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Objective: To derive and evaluate the association of prostate shape distension
descriptors from T2-weighted MRI (T2WI) with prostate cancer (PCa) biochemical
recurrence (BCR) post-radical prostatectomy (RP) independently and in conjunction
with texture radiomics of PCa.

Methods: This retrospective study comprised 133 PCa patients from two institutions who
underwent 3T-MRI prior to RP and were followed up with PSA measurements for ≥3
years. A 3D shape atlas-based approach was adopted to derive prostate shape
distension descriptors from T2WI, and these descriptors were used to train a random
forest classifier (CS) to predict BCR. Texture radiomics was derived within PCa regions of
interest from T2WI and ADC maps, and another machine learning classifier (CR) was
trained for BCR. An integrated classifier CS+R was then trained using predictions from CS

and CR. These models were trained on D1 (N = 71, 27 BCR+) and evaluated on
independent hold-out set D2 (N = 62, 12 BCR+). CS+R was compared against pre-RP,
post-RP clinical variables, and extant nomograms for BCR-free survival (bFS) at 3 years.

Results: CS+R resulted in a higher AUC (0.75) compared to CR (0.70, p = 0.04) and CS

(0.69, p = 0.01) on D2 in predicting BCR. On univariable analysis, CS+R achieved a higher
hazard ratio (2.89, 95% CI 0.35–12.81, p < 0.01) compared to other pre-RP clinical
variables for bFS. CS+R, pathologic Gleason grade, extraprostatic extension, and positive
surgical margins were associated with bFS (p < 0.05). CS+R resulted in a higher C-index
(0.76 ± 0.06) compared to CAPRA (0.69 ± 0.09, p < 0.01) and Decipher risk (0.59 ± 0.06,
p < 0.01); however, it was comparable to post-RP CAPRA-S (0.75 ± 0.02, p = 0.07).
May 2022 | Volume 12 | Article 8418011

https://www.frontiersin.org/articles/10.3389/fonc.2022.841801/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.841801/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.841801/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.841801/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.841801/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.841801/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:rxs558@case.edu
https://doi.org/10.3389/fonc.2022.841801
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.841801
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.841801&domain=pdf&date_stamp=2022-05-20


Shiradkar et al. Prostate Shape Descriptors from MRI

Frontiers in Oncology | www.frontiersin.org
Conclusions: Radiomic shape descriptors quantifying prostate surface distension
complement texture radiomics of prostate cancer on MRI and result in an improved
association with biochemical recurrence post-radical prostatectomy.
Keywords: magnetic resonance imaging, prostate cancer, retrospective studies, prostatectomy, artificial
intelligence, machine learning
1 INTRODUCTION

An estimated 30%–35% of prostate cancer (PCa) patients
experience biochemical recurrence (BCR) within 10 years post-
radical prostatectomy (RP) (1). The occurrence of BCR is often
found to be associated with metastasis (2) and PCa-specific
mortality (3). Several predictors of BCR have been presented
including pre-treatment CAPRA (4), post-surgical CAPRA-S (5),
and Decipher risk (6). However, these models use invasive or
post-treatment factors, are site dependent, and do not exclusively
capture tumor heterogeneity and morphology. Non-invasive
pre-treatment image-based prediction of BCR-free survival
(bFS) may allow for treatment intensification or closer
surveillance (7).

Multiparametric magnetic resonance imaging (mpMRI) is
now increasingly used for PCa detection, staging, and prediction
of the risk of BCR (8–17). Radiomic texture features provide an
alternative representation for characterizing tumor heterogeneity
and have been shown to improve PCa risk characterization (18–
21) and also prognosticate BCR (22–24). However, they are
susceptible to scanner variations, acquisition protocols, image
artifacts, and non-standardized image intensities (25, 26).

There is evidence to suggest that cancerous lesions tend to
induce mechanical stress in the surrounding tissue (27, 28). In
the prostate, stresses induced by the tumors impact neighboring
benign tissue (29) and cause deformation which may in turn
impact the shape of the prostate capsule. Previous studies (30,
31) explored the idea of quantifying shape distension of the
prostate between more and less aggressive diseases. Rusu et al.
(30) have shown that prostate shape on T2-weighted MRI
(T2WI) was significantly different between patients with and
without cancerous lesions. Ghose et al. (31, 32) have shown that
statistically significant differences in the shape of the prostate
were observed between BCR+ and BCR− patients on T2WI. This
now leads us to the hypothesis that radiomic descriptors that
quantify differential distension of prostate shape may be
associated with BCR outcome post-RP.

In this work, we present a new approach to quantify prostate
distension in terms of radiomic shape descriptors from pre-
treatment T2WI using a 3D shape atlas-based method. We seek
to evaluate the association of these shape descriptors with BCR
post-RP at 3 years. Since radiomic texture features of PCa from
pre-treatment T2WI and apparent diffusion coefficient (ADC)
maps have already been shown to be associated with BCR (17,
22–24), we evaluate the combination of prostate shape and
tumor texture radiomics for their association with bFS.
Additionally, we also sought to evaluate whether radiomic
shape descriptors, which are less dependent on MRI intensities,
2

are possibly more robust and resilient to scanner- and site-
specific variations that could more substantially impact texture-
based descriptors (25, 26). This was done by evaluating our
approach using data from multiple cohorts acquired from two
different sites. We also compared our integrated shape and
texture radiomics approach against routine clinical variables
and extant nomograms for predicting bFS.
2 MATERIALS AND METHODS

2.1 Patient Selection and
Data Characteristics
This retrospective study included patients from two different
institutions (I1 and I2), compliant with HIPAA regulations
and approved by the local IRB, with a waiver of informed
consent. A total of 263 patients from three cohorts (C1–C3)
were identified with biopsy-confirmed PCa who underwent 3T
mpMRI prior to RP. Patient records between 2009 and 2017
were reviewed and included in the study if they 1) underwent
RP without additional therapies, 2) followed up for at least 3
years and had documented BCR (BCR+) defined as two
consecutive readings of prostate-specific antigen (PSA) ≥0.2
ng/ml post-RP [18] or no BCR (BCR−), and 3) had axial T2WI
and ADC maps without acquisition artifacts. N = 133 studies
identified through this process were partitioned into a training
set D1 and independent hold-out validation set D2 as
illustrated in Figure 1. After RP, all patients underwent
periodic follow-up according to established clinical protocol
(3–6 months in the first year and 6–12 months in the
following years). BCR− patients were censored at their last
follow-up date for survival analysis.

Biparametric MRI protocol was used in this study that
included T2WI (in-plane: 0.3 mm, slice thickness: 3 mm, TR/
TE: 3,802–5,151/105–115 ms) and DWI (1.4 mm, 3 mm, 3,751–
4,880/50–74 ms, b-values: 0–2,000 s/mm2) along with ADC
maps acquired via an endo-rectal coil (Achieva, Philips, Best,
Netherlands) in C1, T2WI (0.5 mm, 3 mm, 3,730/121 ms) and
DWI (1.6 mm, 3 mm, 4,700/86 ms, 0–1,500 s/mm2) acquired via
a pelvic-phased array coil (PPAC) (Skyra, Siemens, Erlangen,
Germany) in C2, and T2WI (0.6 mm, 3 mm, 7,200/96 ms) and
DWI (1.2 mm, 3 mm, 7,900/88 ms, 0–1,400 s/mm2) via PPAC
(Skyra, Siemens, Erlangen, Germany). Additional sequences,
such as T1-weighted, dynamic contrast-enhanced (DCE), were
acquired but not analyzed in the current study. Detailed dataset
characteristics are provided in Table 1 and imaging parameters
in Table 2.
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2.2 Image Pre-Processing and
Tumor Segmentation
A board-certified radiologist (10 years of experience in prostate
imaging) reviewed the MRI scans in D1. They used the 3D Slicer
software (33) to delineate prostate capsule and dominant PCa
lesions on T2WI using histopathology template reports from RP
as reference. Prostate and lesion delineation in D2 was performed
by two board-certified radiologists (8 and 10 years of experience
in prostate imaging) in a similar manner and assigned PI-RADS-
v2.1 scores (34).

2.3 Methodology
The pipeline for radiomic prostate shape and lesion texture,
along with their combination to evaluate the association with
BCR, is illustrated in Figure 2. The term surface of interest (SOI)
is used in the context of shape descriptors to describe a region on
the 3D surface, while the region of interest (ROI) is used in the
context of PCa lesions on 2D MRI slices.

2.3.1 Computation of a Consensus Surface of
Interest
Prostate segmentations on T2WI within D1 were co-registered
via rigid registration followed by a deformable registration to
create a 3D shape atlas for the BCR+ and BCR− cohorts. A
spatially contextual SOI of the prostate capsule was uniquely
identified from statistically significant shape differences between
BCR+ and BCR− atlases as described earlier by Ghose et al. (31)
(details in the Supplementary Material). To minimize the effect
of the choice of template in establishing the SOI, the entire
process was repeated N times, each time with a different set of
BCR+ and BCR− atlases generating an SOIi (where I = 1, 2, 3…
N). Here, N was chosen as 27, equal to the number of patients in
BCR+ class of D1. The individual SOIi was again co-registered to
Frontiers in Oncology | www.frontiersin.org 3
a common frame of reference using a rigid transformation. Next,
a consensus SOI (SOIC) was computed as a mean of all the SOIi
and the mean volume was binarized at a threshold of 0.5.

2.3.2 Prostate Shape Distension Features
Differential distension of the prostate capsule for each patient is
quantified using the magnitudes of Gaussian curvature (k) of the
surface and orientation of the surface normal (q, f) at vertices of
the prostate mesh. The Gaussian curvature measures the
intrinsic degree of curvedness of a surface, and positive values
indicate a greater differential expansion at the center, while
negative values indicate expansion at the edges (35). Surface
normal quantifies the local orientation of the surface. These
features (k, q, and f) are meaningful when extracted within the
SOIC that comprises those vertices where statistically significant
shape differences between BCR+ and BCR− prostates were
observed. Further, the SOIC was cropped to include the mid-
gland region alone after mapping it to individual prostate meshes
to minimize the effect of inter-reader variations in prostate
segmentation at the apex and base. The SOIC overlaid onto a
BCR+ and a BCR− prostate is illustrated in Figure 3. Surface
normal orientation (q, f) provides direction of the prostate
distension and surface mean curvature (k) quantifies local
shape deformation, and these were extracted for every vertex
on the mapped SOIC. For each patient, at each vertex, a vector of
k, q, and f was derived and a set of four statistical measures,
namely, mean, standard deviation, skewness, and kurtosis, were
computed resulting in 4 × 3 = 12 radiomic shape descriptors
per patient.

2.3.3 Radiomic Texture Features of Prostate Cancer
A set of 75 radiomic features were extracted on a per-voxel basis
from each of the standardized T2WI and ADC maps within the
FIGURE 1 | Flowchart of patient selection from two different institutions. adjT, adjuvant or neoadjuvant therapy; RP, radical prostatectomy; BCR, biochemical
recurrence; PSA, prostate-specific antigen.
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radiologist-delineated PCa ROIs. These include first- and
second-order statistics, Gabor (36), Laws (37), Haralick (38),
and CoLlAGe (39) features. These features characterize the
underlying tissue heterogeneity and have previously been
shown to be prognostic of BCR (17, 22–24). Four statistics,
namely, mean, standard deviation, skewness, and kurtosis, were
calculated for voxel-wise radiomic feature within each PCa ROI
resulting in 75 × 2 × 4 = 600 radiomic texture descriptors per
patient. Strongly correlated features and unstable features were
eliminated, and mRMR feature selection (40) was employed to
identify a subset of features associated with BCR (details in the
Supplementary Material).
Frontiers in Oncology | www.frontiersin.org 4
2.4 Statistical Analysis and Comparison
A random forest machine learning classifier (CS) with 50 trees
and 5 as the maximum tree depth was trained using prostate
distension features from D1 to predict the binary outcome of
BCR. The random forest classifier was chosen to ensure that
parametric assumptions are not made for the distribution of
shape distension features. A texture radiomics classifier (CR) was
trained in a similar manner as CS.

A linear regression model (CS+R) was trained on predictions
from CS and CR using patients from D1. The trained models (CS,
CR, CS+R) were evaluated using patients from the independent
validation test set D2. Kruskal–Wallis test was employed to assess
TABLE 1 | Summary of the patient characteristics in different cohorts in terms of clinical variables.

Parameter Training D1 Validation D2

Cohort 1 Cohort 2 Cohort 3

N (patients) 71 42 20
N (BCR+) 27 5 8
N (BCR−) 44 37 12
Median age (range), years 59 (47–79) 64 (42–76) 61 (47–86)
Mean PSA (range), ng/ml 10 (1–58) 10.6 (1.8–88.3) 9 (1.2–69.4)
Lesion volume (cm3) 3.93 ± 6.47 3.34 ± 5.13 2.20 ± 5.05
Prostate volume (cm3) 35.65 ± 12.37 38.81 ± 19.04 40.83 ± 16.99
Follow-up (months) 43 ± 28 30 ± 24 33 ± 18
biopsy Gleason Grade Group and RP Gleason Grade Group (N)
1 15 7 3
2 20 27 6
3 8 13 5
4 10 3 4
5 18 6 2

RP pGG
1 6 4 3
2 22 24 8
3 13 15 4
4 7 3 2
5 18 10 3

PI-RADS-v2.0
1 0 1 0
2 10 8 2
3 6 3 2
4 21 10 6
5 34 34 10

EPE
Yes 33 21 8
No 30 21 12
N/A 8 0 0

SVI
Yes 24 5 4
No 42 37 16
N/A 5 0 0

PSM
Yes 0 20 6
No 0 22 14
N/A 71 0 0

LNI
Yes 12 15 1
No 41 22 18
N/A 18 5 1

Decipher risk
Low N/A 20 N/A
Intermediate N/A 5 N/A
High N/A 17 N/A
May 2022 | Volume 12 |
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FIGURE 2 | Illustration of the radiomic shape and lesion texture descriptors pipeline used in this study. The shape descriptors are computed from a surface of
interest determined from a 3D differential shape atlas between BCR+ and BCR− cohorts on T2WI. These are used to train a model for predicting BCR-free survival
and integrated with another model trained using lesion texture descriptors derived from T2WI and ADC maps.
FIGURE 3 | The surface of interest (SOIC) in red overlaid onto the prostate mesh of a BCR+ patient and a BCR− patient. We observe stronger surface distension in
terms of more dense and divergent normal features in the BCR+ patient compared to the BCR− patient.
TABLE 2 | Imaging parameters of scans used in this study.

Parameter Institution 1 Institution 2

Scanner 1 Scanner 2

Manufacturer Philips Medical Systems, Best, Netherlands Siemens Healthcare, Erlangen, Germany Siemens Healthcare, Erlangen, Germany
Model 3T Achieva 3T Skyra 3T Skyra
Coils ERC PPAC PPAC
T2-weighted sequence (T2WI)
TR/TE, ms 3,802–5,151/105–115 3,730/121 7,200/96
Resolution, mm3 0.3 × 0.3 × 3 0.5 × 0.5 × 3 0.6 × 0.6 × 3
Diffusion-weighted imaging (DWI)
TR/TE, ms 3,751–4,880/50–74 4,700/86 7,900/88
Resolution, mm3 1.4 × 1.4 × 3 1.6 × 1.6 × 3 1.2 × 1.2 × 3
b-values 0, 500, 1,000, 1,500, 2,000 0, 400, 900, 1,500 50, 600, 1,000, 1,400
Frontiers in Oncology | w
ww.frontiersin.org 5
TR, reconstruction time; TE, echo time.
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differences in radiomic shape and texture features between the
cohorts without a parametric assumption. Youden’s index was
used to determine the optimal operating point within receiver-
operating characteristics (ROC) analysis to convert the estimated
posterior class probabilities to dichotomous labels (BCR+ and
BCR−). DeLong’s test was used to compare the AUCs between
the classification models.

Univariable and multivariable analyses of CS+R were
conducted along with pre-RP clinical parameters including age,
PI-RADS-v2, PSA, and biopsy Gleason grade (bGG) on D1. Post-
RP pathological Gleason grade (pGG), extraprostatic extension
(EPE), seminal vesical invasion (SVI), and positive surgical
margins (PSM) were compared on patients from D2. A
penalized Cox proportional hazards (CPH) regression model
was used for this purpose given the class imbalance in D2. The
model CS+R was also compared with other nomograms including
CAPRA and CAPRA-S and the genomic assay Decipher on
subsets of patients for whom sufficient clinical variables were
available to estimate BCR-free survival on D2. Wald test was used
to determine statistical significance with p-values under 0.05, and
the concordance index (C-index) and hazard ratios (HRs) were
computed. Kaplan–Meier survival curves were estimated to
determine the differences in BCR-free survival based on
predictions of CS+R and comparative nomograms. The log-rank
test was used to determine statistical significance (p < 0.05).
3 RESULTS

3.1 Evaluation of Shape and Texture
Radiomics for Their Association With BCR
The top radiomic shape and tumor texture descriptors based on
their random forest Gini feature importance in the training set
D1 are listed in Table 3. Shape descriptors were consistent
between the sites (p > 0.05), whereas all radiomic texture
features except Haralick had significant variations (p < 0.05).
Shape descriptors from the entire prostate mesh resulted in a
lower AUC of 0.58 ± 0.08, p < 0.01, compared to using those
from the SOIC. Also, shape features from the SOIC within the
mid-gland region improved AUCs compared to those from the
Frontiers in Oncology | www.frontiersin.org 6
entire SOIC (AUC = 0.75 vs. 0.78, p = 0.04), and the mid-gland
SOIC was used in all subsequent experiments. CS trained using
individual SOIs resulted in AUC = 0.64 ± 0.08 on D1 in
distinguishing BCR+ and BCR−, while the consensus SOIC
resulted in improved performance (AUC = 0.78, p < 0.01)
(Figure 4). On the hold-out validation set D2, the AUC using
models trained from individual SOIs was 0.67 ± 0.12, while that
from the SOIC was 0.69 (p = 0.02). Inter-reader variations in
shape descriptors were evaluated on D2 and no significant
differences were observed (p > 0.05) (Supplementary Figure 2).

The BCR prediction model (CR) using radiomic texture
descriptors of the PCa lesion resulted in a cross-validation
AUC = 0.76 ± 0.09 on D1 and AUC = 0.70 on D2. The
integrated model (CR+S) resulted in a significantly higher (p <
0.05) AUC both on D1 (0.85 ± 0.08) and D2 (0.75) compared to
both CS and CR, respectively. The AUC, sensitivity, and
specificity of the models CS, CR, and CR+S for predicting BCR
status are summarized in Table 4.

3.2 Comparison With Clinical Parameters
and Extant Nomograms for Predicting bFS
at 3 Years
On univariable analysis for predicting bFS, CS+R predictions
resulted in the highest HR of 2.91 (95% CI 1.45–11.51, p =
0.02) on D1 compared to other pre-treatment clinical variables
including age, PSA, bGG, and PI-RADS-v2. On multivariable
analysis, CS+R and bGG showed independent predictive value
(p < 0.05) for bFS (Table 5). Post-RP Gleason grade (pGG), EPE,
and PSM had higher HRs of 2.63 (95% CI 1.16–5.93, p = 0.01),
2.51 (95% CI 1.06–11.26, p = 0.04), and 2.86 (95% CI 1.32–30.26,
p = 0.03) on D2. The C-index followed the same trend with CS+R

achieving the highest (0.76, p = 0.03) among pre-treatment
clinical variables; however, it was lower than pGG (0.82, p =
0.01) (Table 5).

On univariable comparison with extant assays for predicting
bFS, CS+R resulted in higher HR (2.11, 95% CI 0.35–11.33, p =
0.03) compared to pre-treatment CAPRA (1.8, 95% CI 1.1–3.56,
p = 0.02) and post-RP Decipher risk (1.41, 95% CI 0.61–2.45, p =
0.18); however, post-RP CAPRA-S resulted in comparable HR
(2.12, 95% CI 1.2–5.72, p = 0.03). Integrating preoperative
TABLE 3 | Variations in the top 5-ranked radiomic shape and texture descriptors according to Gini importance between the cohorts.

Feature Gini importance
(cohort 1)

Statistics across cohorts

Cohort 1 (mean ± std) Cohort 2 (mean ± std) Cohort 3 (mean ± std) p-value (Kruskal–Wallis)

Radiomic shape Normal_th_kt 1.26 0.68 ± 0.21 0.67 ± 0.16 0.64 ± 0.13 0.25
Normal_phi_sk 1.14 0.52 ± 0.14 0.54 ± 0.09 0.52 ± 0.13 0.37
Normal_phi_kt 0.83 0.63 ± 0.18 0.64 ± 0.12 0.66 ± 0.12 0.23
Curvature_mn 0.87 0.26 ± 0.13 0.26 ± 0.13 0.29 ± 0.17 0.72
Curvature_kt 0.81 0.27 ± 0.12 0.25 ± 0.12 0.28 ± 0.16 0.7

Radiomic texture Haralick_IM_T2 1.41 0.34 ± 0.18 0.31 ± 0.14 0.34 ± 0.18 0.99
Laws_edge_T2 1.07 0.44 ± 0.24 0.43 ± 0.19 0.56 ± 0.15 <0.01
CoLlAGe_ent_ADC 0.9 0.71 ± 0.16 0.54 ± 0.24 0.71 ± 0.16 0.03
Haralick_en_ADC 0.88 0.26 ± 0.14 0.51 ± 0.19 0.75 ± 0.13 <0.01
Gabor_T2 0.84 0.69 ± 0.15 0.42 ± 0.21 0.71 ± 0.12 <0.01
May 2022 | V
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clinical variables with CS+R resulted in improved (p < 0.05) C-
index (0.82, 95% CI 0.70–0.90) compared to CAPRA-S (0.75,
95% CI 0.69–0.78).

The C-indices also follow the same trend with CS+R and
CAPRA-S showing comparable results, and CAPRA and
Decipher risk have lower values (Table 6). CS+R and CAPRA-S
predictions resulted in significant separation in bFS (p < 0.05),
while CAPRA and Decipher risk showed no significant
separation on D2 (Figure 5).
4 DISCUSSION

In this study, we presented prostate shape distension descriptors
derived from a 3D shape atlas of the prostate on T2WI and
explored their association with PCa BCR post-RP. We observed
that the shape descriptors were prognostic of BCR and, in
conjunction with radiomic texture features of PCa on T2WI
and ADC maps, resulted in an improved BCR prediction model.
Since shape descriptors are based on prostate segmentations,
they are relatively robust to scanner variations and acquisition
parameters compared to texture features. We also validated our
approach on hold-out datasets that were acquired from multiple
institutions validating robustness and generalizability.
Frontiers in Oncology | www.frontiersin.org 7
Previously presented radiomic methods (17, 23, 41, 42) for
predicting BCR post-RP exclusively focused on MRI texture. Our
study is different from these approaches wherein we explored the
shape distension of the prostate capsule within a surface of
interest as a biomarker for predicting BCR. Patients
experiencing BCR tend to have a relatively more aggressive
phenotype of PCa (43), and hence, it appears to deform the
prostate surface more substantially compared to more indolent
cancers that do not result in BCR. Differential distension of the
prostate capsule was observed within an SOI located toward the
left posterior region, similar to the results reported by Rusu et al.
(30) and Ghose et al. (31). We observed that BCR+ patients had
more variations in the surface normal orientation arising out of a
higher degree of prostate distension compared to BCR− patients
(Figure 3). Prostate capsular bulge on MRI was found to be a
predictor of pathologic EPE after RP by Martini et al. (44).
Pathologic EPE has been shown to be a predictor of BCR in
several studies (45, 46) and was observed in our study as well.
Radiomic texture features including Haralick, Laws, and
CoLlAGe features from T2WI and ADC sequences were the
top-ranking features that were used in building CR. These
features were also observed to be associated with BCR in
previous works by Gnep et al. (22), Shiradkar et al. (23), and
Li et al. (17).
TABLE 4 | Classification performance of prostate distension, lesion texture, and integrated classifiers for predicting biochemical recurrence-free survival.

Classifier D1 D2

AUC (std) Sensitivity Specificity AUC (std) Sensitivity Specificity

CSi (templates) 0.64 (0.58–0.72) 0.63 (0.56–0.79) 0.71 (0.56–0.88) 0.67 (0.52–0.71) 0.49 (0.44–0.65) 0.61 (0.49–0.73)
CS (consensus) 0.78 (0.69–0.82) 0.67 (0.59–0.71) 0.75 (0.69–0.88) 0.69 0.59 0.65
CR 0.76 (0.73–0.88) 0.72 (0.63–0.78) 0.86 (0.73–0.88) 0.7 0.6 0.66
CS+R 0.85 (0.76–0.93) 0.65 (0.61–0.75) 0.82 (0.77–0.91) 0.75 0.65 0.58
May 2022 | Volume 12
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FIGURE 4 | (A) Surface of interest (SOI) determined from individual templates and a consensus SOIC derived by averaging individual SOIs. (B) The surface area and
AUC from the predictive model trained radiomic shape descriptors as a function of the number of SOIs used in building the consensus SOIC.
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We observed that the shape descriptors were largely
consistent between the sites (p > 0.05). In terms of radiomic
texture descriptors, other than the Haralick feature from PCa on
T2W, all the texture features had significant variations between
the cohorts (p < 0.05) (Figure 6; Table 3). Several previous
studies (26, 47, 48) exploring intersite variations in radiomic
texture features have reported texture features to be sensitive to
site and scanner variations. Chirra et al. (26) have shown in the
context of distinguishing PCa from normal regions that Haralick
features remained relatively stable while Law’s features showed
significant variations which is consistent with our observations.
Since radiomic shape descriptors used in our study are based on
the shape of the prostate, they remain largely insensitive to site-
and scanner-specific variations. This was also observed in a
previous study by Merisaari et al. (49) where morphology- and
shape-based radiomics were stable in terms of test–retest
repeatability compared to texture features.

We observed that when compared to pre-treatment clinical
variables including age, PSA, biopsy Gleason grade group (bGG),
clinical T stage, or PI-RADS, CS+R predictions resulted in the
highest HR and C-index in predicting bFS. We observed that the
integrated classifier CS+R was independently prognostic of bFS
compared to the other pre-treatment clinical variables and
resulted in a high C-index in combination with those clinical
variables. Post-RP Gleason grade group and EPE were however
predictive of bFS on both univariable and multivariable analyses,
also reported in previous studies (50, 51). The performance of the
Frontiers in Oncology | www.frontiersin.org 8
BCR predictive nomograms CAPRA and CAPRA-S in our study
was in line with the results reported in previous large-scale
validation studies (4). CAPRA score is derived from pre-
treatment clinical variables and our radiomic shape and texture
classifier CS+R was superior to CAPRA in predicting bFS.
CAPRA-S score which includes the post-RP Gleason score
resulted in a comparable performance to CS+R which includes
pre-treatment parameters alone. On a subset of studies with the
availability of Decipher in our study, we found no significant
association between Decipher risk score and BCR. This was also
observed in a previous study where Decipher down-classified a
significant number of patients who experienced BCR (52).

We acknowledge that the study did have its limitations.
Firstly, we did not explicitly control for the location of prostate
cancer lesions and benign lesions and the presence of
extraprostatic extension to explore their effect on prostate
distension. Future studies need to be performed, involving
controlling for the location of lesions in peripheral transition
zones and for the size of lesions. Next, we explored inter-reader
variations in prostate segmentation using only two readers and
limited the SOI to the mid-gland region. Nevertheless, we
observed that the shape features were robust to inter-reader
and site-specific variations. We will continue to work on building
a statistical model based on multireader segmentations to
identify regions, where a high degree of confidence in prostate
segmentation can be achieved, more precisely for subsequent
shape feature analysis. We also had a smaller sample size in
TABLE 6 | Comparison of the integrated radiomic model CS+R with post-surgical variables, nomograms CAPRA and CAPRA-S, and Decipher risk scores on the
validation set (N = 62, NBCR+ = 13, NBCR− = 49).

Parameter HR Lower 0.95 CI Upper 0.95 CI C-index p-value

CS+R 2.1 0.35 11.33 0.76 0.03
Pathologic GG 2.6 1.16 5.93 0.82 0.01
EPE 2.5 1.06 11.26 0.66 0.04
SVI 0.8 0.24 2.57 0.49 0.7
PSM 2.9 1.32 30.2 0.71 0.03
CAPRA 1.8 1.1 3.56 0.69 0.02
CAPRA-S 2.1 1.2 5.72 0.75 0.03
Decipher 1.4 0.61 2.45 0.59 0.18
Ma
y 2022 | Volume 12 | Article
GG, Gleason grade; EPE, extraprostatic extension; SVI, seminal vesicle invasion; PSM, positive surgical margins; CAPRA, Cancer of the Prostate Risk Assessment (UCSF nomogram);
CAPRA-S, post-surgical CAPRA. The p-values in bold indicate statistical significance.
TABLE 5 | Univariable and multivariable analyses for predicting BCR-free survival with pre-surgical variables (N = 71, NBCR+ = 27, NBCR− = 44).

Parameter Age PSA Biopsy GG PI-RADS cT stage CS+R

Univariable HR 1.03 1.05 2.12 1.37 2.21 2.91
Lower 0.95 CI 0.98 1.02 1.55 0.56 1.03 1.45
Upper 0.95 CI 1.08 1.07 2.9 3.33 5.02 11.51
C-index 0.53 0.69 0.72 0.64 0.67 0.78
p-value 0.3 0.03 0.01 0.16 0.02 0.02

Multivariable HR 0.92 1.01 1.21 1.16 2.17 4.51
Lower 0.95 CI 0.69 0.78 0.34 0.42 1.12 1.87
Upper 0.95 CI 1.31 1.17 2.65 3.75 4.32 14.55
C-index 0.85 (95% CI 0.80–0.90)
p-value 0.18 0.07 <0.01 0.06 0.01 <0.01
8

HR, hazard ratio; PSA, prostate-specific antigen; GG, Gleason grade; CI, confidence interval; PI-RADS, Prostate Imaging Reporting and Data System v2.1.
The values in bold indicate statistical significance.
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FIGURE 5 | Kaplan–Meier survival curves showing differences in biochemical recurrence-free survival between BCR+ and BCR− patients based on predictions from
(A) the integrated texture and shape classifier (CS+R), (B) CAPRA-S, (C) CAPRA and (D) Decipher risk. Statistically significant separation in BCR-free survival was
observed with CS+R and CAPRA-S (p < 0.05). Statistical significance (p < 0.05) was established using the log-rank test.
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FIGURE 6 | (A–D) Violin and box plots of the top-ranked radiomic shape and texture descriptors according to the Gini importance score within the three cohorts
used in this study. Shape descriptors tend to be largely consistent and less sensitive to variations across sites compared to texture descriptors.
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training and validating our approach, and our validation set had
a significant imbalance between the BCR+ and BCR− classes.
However, our results still generalized well over the hold-out
validation set that was acquired from two different institutions.
There were differences in the resolution of T2WI and ADC maps
and differences in b-values of DWI sequences for generating
ADC between the cohorts which were not explicitly accounted
for in our study. We will explicitly account for the sensitivity of
shape and texture radiomics to variations in resolution in our
future study. We also aim to control for positive surgical margins
and explore their effect on shape radiomic features in our
future work.

In conclusion, radiomic shape descriptors of the prostate
capsule derived from T2WI were found to be associated with
BCR in our study. In combination with radiomic texture features
of prostate cancer lesion from T2WI and ADC sequences,
radiomic shape distension features resulted in a better
predictor of BCR. Following large-scale validation studies, this
approach could potentially be applied to pre-treatment prostate
MRI scans at the clinic to provide clinicians with a decision
support tool for assessing the risk of BCR, in turn allowing them
to make better decisions for treatment management.
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