.1038/s41580-020-00324-8
https://doi.org/10.1038/cdd.2015.158
https://doi.org/10.1073/pnas.1603244113
https://doi.org/10.1038/nchembio.2261
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lan et al. Ferroptosis and Hematological Tumorigenesis
13. Kagan VE, Mao G, Qu F, Angeli JPF, Doll S, Croix CS, et al. Oxidized
Arachidonic and Adrenic PEs Navigate Cells to Ferroptosis. Nat Chem Biol
(2017) 13(1):81–90. doi: 10.1038/nchembio.2238

14. D'Herde K, Krysko DA-O. Ferroptosis: Oxidized PEs Trigger Death. Nat
Chem Biol (2017) 13(1):4–5. doi: 10.1038/nchembio.2261

15. Hishikawa D, Shindou H, Kobayashi S, Nakanishi H, Taguchi R, Shimizu T.
Discovery of a Lysophospholipid Acyltransferase Family Essential for
Membrane Asymmetry and Diversity. Proc Natl Acad Sci USA (2008) 105
(8):2830–5. doi: 10.1073/pnas.0712245105

16. Kuhn H, Banthiya S, van Leyen K. Mammalian Lipoxygenases and Their
Biological Relevance. Biochim Biophys Acta (2015) 1851(4):308–30. doi:
10.1016/j.bbalip.2014.10.002

17. Plount Price ML, Jorgensen WL. Analysis of Binding Affinities for Celecoxib
Analogues With COX-1 and COX-2 From Combined Docking and Monte
Carlo Simulations and Insight Into the COX-2/COX-1 Selectivity. J Am
Chem Soc (2000) 122(39):9455–66. doi: 10.1021/ja001018c

18. Brash AR. Lipoxygenases: Occurrence, Functions, Catalysis, and Acquisition
of Substrate *. J Biol Chem (1999) 274(34):23679–82. doi: 10.1074/
jbc.274.34.23679

19. Shah R, Shchepinov MS, Pratt DA. Resolving the Role of Lipoxygenases in
the Initiation and Execution of Ferroptosis. ACS Cent Sci (2018) 4(3):387–
96. doi: 10.1021/acscentsci.7b00589
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