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Epithelial ovarian cancer (EOC) is a heterogenous disease associated with variations in
presentation, pathology and prognosis. Advanced EOC is typified by frequent relapse and
a historical 5-year survival of less than 30% despite improvements in surgical and systemic
treatment. The advent of next generation sequencing has led to notable advances in the
field of personalised medicine for many cancer types. Success in achieving cure in
advanced EOC has however been limited, although significant prolongation of survival has
been demonstrated. Development of novel research platforms is therefore necessary to
address the rapidly advancing field of early diagnostics and therapeutics, whilst also
acknowledging the significant tumour heterogeneity associated with EOC. Within available
tumour models, patient-derived organoids (PDO) and explant tumour slices have
demonstrated particular promise as novel ex vivo systems to model different cancer
types including ovarian cancer. PDOs are organ specific 3D tumour cultures that can
accurately represent the histology and genomics of their native tumour, as well as offer the
possibility as models for pharmaceutical drug testing platforms, offering timing advantages
and potential use as prospective personalised models to guide clinical decision-making.
Such applications could maximise the benefit of drug treatments to patients on an
individual level whilst minimising use of less effective, yet toxic, therapies. PDOs are likely to
play a greater role in both academic research and drug development in the future and
have the potential to revolutionise future patient treatment and clinical trial pathways.
Similarly, ex vivo tumour slices or explants have also shown recent renewed promise in
their ability to provide a fast, specific, platform for drug testing that accurately represents
in vivo tumour response. Tumour explants retain tissue architecture, and thus incorporate
the majority of tumour microenvironment making them an attractive method to re-
capitulate in vivo conditions, again with significant timing and personalisation of
treatment advantages for patients. This review will discuss the current treatment
landscape and research models for EOC, their development and new advances
towards the discovery of novel biomarkers or combinational therapeutic strategies to
increase treatment options for women with ovarian cancer.
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1 INTRODUCTION

Ovarian cancer is a spectrum of different clinical and
pathological entities with variable presentations and behaviour.
Epithelial Ovarian Cancer (EOC), of which the most common
subtype is serous, comprises approximately 90% of cases (1).
Other epithelial subtypes include endometrioid (EM), clear cell
(CC) and mucinous (MC) (2). High-grade serous ovarian cancer
(HGSOC) is responsible for the majority of EOC deaths (1) and
most patients present with advanced disease, which is typified by
frequent relapse and a 5-year survival of less than 30% despite
treatment (3). Although it is termed HGSOC, the secretory
epithelial cells of the distal fallopian tube are thought to be the
most common progenitors for this subtype (4, 5).

HGSOC is a genomically diverse cancer, displaying significant
genomic instability and intra-tumoural heterogeneity. TP53
mutations are almost ubiquitous (96%), BRCA1/2 germline and
somatic mutations are observed in 22% of tumours and
approximately half of cases display deficiencies in homologous
recombination (6). HGSOC also demonstrates extensive copy
number aberrations e.g. CCNE1 amplification (7), which has
been associated with worse outcomes and chemoresistance (8).
While HGSOC has the highest proportion of copy number
alterations (CNA), CNA are also observed to a lesser extent in
other ovarian cancer subtypes (9). EM and CC ovarian cancers are
typically associated with endometriosis and often harbour
ARID1A mutations. Mucinous ovarian cancer typically harbours
KRAS or TP53 mutations, or ERBB2 amplification but is much
rarer than other subtypes of ovarian cancer (approximately 3%)
(10). Many of the presumed mucinous ovarian cancers are in fact
metastatic cancers e.g. from gastrointestinal epithelium or
endocervical glands (11). Low-grade serous ovarian carcinomas
(LGSOC) frequently possess KRAS, ERBB2 and BRAF mutations
as well as WNT signalling pathway alterations (7). Epithelial
ovarian cancers have very low rates (<2%) of mismatch repair
(12) and rates of response to single agent checkpoint inhibition are
low (4.1%) (13).
2 THE CURRENT OVARIAN CANCER
DIAGNOSTIC AND TREATMENT
LANDSCAPE

High grade serous ovarian cancer typically presents in
postmenopausal women with non-specific symptoms such as
bloating, abdominal pain, distension, gastrointestinal
disturbance or systemic symptoms such as sweats or weight
loss. It can also manifest as an incidental finding. Cancer antigen-
125 (CA-125) is frequently elevated, and the use of
ultrasonography and multimodal cross-sectional imaging (e.g.,
CT and MRI) is crucial to establish accurate radiological staging
prior to treatment decision making.

2.1 Surgery
In conjunction with systemic approaches, maximal effort surgery
is one of the cornerstones of ovarian cancer treatment. Even in
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the advanced forms of the disease (i.e., FIGO stage III/IV), there
is substantial evidence demonstrating that surgical tumour
debulking is significantly associated with prolonged remission
and survival, including in those situations of high tumour burden
(14, 15). Valid quality of life (QoL) data show that surgical
radicality is not associated with long term impairment of QoL
scores but instead with marked improvement compared to
baseline (16).

Debulking surgery can occur in the primary upfront or
interval setting following neoadjuvant chemotherapy
depending on the presentation, pathology and pattern of the
disease, but also patient related factors such as performance
status, fragility scores and patient wishes. Large prospective
randomised trials with translational aspect are awaited to
clarify the question of timing of surgery in operable patients
within a specialised setting (17, 18). Regardless of the timing of
surgery however, eligible patients should be directed towards
specialised ovarian cancer centres where they can undergo high
expert surgery to optimise outcomes. Focussed attempts have
been undertaken by the largest gynaecological oncology societies
worldwide (such as the European Society of Gynaecologic
Oncology), to define and establish surgical quality indicators to
homogenise and standardise surgery, towards centralisation of
surgical care (19, 20). Furthermore, patients’ education, coaching
and thorough informed consent about the associated risks and
benefits of surgery are crucial for surgical success and
preparation of patients for their treatment pathway (21).

2.2 Chemotherapy
Given the high proportion of homologous recombination (HR)
deficiencies in HGSOC, treatment development has focused on
targeting DNA repair to exploit these defects therapeutically
(22). The standard-of-care treatment for advanced disease is
conventional platinum-based chemotherapy, usually in
combination with paclitaxel. Platinum treatment induces inter-
and intra-strand DNA cross-linking with subsequent replicative
and transcription arrest in tumour cells (23, 24). This results in
apoptosis in a p53 dependent manner (25). This cross-linking is
particularly lethal in patients with HR deficiency (HRD),
although platinum sensitivity can also occur as a result of
defective nucleotide excision repair (26). Of the platinum
compounds, carboplatin has been shown to be non-inferior to
cisplatin in ovarian cancer but with less toxicity (27, 28), and
thus is preferred in EOC treatment.

Paclitaxel works via a different mechanism and at a different
stage of the cell cycle than platinum compounds. Paclitaxel
inhibits cell division through promoting stable microtubule
assembly during cell division which prevents depolymerisation
and disassembly with subsequent G2/M cell cycle arrest (29, 30)
and apoptosis (31). Taxol-induced apoptosis is independent of
p53 and instead relies on the MAP kinase pathways ERK and
p38 (32).

The combination of carboplatin and paclitaxel has been long
established as first line treatment in EOC, whether in the neo-
adjuvant, adjuvant or palliative setting (33). However, many
patients with advanced disease will subsequently relapse despite
treatment, with the time to relapse a negative prognostic
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indicator for survival and chances of responding to further
platinum-based treatment (34–36). Other chemotherapy agents
have shown some benefit with their use in EOC including
pegylated liposomal doxorubicin (37), topotecan (38) and
trabectedin (39). However, given the modest benefits observed
with these chemotherapeutic agents, further research has
therefore been conducted into other treatments to improve
survival for EOC patients.

2.3 Targeted Agents
2.3.1 VEGF Inhibitors
Vascular endothelial growth factor (VEGF) plays a key role in
angiogenesis, a vital component of tumour growth and metastasis
(40, 41). Within EOC, VEGF is thought to contribute to
neovascularisation, and the extent of vascularity has been
demonstrated to negatively impact disease-free and overall
survival (42). Furthermore, VEGF also contributes to ascites
production through increased peritoneal permeability (43).

VEGF inhibitors, notably bevacizumab, have been extensively
trialled within EOC in an attempt to therapeutically exploit this
commonly overexpressed pathway. Bevacizumab (an anti-VEGF
monoclonal antibody) was the first targeted therapy approved for
EOC (in addition to fallopian tube and primary peritoneal
cancer). However, its benefit has not been as clear as that seen
with carboplatin and paclitaxel in the first-line setting, with
retrospective subgroup analyses identifying only those patients
with poor prognosis disease as those who benefit significantly
from anti-VEGF treatment (44–46). However, for those with
high-risk disease, it has provided a useful addition to the ovarian
cancer treatment armamentarium, and bevacizumab has since
gained regulatory approval with the European Medicines Agency
and the US Food and Drug Administration. Exact conditions and
evidence for its use are beyond the scope of this article, but the
European Society for Medical Oncology/European Society of
Gynaecological Oncology guidelines (47) provide a
useful overview.

2.3.2 PARP Inhibitors
More recently ovarian cancer treatment has been revolutionised
by the discovery of Poly (ADP-Ribose) Polymerase inhibitors
(PARPi). PARPi exert their action through binding to the
catalytic site of PARP1, preventing its release from DNA and
thereby trapping it in the PARP/DNA nucleoprotein complex
(48–50). The trapped PARP1/DNA nucleoprotein complexes
prevent progression of the DNA replication forks. In cells with
viable homologous recombination, stalled replication forks
would be repaired and restarted by HR in the first instance
(51). However, in cells with defective HR, stalled replication
forks have the potential to degrade into cytotoxic double strand
breaks. This leads to genomic instability and subsequent
apoptosis of the cell (52). PARPi thereby exhibit “synthetic
lethality”. PARPi also result in impaired base excision repair in
the context of single strand breaks, and promotion of other DNA
damage repair mechanism such as non-homologous end-joining
(NHEJ) (53).

BRCA proteins are vital to achieve successful HR, and thus
PARP inhibition can exploit synthetic lethality in patients with
Frontiers in Oncology | www.frontiersin.org 3
homozygous BRCA mutations. PARPi are also involved in the
protection of stalled replication forks and are likely to have
further reaching effects given the roles of PARP1 and PARP2 in
transcription, apoptosis and immune function (51). In addition,
some patients without germline or somatic BRCAmutations also
receive benefit from PARP inhibition consistent with the high
prevalence of HRD seen in ovarian cancer (6).

Several PARPi have now been licensed following success in
advanced EOC in both first line (54, 55) and relapsed settings
(56–58), and they now form an integral part of ovarian cancer
treatment. Niraparib has demonstrated benefit irrespective of the
presence of proven homologous recombination deficiency (55)
indicating that further understanding of the complexities of EOC
and PARPi is still required.

2.4 Resistance to Treatment
However, not all patients will respond to treatment [up to 25% of
patients have platinum refractory disease at presentation (59)],
and identifying those patients who will benefit from platinum-
based chemotherapy and/or PARPi is difficult and remains a
significant unmet clinical need. Additionally, even patients with
BRCA1/2 mutations who have initially responded to platinum-
based chemotherapy or PARPi invariably develop drug
resistance through a variety of mechanisms. In BRCA1/2
mutated tumours treated with platinum-based compounds or
PARPi, resistance occurs most commonly by secondary
reversion mutations in BRCA1/2 that result in restoration of
the open reading frame and a degree of HR function (60–64).
Other mechanisms include loss of PARP1 expression (65), loss of
BRCA1 methylation (66), restoration of HR through inactivation
of DNA repair proteins REV 7 (67) or 53BP1 (68) or initiation of
drug efflux (60).

Whilst our understanding of potential resistance mechanisms
has improved, the significant genetic diversity of this disease and
the variability in treatment responses means that reliable
methods are required to identify which patients are likely to
benefit from particular treatments. In addition, models that
accurately mimic the in vivo tumour treatment response are
needed for further exploration of the possible indicators of
resistance as well as evaluation of future treatment options and
biomarkers of response.
3 OVARIAN CANCER MODELS

3.1 2D EOC Cell Lines
2D cell monolayers comprise primary tumour cell cultures and
immortalised cell lines. Primary cell cultures are formed from the
mechanical dissociation of tumour cells, or from isolation and
culture from ascites (69). They more closely resemble the native
tumour but are limited by their finite lifespan, permitting sub-
culturing for only a few months at most (69). Secondary
immortalized cell lines can arise from primary cell cultures,
either spontaneously or through induced transformation to
overcome senescence, and form a pure, uncontaminated
population of tumour cells that possess limitless replicative
potential (69). Cell lines are still widely used in high
March 2022 | Volume 12 | Article 837233
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throughput drug screening for preclinical drug development and
have been shown to reflect the genomic diversity of their
respective tumours (70, 71) with genotypic and phenotypic
properties (such as copy number variants (70), mutations (71),
gene (72) and protein (73) expression profiles) of a number of
different cell lines well characterised.

However, generation of cell lines, whether primary or
immortalised, can be time consuming and difficult to establish
- for example, only 1 primary culture out of 156 ovarian tumour
cultures spontaneously immortalised in one study (74), or
multiple steps (e.g. selective trypsinisation) are required to
generate a culture of pure tumour cells (75). Cell lines have
little native tissue architecture as a function of their culture as a
2D monolayer of cells, but also endogenous cytokines and other
cell signalling molecules are absent (76). Importantly they lack
interaction with other cell types, although it is possible to co-
culture with e.g. cancer associated fibroblasts (77) or immune
cells such as macrophages (78), which form a key aspect of their
behaviour in vivo. It is important to recognise also that any
secondary cell line that has arisen in ex vivo culture may not
represent a true clonal outgrowth that could have arisen in vivo,
rather a sub-clone that has adapted particularly well to cell
culture conditions.

Furthermore with increasing passages, cell lines often change
in culture due to the development of an in vitro phenotype with
genetic drift and new genetic variations not observed in the
original tumour arising (76), along with a loss of gene expression
in key cancer signalling pathways (79). Such alterations have
been corroborated with gene expression analyses (80, 81). This
clonal selection can result in homogeneous cell lines with little or
no genotypic or phenotypic resemblance to the original tissue,
particularly important given the intra-tumoural heterogeneity
present in many cancers, notably HGSOC (82). This can lead to
an unreliable or unpredictable model that does not accurately
represent in vivo behaviour. Extensive profiling studies of several
well-known EOC cell line models in recent years have
demonstrated that certain commonly used lines purported to
be particular histological subtypes of ovarian cancer, were found
to have different histologies from that previously reported
(83, 84).

Cell lines also are susceptible to factors (e.g. cell density,
media change) that can influence cell metabolism, which can
have a knock-on effect on cellular responses to drug treatments
(85). Therefore, whilst cell lines continue to be essential for the
establishment of preliminary efficacy, correlation with in vivo
responses is difficult. While attempts have been made to use
primary cell cultures from fresh tumour tissues to personalise
tumour cell cultures rather than immortalised cell lines, extended
passaging of primary cells can frequently lead to cellular
senescence and/or rapid accumulation of chromosomal
instability with changes in cell morphology and subsequent cell
death (86, 87).

3.2 3D EOC Models
3.2.1 Spheroids
Spheroids were initially described in 1971 following culture of
cancer cell lines in non-adherent conditions (88). They are three-
Frontiers in Oncology | www.frontiersin.org 4
dimensional multicellular aggregates of tumour cells that can be
formed from immortalised cell lines or primary cells and
generated with or without a matrix scaffold. Spheroids can be
formed from single cells or aggregates of cells, and in general
those cells with stem cell-like properties are enriched in spheroid
culture in the presence of growth supplements (89).

Use of spheroids as a culture model in EOC is inherently
attractive as they are commonly found in ascites (90), and there
are similarities observed between spheroids and the EOC cell
aggregation in ascites (89, 90). Use of ascitic fluid does have its
limitations compared to use of solid tissue e.g., insufficient
cellular material for analysis or unavoidable selection of cells
during the filtration process with removal of TME components.
However, it can be easy to access and also collected numerous
times as a therapeutic procedure for patients whilst also
potentially permitting contemporaneous sensitivity and
resistance analysis.

Spheroids have also been developed from EOC tumours (91,
92) and were largely used for drug sensitivity and resistance
analyses given the fact that malignant cells with a stem cell-like
phenotype are thought to be responsible for drug resistance (93).
Spheroids can also be used in patient derived xenograft (PDX)
models. However, they can be difficult to generate, and normal
epithelial cells do not grow well in spheroid culture thereby
precluding any platform control comparisons (89). They also
lack the organ specific complexity seen in patient derived
organoids (PDOs) (94). Short-term PDOs have however been
successfully grown from ovarian multicellular spheroids (95).

3.2.2 Patient Derived Organoids (PDOs)
PDOs are organ specific 3D structures derived from primary
tumour cells or human stem cells, that have now been established
for EOC (10, 96–101). They are quicker, cheaper and easier to
generate than PDX mouse models (96) and have been shown to
have more accurate genotype–drug sensitivity correlations than
seen with 2D cultures (97). They require less starting tumour
material than PDX models and have a higher success rate for
propagation (10). Compared to spheroids, PDOs have a higher
degree of complexity, display a greater resemblance to the organ
from which they originate, and permit growth of normal and
pre-cancerous cells (89).

PDO technology lies in the use of a combination of growth
factors and small molecules used in combination with a
basement membrane mimic (e.g., basement membrane extract
such as Matrigel) (98) in an attempt to represent a long-term
growth environment. PDOs permit evaluation of clonal
heterogeneity in tumours (96) and the rapid timeframe of
generation results in less ex vivo selection than that seen in cell
lines or PDX models. They are relatively easy to manipulate and
generate functional assays on which to test drug treatments. A
summary of the advantages and disadvantages of different EOC
models is presented in Table 1, and the potential uses of PDOs
and explants is presented in Figure 1.

Improvements on the original organoid methodology have
also been attempted e.g. use of a mini ring method in comparison
to traditional drop seeding, to quickly generate organoids from a
small number of cells to use for a rapid turnaround for high
March 2022 | Volume 12 | Article 837233
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throughput drug screening (102), though this approach has not
yet been widely adopted. Further advances in organoid
applications are discussed in section 5, as well as demonstrated
in Figure 2.

3.2.3 Patient Derived Xenografts (PDX)
PDX models have been established in a variety of different cancer
types including EOC (103). PDX models are generated from the
injection of tumour cells or tissue into immunocompromised or
Frontiers in Oncology | www.frontiersin.org 5
humanised mice. This can be done heterotopically (usually
subcutaneously for ease of measurement) or orthotopically
following dissection +/- digestion of the original tumour.
Alternatively, cell lines can be used for generation of xenografts.
Whilst subcutaneous administration is often favoured due to its
ease, it is regarded as inferior to orthotopic transplantation in
terms of clinical correlation, metastatic potential and TME
similarity to host tumour (104). Intraperitoneal PDX models
have also been established with favourable engraftment success
TABLE 1 | Advantages and disadvantages of different Ovarian Cancer 3D models.

Model type Advantages Disadvantages

Spheroid - Can be formed from immortalised cell lines

- Long term expansion possible

- Low-High throughput drug screening

- Similar genomics/phenotypes to primary tumour if established with primary
cells

- 3D culture more accurately representing in vivo conditions

- Can be genetically manipulated

- Can be transplanted into PDX models

- Facilitate cell:cell and cell:matrix interactions

- Promote expression of stemness transcriptional factors

- No TME

- Specific spheroid model for a particular tissue/organ required
which can be time consuming to establish

- Diffusion gradient with increased spheroid size with hypoxic/
nutrient deficient core

- Less organ specificity and complexity than organoids

- No stromal interactions

PDX Model - In vivo

- Re-capitulation of TME

- High heterogeneity possible

- Availability of drug sensitive and resistance models

- Can assess dose limiting organ toxicity

- Adaption to murine environment

- Time consuming, costly, labour intensive and ethical issues

- Variable success rate – more aggressive tumours transplant
better

- Difficult genetic manipulation

- Only low throughput drug screening

Organoid - Long term expansion possible

- Low-High throughput drug screening

- Similar genomics/phenotypes to primary tumour

- Organ specificity

- Can be genetically manipulated

- Short timeframe of generation once model generated

- 3D culture more accurately representing in vivo conditions than immortalised
spheroids

- Facilitate cell:cell and cell:matrix interactions

- Suitable for different tissue subtypes, and can grow healthy or malignant
tissue

- Can be transplanted into PDX models

- Promote expression of stemness transcriptional factors

- Rely on self-organisation capabilities of cancer cells

- No stromal interaction, though some co-cultures possible

- Accumulation of mutations with increasing passages

- Specific organoid model required for a particular tissue/organ
which can be time consuming to establish

- Diffusion gradient with increased organoid size with hypoxic/
nutrient deficient core

- Difficult to re-create some aspects of the TME such as
mechanical stress and interstitial fluid flow

- Variable derivation rate

Tumour
Explants

- Retain tissue architecture with majority of TME components represented

- Permits evaluation of tumour cell behaviour within their own ECM and
surrounding microenvironment

- Short generation time and fast readout of results

- Low-High throughput drug screening

- Suitable for different cancer types

- Assays can be performed on factors released into growth media

- No self-renewing capabilities – long term expansion not possible

- Require reasonable amount of tumour tissue to generate
successfully

- Practical difficulties with tumour slicing – success rate tumour
and operator dependent

- Short duration of cell viability

Organotypic
Models

- Can aid understanding of tissue invasion and metastasis in HGSOC

- Incorporates some TME components with more recent models incorporating
more diverse components

- Self-renewing capabilities

- Facilitate cell:cell and cell:matrix interactions

- High throughput drug screening possible

-

- High throughput drug screening possible

- Not all TME elements incorporated

- Time consuming to generate

- Rely on an artificial ECM as with other models

-
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rates (103), although orthotopic injection is still considered the
gold standard for modelling HGSOC (104).

PDXmodels more accurately represent the three-dimensional
TME than cell line xenografts by better retaining tumour
architecture and containing components of the original
tumour stroma, vasculature and immune cells (98). They have
been shown to correlate morphologically and histologically with
original tumours (105), can exhibit corresponding pathological
single nucleotide polymorphisms (106) and exhibit comparable
gene expression profiles (107).

However, generation of PDXs generally require a significant
amount of surgical specimen and have limited engraftment
success rates which are variable and tumour specific (108).
They are also time consuming, taking up to 8 months to
develop (109), with limited capability for extensive testing of
different drug therapies. In some cases, this timeframe may be
beyond that of the patient’s prognosis. PDX models are not
Frontiers in Oncology | www.frontiersin.org 6
suited for genetic manipulation or large-scale drug screening and
undergo mouse specific tumour evolution that can lead to
fundamental differences genotypically and phenotypically
from the original tumour (110, 111). For example, increasing
number of PDX passages has been shown to lead to increased
accumulation of mutations and higher growth rates of engrafted
tumour, with tumour grade correlated with increasing PDX
passage number, suggesting clonal selection (112). Human
stroma also becomes replaced with mouse stroma (113)
thereby reducing the in vivo similarity with the tumour-TME
interface as well as differences in pharmacodynamics and
pharmacokinetics between human and mouse (111). Mouse
fibroblasts may even outgrow co-injected CAFs which play a
significant role in tumour growth and progression (114).

In addition, the type of optical imaging required in PDX
models presents additional complications and cost.
Bioluminescence imaging requires genetic manipulation of
cancer cells to incorporate bioluminescent gene expression
with further selection required of expressing cells (104, 115).
CT/PET-CT is time consuming, expensive and low throughput
(104). However, alternative fluorescence imaging methods have
been developed such as fluorine-18-labelled trimethylacetate-
based radiotracer to aid in vivo tumour visualisation (116).

3.2.4 Tumour Slices/Explants
Primary tumour explant or slice cultures are generated directly
from freshly resected tumours. As such they maintain tissue
architecture and spatial organisation, much of the TME, and can
depict the inherent intra-tumoural heterogeneity of the tumour
(117, 118). This permits evaluation of tumour cell behaviour
within their own ECM and surrounding microenvironment
(119). Fluorescence-based and live multiplex imaging of
explants can also enable visualisation of the abundance of
TME components (such as cancer cells, immune cells, blood
and lymphatic vasculature) in situ. Explants have demonstrated
representative cellular populations compared to in vivo tumour,
and also alteration in the abundance and phenotype of immune
cells in response to cytokine stimulation and immune checkpoint
inhibition (119). This ability to accurately represent the immune
aspect of the TME is important as immunotherapy requires an
intact TME to function (120)
FIGURE 1 | Potential uses of patient derived organoids and tumour slices in ovarian cancer research.
FIGURE 2 | Advances in patient derived organoid technology.
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Furthermore, explant cultures can be generated quickly with
minimal manipulation of the tissue beyond dissection and
culture, and therefore drug sensitivity and resistance assays can
be assimilated and analysed with minimal delay. Such drug
screening can be medium-high throughput providing sufficient
sample size and can generate a personalised library of treatments
for patients against which their cancer has been tested. Explant
cultures can also be used for other cytotoxicity assays (such as
LDH or MTS) through their measurement of their activity in the
conditioned media (120–122).

Historically however there have been issues with the short
duration of cell viability [likely as a consequence of absent
functional vasculature (123)] and the lack of standardised and
comparable readouts. Explants generally require a reasonable
amount of tumour sample and are not self-renewing like PDOs.
This means they only represent the drug sensitivity and
resistance at a single moment in time and any subsequent drug
sensitivity and resistance testing (DSRT) to the original
treatment would have to be carried out on a fresh biopsy sample.

However new advances in the field of explant technology are
being developed, some of which have shown promising results
with good clinical correlation, such as the CANscript and
Curesponse™ platforms (124, 125). These have demonstrated
explants to be a fast, reliable platform for drug testing that
accurately represents in vivo tumour response. Explants have
also demonstrated the ability to evaluate underlying treatment
resistance mechanisms (126). Both models use tumour explants
or slices from fresh tumours that have been sliced and cultured in
a media or matrix in order to obtain a quantitative score
following drug treatment based on various parameters (such as
pathological and morphological analysis, cell proliferation, cell
viability and cell death). Such scores can then predict response to
commonly used therapeutics and have shown good sensitivity
and specificity in solid tumours (124, 125). A clinical trial further
evaluating the sensitivity and specificity of the Curesponse™

model [Ex-Vivo Organ Culture (EVOC)] is due to open soon
(NCT04599608), with a view to progression to a subsequent
phase II trial of EVOC predicted therapy versus physician
choice if successful. If this accurately reflects in vivo tumour
dynamics, this could further progress the next generation of
personalised medicine.

Other techniques have utilised dynamic, agitation-based
culture systems to improve explant perfusion and thus viability
(127), enabling thicker slices to be cut comprising more of the
TME. Such methods also increase explant longevity. Extensive
validation of these methods as well as direct comparison with
other cancer models is awaited.

3.2.5 Organotypic Omental Models
Given the omentum is a common site for ovarian cancer
metastases, 3D models have been developed attempting to
recreate the omental microenvironment present in vivo to
further understanding of cancer adhesion and invasion, as well
as provide models for high throughput drug screening (128).
This model involves use of human primary mesothelial cells and
fibroblasts from healthy omentum obtained during surgery,
embedded in an extracellular matrix of collagen. Primary
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ovarian cancer cells or immortalised ovarian cell lines are then
added to recreate the metastatic niche (128).

This has provided a useful tool for understanding the
mechanistic processes underlying early ovarian cancer
metastasis (129–132) as well as the important role that
omental mesothelial cells and fibroblasts play in this process
(128). High throughput drug screening with this method has
been shown to correlate with in vivo efficacy in mouse models
(133, 134) as well as highlighting the discrepancy between 2D
and 3D models for drug screening and thus the importance of
inclusion of TME components. This model has also subsequently
been used to identify novel compounds as potential future
therapeutic strategies (135). However it is important to note
that this model does not contain other aspects of the TME such
as vasculature, endothelial cells, and immune cells, and as with
other 3D models relies on an artificial ECM (136).

A multi-cellular omental model has been recently developed
incorporating 4 different cell types (HGSOC cell lines, primary
human mesothelial cells, adipocytes and fibroblasts) which has
dissected the role platelets play in HGSOCmetastases, and is also
likely to permit further evaluation of this metastatic niche (137).
Other attempts to incorporate more of the TME in 3D models
include the production of a hybrid 3D system (in this case in
breast cancer) that comprises mammary epithelial cells in
conjunction with fibroblasts and endothelial cells embedded on
a porous scaffold (138). This method may help better reflect in
vivo angiogenesis and thus improve on recreating tumour-
stroma interactions. However widespread use of this model for
high throughput drug screening has not yet been attempted.
4 RESEARCH POTENTIAL OF PRE-
CLINICAL 3D MODELS FOR BIOMARKER
AND THERAPEUTIC EVALUATION

The large volume of pre-clinical models available for ovarian
cancer have already yielded significant diagnostic and
therapeutic advances. However, despite this, high relapse rates
remain for patients with advanced HGSOC, with treatment
resistance a common occurrence and thus there is a significant
unmet need and demand for improvement. Out of the current
available models, PDOs have been recognised to have significant
potential for further investigation of EOC behaviour and
resistance due to their organ specificity, high concordance with
in vivo tumour genomics and applicability for drug testing (10,
96, 98). Tumour explant models, although they lack the ability
for extended passaging, permit immediate low to high
throughput drug screening on an individualised level which is
likely to contribute to further advances in personalised
therapeutics for patients.

4.1 3D Models Retain Features of Genomic
Heterogeneity
A significant challenge with HGSOC treatment is the intrinsic
genetic instability and diversity present. For a research platform
to be effective and representative of the in vivo tumour, it is
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important that the models used reflect this genomic instability
and intra-tumoural heterogeneity. Previous studies using PDOs
in other cancers (139, 140) have highlighted the concerns of
specific tumour clone selection ex vivo as a result of the growth
factors required for PDO production, as well as the time required
for generation.

Short-term patient derived HGSOC organoid cultures (7-10
days ex vivo growth) have been shown to have high
morphological, molecular and genetic homology with the
original tumour (96). More specifically, a median of 98.2% of
mutations that had been identified in the primary tumours were
found in the matched tumour organoid line, and 98.8% of
mutations observed in the organoid lines were also present in
the parent tumour (96). Similar genomic allelic imbalances and
CNAs were also observed between parent tumours and PDOs.
Whole exome sequencing (WES) did not show a significant
accumulation of somatic mutations in the PDOs, nor did early
cultures exhibit changes in driver mutations. However, this study
only assessed short-term PDO development rather than long-
term models. Interestingly this work showed that BRCA1/2 or
Fanconi anaemia pathway mutations were not pre-requisites or
indeed required for HR deficiency and PARPi sensitivity (96).
Additionally, it highlighted the importance of stalled replication
fork protection defects in treatment sensitivity and response.
This work also demonstrated that PDOs derived from patient
tumours, in this case collected at recurrence, can reflect the
genomic intra-tumoural heterogeneity exhibited in disseminated
HGSOC (96).

Generation of long term, stable HGSOC PDOs has been more
challenging. This has been achieved with varying degrees of
success in a number of studies (10, 98, 100, 101), although
consistently EOC PDOs have been shown to accurately represent
the histology and intra-tumoural heterogeneity of the original
tumour tissue. This included one study where PDOs were
passaged over 30 times with whole genome sequencing
showing maintained CNAs (98). DNA methylation analysis
showed similarly that the epigenetic profile was maintained in
PDOs even after extended passaging. However, accumulation of
mutations with generation of an “in vitro” phenotype remains a
concern with TP53 loss of heterozygosity observed and also new
somatic nucleotide variants emerging with increased passaging
(98–100).

In a study by Nanki et al., seven PDO lines were generated
from different EOC subtypes (HGSOC, clear cell, endometrioid)
with success rates of 80% (10). Targeted capture sequencing of
1,053 cancer-related genes demonstrated that 59.5% of the
primary tumour genomic characteristics were shared between
primary tumours and PDOs which is lower than that seen with
previous studies (96); this was thought to be due to the fact the
sequencing was performed after a higher number of passages
compared to the Hill et al. study. Importantly key DNA variants
for tumorigenesis such as BRCA1/2, MLH1, TP53, ARID1A and
PIK3CA were all maintained. 26.7% of the variants identified
were seen solely in the tumour and 13.8% were identified only in
the organoid lines (10), implying a degree of in vitro selection as
seen with other studies. Indeed, some wild type alleles such as
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RB1 were noted to have been lost during PDO development.
However overall variant allele frequency and CNAs were similar
between primary tumours and PDOs.

4.2 Models for Evaluation of Predictive
Biomarkers
Predictive biomarkers of treatment response are very valuable to
assess clinical benefit in patients from treatments and remains an
unmet need in ovarian cancer.

Most patients with BRCA1/2 mutations frequently respond
well to platinum-based chemotherapy and PARP inhibition,
however some patients will develop early resistance (141, 142).
Cancers which demonstrate similarities in drug response to
BRCA mutant cancers, frequently possessing mutations in
other homologous recombination genes, are said to exhibit a
“BRCAness” phenotype. The presence of mutations in one or
more homologous recombination genes (whether BRCA1/2 or
otherwise) has been shown to predict responsiveness to platinum
based chemotherapy (9) and PARPi (57, 58). Different methods
for evaluating HRD have been developed, which can assess
germline or somatic mutations in HR repair genes, or measure
the genomic scar or signature that has occurred as a consequence
of HRD [calculated on the extent of loss of heterozygosity, SNVs,
insertion-deletion mutations and telomeric allelic imbalance (e.g.
myChoice® CDx, Myriad Genetics)] (96, 143). More recent
techniques have looked at the proficiency of HR by virtue of
the assembly of RAD51 foci at sites of DNA damage such as the
Repair Capacity (RECAP) test (144, 145). This test, initially
developed to assess HRD in breast cancer, was validated using
tumour slices and has demonstrated utility now in ovarian
cancer (144), highlighting the flexibility and utility of tumour
slices, and the potential extent of their use as both a diagnostic as
well as therapeutic biomarker. Functional HR status has also
been assessed in PDOs using the RECAP test and has been
shown to correlate with PDO drug sensitivity (e.g. platinum
chemotherapy, PARPi) (10, 98) and also with clinical response
(96). However, as observed with in vivo studies, merely the
presence of HRD did not guarantee platinum or PARPi
responsiveness (96) indicating greater complexity warranting
further investigation.

Whilst a number of different prognostic and predictive
biomarkers for ovarian cancer have been explored (146),
sensitive and specific biomarkers that could permit early stage
diagnosis, or else that could clearly delineate treatment
responders from non-responders are still awaited. However,
the availability of 3D models, such as explants and PDOs, that
accurately represent in vivo tumour is anticipated to further
development in this field.

4.3 3D EOC Models of Drug Sensitivity
and Resistance
The heterogeneity in ovarian cancer genotypes and phenotypes,
as well as differential patient responses to treatment means the
ability to reliably test different drugs ex vivo in a way that
accurately depicts the in vivo environment is a key focus in
drug development.
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EOC PDOs have undergone drug sensitivity and resistance
testing (DSRT) in a number of different studies. Short-term
PDOs have been tested against different compounds including
olaparib, carboplatin, gemcitabine, paclitaxel, doxorubicin, the
CHK1 inhibitor prexasertib and ATR inhibitor VE-822, with
correlations observed between PDO resistance/sensitivity and in
vivo response (96). Additionally, correlations between PARPi
resistance and restoration of HR function were seen, consistent
with PARPi resistance clinically (96). This study also highlighted
the correlation between replication fork instability and
carboplatin, prexasertib and VE-822 sensitivity, and that
CHK1 inhibition in combination with carboplatin or
gemcitabine could promote replication fork instability,
providing a rationale for potential combination of these
agents clinically.

Kopper et al. also showed that PDOs can be used for DSRT,
including for different histological subtypes (98). They
demonstrated variable sensitivity to commonly used
chemotherapies (carboplatin and paclitaxel) amongst other
drug treatments (98). Lines were also tested for PARPi
sensitivity, and this was shown to correlate with HRD (98).
Additional studies have been performed by different groups to
assess organoid sensitivity, for example Maenhoudt et al. treated
EOC PDOs with a range of conventional chemotherapy agents
(carboplatin, paclitaxel, doxorubicin, gemcitabine) and
demonstrated heterogeneity in responses between different
PDO lines, though without in vivo comparison (101). Nanki
et al. used 23 FDA approved drugs for PDO DSRT and noted
clinical correlations between PDOs and in vivo responses (10).
Maru et al. used organoid-derived spheroids to demonstrate
responses to carboplatin and paclitaxel, though did not perform
any in vivo comparisons with patient response data (100).

Whilst previous EOC PDO–clinical correlations were largely
anecdotal, more formal analyses have demonstrated statistical
significance between organoid response to treatments and
clinical response, as determined by histological, radiological
and biochemical markers (99). Interestingly in this study intra-
patient drug response heterogeneity was also seen in a small
number of PDO lines derived from multiple tumour samples
from the same patient. In some cases, this correlated to genetic
differences, but in other cases no clear cause for this drug
response heterogeneity could be found (99).

In addition to treatment response, PDOs have now been used
to further study treatment resistance in EOC. Cisplatin-sensitive
and cisplatin-resistant organoid lines were established, with RNA
sequencing confirming that upregulation of the serine/threonine
kinase Aurora-A conveyed cisplatin resistance (147). This was
shown to be via the SOX8/FOXK1 pathway resulting in
suppression of cell senescence and increased glycolysis. This
work could uncover new therapeutic avenues to explore in the
frequent setting of treatment resistance in HGSOC treatment.

Ex vivo explant cultures have also been established as models
for DSRT in a number of different cancers (148–150) including
EOC (127, 151). Ricciardelli et al. used cryopreserved ovarian
cancer tissue for their model and cultured predominantly EOC
explants ex vivo on a gelatine sponge (151). They demonstrated
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preserved histological features in the cryopreserved tissue
(compared to freshly fixed tissue) in addition to preserved
tissue architecture and B-lymphocyte populations (as
determined by CD45 immunohistochemistry) which was
retained following 72 hours of culture. They also observed
differential carboplatin sensitivities in platinum resistant/
sensitive tumours, as well as demonstrating an increase in
apoptosis when carboplatin was combined with a hyaluronan
inhibitor (not currently in clinical use for ovarian cancer) (151).

Abreu et al. used a novel agitation-based culture to prolong
tissue viability of fresh tumour explants of different ovarian
cancer histologies, demonstrating similar histological features
following prolonged culture (up to 30 days) as well as retained
CD4 and CD8 T cell populations (127). Similarly, the ratio of
epithelial cells to fibroblasts was also retained following culture.
They also demonstrated response to commonly used
chemotherapeutics, as indicated by reazurin reduction capacity.
These studies highlight the strengths of explant cultures, notably
their ability to retain tissue architecture and cell populations
(i.e., the tumour microenvironment) on which DSRT can
be performed.

4.4 Limitations to Organoid and
Explant Cultures
Although PDOs have shown to accurately model tumour growth,
they are largely composed of neoplastic epithelium, and lack a
fully accurate representation of in vivo stroma, vasculature and
immune cells, which play an important role in tumour growth
and dissemination. The tumour microenvironment is an
important facilitator in tumour growth and treatment
response. Additionally, the availability of resources such as
nutrients and oxygen contribute to intra-tumoural
heterogeneity (152, 153). Thus, whilst they possess good 3D
architecture, PDX models or humanized mice are considered to
be better for assessing stromal or immune interactions than
PDOs (154).

As mentioned in studies discussed above, the derivation rate
of organoids is variable which could limit clinical applicability.
There is also batch-to-batch variability in Matrigel or similar
BMEs’ composition (155). Matrigel is produced from mouse
tumour lines which could hamper in vivo comparisons, and also
impair drug penetration with subsequent detrimental effects on
the utility of organoids for DSRT (156). In addition, human
organoids can display more varied growth compared to murine
organoids that correlates to the grade of the tumour histology, as
well as the condition of the tumour biopsy (157). This can lead to
differential amounts of necrosis present and thus variable
correlations with in vivo treatment response.

Explants are limited by their short duration of cell viability
[although methods such as the agitation-based culture system by
Abreu et al. are trying to circumvent this (127)]. A reasonable
quantity of tumour sample is generally required for generation of
explant cultures, and they are not self-renewing like PDOs, so the
explant cultures only represent a snapshot of a tumour at one
timepoint. Practical complications in slicing can also arise as a
result of inherent tumour heterogeneity and slicing and
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cultivation itself can also induce changes in biomarker
expression and stress pathways (117). A full representation of
the advantages and disadvantages of different tissue models is
shown in Table 1.
5 NOVEL TECHNOLOGIES IN 3D MODELS

5.1 Advances in Organoid Technology
5.1.1 Microfluidic Based Models
Ascitic fluid accumulation subjects ovarian cancer cells to shear
stress which has been shown to affect ovarian cancer progression
through increased epithelial-mesenchymal transition (158, 159),
expansion of cancer stem cells (159) and peritoneal spreading
(160). Microfluidic models that could mimic the in vivo
environment have thus generated significant interest.
Microfluidic devices (tumour-on-chip devices) may only
require small amounts of tissue (~100,000 cells, comparable to
that obtained from a small fine needle aspirate) and reagents
(161) and they can also incorporate stroma (162, 163), vascular
(164) and immune components (165, 166). As such they are
considered to potentially possess better spatial organisation of
the TME than other 3D models.

Microfluidic based spheroid models can be generated in
different ways including via the hanging drop method (167),
droplet generation devices (168), hydrodynamic traps (169) or
microwells (161, 170). 3D models have now been developed
using ovarian cancer spheroids (161, 171) that theoretically
generate a more physiological environment for ovarian cancer
cells undergoing metastasis. In particular, spheroids grown from
PDX ovarian cancer murine models in a microfluidic platform
were shown to be superior to those grown in Matrigel or
standard culture in terms of spheroid yield, uniformity and
viability, phenotypic gene expression and proliferation (161).

However there are limitations such as the inability to culture
healthy epithelium thereby preventing control comparison or the
diffusion of nutrients limiting spheroid size (172). Additionally,
there are limited possibilities for in situ probing of the dynamic
changes occurring within the ECM as microfluidic systems are
often in a closed set up (173).

5.1.2 Alternative Extracellular Matrices
Micro-patterned 3D tumour platforms use natural or synthetic
hydrogels in micro-engineered models to further investigate the
interactions within the TME (173). These techniques allow
generation of spatially organised cellular constructs that permit
localisation of target cells (e.g., fibroblasts) for study of their role
in tumorigenesis (174, 175). They also permit manipulation of
matrix stiffness within the model, which is not possible with
conventional Matrigel or similar basement membrane extract
matrices (175, 176), whilst avoiding the batch variability and
undefined composition associated with Matrigel. However,
compared to natural hydrogels, synthetic hydrogels require
supplementation with factors that upregulate certain cellular
process e.g. growth and adhesion (177).

Synthetic hydrogel models have demonstrated effective co-
culture of different TME components to enable intercellular
Frontiers in Oncology | www.frontiersin.org 10
network formation (176). In this particular model, hydrogels
were engineered with different peptide/protein combinations in
order to identify the optimum combination for ovarian cancer
spheroid growth, as well as that of human umbilical vein
endothelial cells and human mesenchymal stem cells. This
study highlighted the versatility of such methods, although
issues with scalability and cost need to be resolved. Different
hydrogels have also been explored [e.g. polyethylene glycol (178)
or Gelatine methacrylamide-based hydrogels (179)] which have
shown comparable results to Matrigel. Drug treatment response
assays have also been performed (176, 179) showing the different
applications of these matrices, though they are not yet in
widespread use.

Decellularized extracellular matrices (ECMs) have also
recently been investigated as a 3D model for cancer, following
their use in tissue engineering and tissue regeneration (180).
Decellularized ECMs can be generated from both healthy and
malignant tissue and have been shown to maintain many of the
cytokines and growth factors that were present in the original
tissue (181). Decellularized ECMs have demonstrated utility as a
clinical model in colorectal, lung and breast cancer (182–184)
although as yet are not in widespread use and to our knowledge
have not been evaluated in EOC.

5.1.3 In Vitro Incorporation of Functioning TME
Given its important clinical implications, there have been
attempts to generate an in vitro immune interaction with
organoids. Jenkins et al. showed that the PD-1/PDL-1
interaction could be simulated in spheroid models of different
solid tumours (185), though this was lacking tumour immune
specificity. Co-culture of tumour infiltrating lymphocytes (TILs)
with neoplastic epithelium organoids is however difficult,
although in mismatch repair deficient colorectal cancer and
non-small cell lung cancer, tumour organoids have been co-
cultured with peripheral blood lymphocytes as a way of
enrichment for tumour-reactive T cells (186). A different PDO
model with an air-liquid interface has shown the ability to
maintain the tumour-immune microenvironment, notably
PDL-1/PD-1 interactions (157). This model, using melanoma,
renal cell carcinoma and non-small cell lung cancers, was shown
to preserve neoplastic epithelium with endogenous immune and
stromal components, thereby preserving the TIL/tumour cell
interaction. Whether this organoid model can be modified to
incorporate peripheral immune components as in other studies
(186) remains to be seen.

This is significant clinically for the investigation of tumour
sensitivity and resistance to checkpoint inhibitors as well as the
ability to produce patient specific T cell cultures (theoretically for
adoptive T cell transfer). However, these studies were
predominantly demonstrated in tumour types with a high
mutational burden and thus it may not be feasible to perform
in cancers like OC which typically is associated with a low
mutational burden. Whilst it may not have a high mutational
burden, EOC is viewed as potentially immunoreactive given the
association seen between clinical outcome and the presence of
tumour infiltrating lymphocytes (187). Strategies to convert
tumours that are immune-desert or immune-excluded into
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immune-inflamed phenotypes that respond to immunotherapy
have been proposed (188). However so far immunotherapy has
not yielded significant benefit in OC in randomised phase III
trials (189). 3D models that can reliably simulate interactions
within the TME are therefore a critical unmet need.

Another study focused on functional and single-cell RNA
sequencing profiling on HGSOC organoid-immune cell co-
cultures and identified 3 immune therapy targets in HGSOC
through use of a novel bi-specific antibody (190). This led to
subsequent identification of 2 new potential immune therapies
for HGSOC (a BRD1 inhibitor and a bi-specific anti-PD-1/PD-
L1 antibody) although these are yet to be tested clinically.

Other components of the TME have been incorporated into
co-cultures with EOC 3D models such as fibroblasts (191, 192).
Use of normal fibroblasts in co-culture with ovarian cancer
spheroids has been used as a model for in vitro epithelial-
mesenchymal transition (192), a key step in tumour growth
and metastasis. Furthermore, the presence of fibroblasts in co-
culture with EOC cells resulted in an upregulation of genes that
have been associated with tumour formation, angiogenesis and
metastasis (191). Whilst there was no difference seen in the
chemosensitivity between 3D mono and co-cultures in this study
(191), these studies provide an insight into the supportive role of
fibroblasts in tumour growth and further studies of 3D EOC co-
cultures are warranted. As discussed earlier, other co-cultures
have also incorporated adipocytes in addition to normal
fibroblasts as part of an omental model (137). This study
highlighted the role that platelets play in the production of
particular ECM components that portend an adverse
prognosis, as well as their role in driving malignant invasion.
These co-culture methods are likely to aid re-creation of the
primary and metastatic niche ex vivo which will hopefully lead to
therapeutic advances.

5.2 Additional Applications of 3D Models
Manipulation of fallopian tube organoids with a lentiviral gene
vector or CRISPR/Cas9 mutagenesis has already been used to
generate genotypically different murine HGSOC organoids for
drug testing (193). Subsequent drug testing revealed a
chemotherapy/immunotherapy combination that generated
durable T cell responses in TP53-/-, CCNE1/AKT2
overexpressed and KRAS mutant organoid lines but not in
other lines, thereby highlighting the potential clinical utility of
PDOs in patient drug development and the evaluation of
potential predictive biomarkers.

PDOs have also recently been used to investigate the site of
origin of HGSOC given the differing hypotheses of HGSOC
originating from fallopian tube or ovarian surface epithelium. It
was previously shown that PDOs could be grown from human
fallopian tube epithelial cells, and that stemness and
differentiation was dependent on the Wnt and Notch signalling
pathways (194, 195). Subsequently CRISPR-Cas9 genome editing
was used to introduce mutations in commonly mutated HGSOC
genes (e.g., TP53, BRCA1, PTEN, NF-1) into murine organoids
(196). Both ovarian surface and oviductal (fallopian tube)
epithelium were shown to produce high-grade ovarian
tumours, although oviductal organoids expanded faster and
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had higher tumorigenic potential on transplantation into
immunodeficient mice. Importantly from a clinical perspective,
the two types of epithelia showed differential drug responses
(196). Similar results showing the dualistic origin of HGSOC
were also observed in other murine organoid models following
knockout of TP53 and Rb as wel l as d i fferent ia l
chemosensitivities of fallopian tube vs ovarian surface
epithelium (197).
6 FUTURE CLINICAL PERSPECTIVES

For future clinical implementation of these 3D model systems to
simulate in vivo drug responses, it is imperative that these models
are accurately correlated with in vivo responses. Furthermore, for
uptake as drug testing platforms, they must operate with high
sensitivity and specificity with robust, reliable assay read-outs.
From a PDO perspective, there is likely to be more manipulation
of organoids to re-create clinical scenarios such as treatment
resistance as a way of exploring new therapies or combinations
before use in the clinic. Additionally, ways of better recreating
the TME ex vivo are likely to be researched given the significant
in vivo importance of the TME.

In addition to the clinical perspective, there is also a research
and economic perspective in that the extensive cost involved in
early phase drug testing could be significantly mitigated with
more accurate and clinically relevant in vitro models, with fewer
patients exposed to unnecessary toxicity of early phase trials if
their treatment was unlikely to be beneficial. 3D models could
also reduce the use of mouse models, with ethical, economic and
practical benefits. Many early phase trials are now a basket design
where patients are grouped and then subsequently treated with a
variety of different compounds based on particular biomarkers,
and in vitro testing pre-treatment could help identify which
patients are most likely to derive benefit from particular
treatments. Whilst there is significant clinical utility amongst
EOC and other common cancers, this technology is also likely be
very helpful for rare tumours as low numbers frequently hinder
clinical trial development given the significant numbers required
to recruit. There are already a number of different clinical trials
that are exploring the utility of PDO as models for patients’
treatments (e.g., NCT04555473, NCT04768270) and other
tumour explant trials that are soon to open (e.g. ,
NCT04599608). This is likely to be where the majority of early
phase trials are heading, with benefits for patients, clinicians,
researchers and pharmaceutical companies alike. Whether PDOs
could be used in combination with explants to give the most
representative ex vivo simulation of in vivo response remains to
be evaluated.
7 SUMMARY

Overall, there has been significant progress in the development of
new ex vivomodels in recent years which is likely to significantly
improve research into novel biomarkers and therapeutics. They
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also have the potential to change the way both academic research
and drug development are conducted, whilst also revolutionising
patient treatment pathways to incorporate a new level of
personalisation into the clinic to optimise patient outcomes.

PDOs have been an exciting development that are likely to
play an increasing role in biomarker and therapy development.
The absence of accurate representation of the TME at present
hinders evaluation of an important part of the tumour-treatment
response and there remains a need to improve models to reliably
represent in vivo therapeutic efficacy. Whilst tumour explants
provide a better representation of the TME ex vivo, their use also
has its limitations, notably their short duration of ex vivo viability
and the absence of self-renewing capability.

However, with both commercial and clinical interest focused
on refinement of 3D models, this is likely to be the forefront of
the next generation of individualised treatment assays as well as
contributing to drug development to improve prognoses and
treatment options for this devastating disease.
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