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Melanin pigment plays a critical role in the protection against the harmful effects of ultraviolet
radiation and other environmental stressors. It is produced by the enzymatic transformation of
L-tyrosine to dopaquinone and subsequent chemical and biochemical reactions resulting in
the formation of various 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and 5,6-
dihydroxyindole (DHI) oligomers—main constituents of eumelanin, and benzothiazine and
benzothiazole units of pheomelanin. The biosynthesis of melanin is regulated by sun exposure
and bymany hormonal factors at the tissue, cellular, and subcellular levels.While the presence
of melanin protects against the development of skin cancers including cutaneous melanoma,
its presencemay be necessary for themalignant transformation of melanocytes. This shows a
complex role of melanogenesis in melanoma development defined by chemical properties of
melanin and the nature of generating pathways such as eu- and pheomelanogenesis. While
eumelanin is believed to provide radioprotection and photoprotection by acting as an efficient
antioxidant and sunscreen, pheomelanin, being less photostable, can generate mutagenic
environment after exposure to the short-wavelength UVR. Melanogenesis by itself and its
highly reactive intermediates show cytotoxic, genotoxic, and mutagenic activities, and it can
stimulate glycolysis and hypoxia-inducible factor 1-alpha (HIF-1a) activation, which, combined
with their immunosuppressive effects, can lead to melanoma progression and resistance to
immunotherapy. On the other hand, melanogenesis-related proteins can be a target for
immunotherapy. Interestingly, clinicopathological analyses on advanced melanomas have
shown a negative correlation between tumor pigmentation and diseases outcome as defined
by overall survival and disease-free time. This indicates a “Yin and Yang” role for melanin and
active melanogenesis in melanoma development, progression, and therapy. Furthermore,
based on the clinical, experimental data and diverse effects of melanogenesis, we propose
that inhibition of melanogenesis in advanced melanotic melanoma represents a realistic
adjuvant strategy to enhance immuno-, radio-, and chemotherapy.

Keywords: melanoma, melanocytes, melanin, melanogenesis, immune responses, oxidative stress, melanoma
progression, melanoma therapy
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BIOCHEMISTRY AND CHEMISTRY OF
MELANIN PIGMENTATION

Melanin pigmentation of mammals is regulated by a number of
factors at the systemic, tissue, cellular, and subcellular levels (1).
The solar radiation is the main environmental factor regulating
melanin pigmentation of the skin directly or indirectly via
different mechanisms (2, 3), while melanin pigment is the
main protective factor against ultraviolet (UVR)-induced
damage (4). In addition, the skin pigmentary responses are
affected by endocrine, nutritional, paracrine, autocrine, and
intracrine factors and involve precise interactions between
epidermal or follicular melanocytes and keratinocytes (1, 5–10).
On the cellular level, melanin synthesis takes place in highly
specialized organelles, regulated through precise mechanisms
involving organelle formation, synthesis, delivery of enzymes,
structural and regulatory proteins and co-factors, substrates,
copper, and final activation and dynamic modification and
velocity of the process (1, 5).

In mammalian melanocytes, two main types of melanin are
synthesized—eumelanin and pheomelanin (11, 12). While the level
of melanin synthesis and the type of synthesized melanin in most
mammalian species are predominantly determined by two key
factors, namely, melanotropins and agouti signaling protein, these
are also regulated by several other factors utilizing different signaling
transduction pathways including cAMP, calcium, and protein
kinase A and C (1, 13–23). Although eumelanin and
pheomelanin derive from the common precursor dopaquinone,
which is formed by tyrosinase-catalyzed transformation of tyrosine
to DOPA and dopaquinone (24–26), biosynthesis of pheomelanin
occurs without additional catalytical action of enzymes, requiring
only cysteine to produce benzothiazine and benzothiazole units (11,
27–29). Biosynthesis of eumelanin, on the other hand, requires two
additional tyrosinase-related proteins (TRPs or TYRPs), which
catalyze the conversion of dopachrome to 5,6-dihydroxyindole-2-
carboxylic acid (DHICA) and oxidation of 5,6-dihydroxyindole
(DHI) and DHICA (30–36). They were named as TRP-1—
DHICA oxidase (37)—and TRP-2—dopachrome tautomerase
(Dct) (38). The latter contains zinc (II) cation in its active center
(39). Cupric and other ions can also stimulate the rearrangement of
dopachrome to DHICA (40, 41). Interestingly, metal cations such as
Mn+2, Cu+2, and others can stimulate DOPA auto-oxidation to
melanin without any enzyme needed with velocity of the process
depending on the pH and physicochemical properties of the
solution (6). Moreover, zinc (II) cations, which are known to
inhibit melanogenesis via inhibiting TYR (42, 43), may stimulate
polymerization of pheomelanin monomers in vitro (44).

In addition, exposure of L-tyrosine dissolved in water to solar
light induces its photochemical transformation leading to
gradual production of melanin in this purely in vitro
condition. The pivotal role of dopaquinone in controlling
melanogenesis was demonstrated by pulse radiolysis studies
(45–47). Thus, although the intramolecular addition of the
amino group giving cyclodopa was shown to be relatively slow,
it rapidly oxidized to dopachrome through redox exchange. On
the other hand, in the presence of cysteine, 5-S-cysteinyldopa
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was quickly formed, which, via redox exchange, gave
cysteinyldopaquinone. In most cases, a mixed melanogenesis
occurs giving rise to mixed melanin (48).

It is believed that the main subunits of eumelanin—derivatives
of DHI and DHICA—and in case of pheomelanin—derivatives of
benzothiazine and benzothiazole—polymerize to relatively small
oligomers, which, via p−p interaction form protomolecules, and
via secondary and tertiary aggregation, form pigment granules
(49, 50). The hierarchical aggregate structure of melanin,
particularly eumelanin, has been discussed in recent reviews
(12, 51) Typical melanosome, depending on its origin, is a
membrane-bound oval or spheroidal structure of submicrometer
to a fewmicrometer size (1, 52). Eumelanin, pheomelanin, or most
commonly mixed-type melanin is deposited on a fibrillar matrix
formed by the amyloid core of the melanocyte-specific protein
PMEL (53). Importantly, chemistry and photochemistry of
melanin granules should be viewed as relatively separated
processes that take place in a special milieu provided by the
melanized melanosome. The melanosomal membrane limits the
access of reagents that could interact with melanin and reduces
the outflow of the reaction products. Considering that
melanogenesis itself is accompanied by the formation of highly
reactive species (1, 11, 54, 55), such spatial separation between the
melanin and cytosol is sensible and justified.

In conclusion, melanin synthesis is a highly complex process
developed through billions of years of evolution to protect living
organisms in educated manner from damaging effects of different
spectrum of the solar light in highly dynamic fashions involving
several feedback mechanisms and regulatory processes affecting
cell, tissue, and organismal homeostasis.
ELECTRON-EXCHANGE AND METAL
ION-BINDING PROPERTIES OF MELANIN
RELEVANT FOR ITS ANTIOXIDANT AND
PHOTOPROTECTIVE ACTION

Although melanin is usually considered a very stable organic
material and chemical evidence for eumelanin pigment from the
Jurassic period was presented (56), different studies have
demonstrated that melanin exhibits substantial chemical
reactivity (1, 57, 58) and can undergo physicochemical changes
even under in vivo conditions (59, 60). Arguably, one of the most
distinct chemical properties of melanin is its ability to participate
in redox reactions. This is consistent with the composition of
melanin, which contains significant number of redox-active
groups such as DHI and DHICA in case of eumelanin and
benzothiazine and benzothiazole in pheomelanin. They also
contain ful ly oxidized forms of the corresponding
hydroquinones and aminophenols, i.e., ortho-quinones and
ortho-quinonimines, and a very small percentage of ortho-
semiquinones and ortho-semiquinonimines, which arise from
so-called comproportionation equilibrium of the corresponding
fully reduced and fully oxidized melanin subunits (12, 61, 62).
The fully reduced melanin building blocks are good electron
donors, while the fully oxidized units are responsible for
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oxidizing properties of the melanin. One of the major differences
between free ortho-quinones, ortho-quinonimines, and their
corresponding radical forms, and the oxidized melanin
subunits and melanin radicals is their effective stability and
reactivity. While in solution, ortho-quinones and ortho-
semiquinones are extremely unstable and very reactive (63,
64), in melanin, these functional groups exhibit only modest
reactivity (65). Although many factors may be responsible for
such a dramatic modification of the reactivity of melanin
quinone (quinonimine) groups, steric hindrance of the groups
and changes in their one-electron reduction potential, after
incorporation into the forming oligomers, could play
significant role.

The reducing ability of natural melanin has been recognized
long ago and was exploited in a histological test to detect melanin
in situ; the presence of melanin in the biological material was
deduced from the ability of the specimen to reduce Ag+ ions to
metallic silver (66). Oxidation of NADH by melanin was reported
in 1968 (67), and electron transfer properties of melanin were
demonstrated in several redox systems (68–71). Melanin is
considered an efficient antioxidant that scavenges reactive free
radicals (72, 73). The issue has been addressed in a systematic way
by employing the most direct experimental approach—pulse
radiolysis (72, 73). It was demonstrated that a number of
reducing and oxidizing radicals interacted with synthetic
DOPA-melanin and cysteinyldopa-melanin with the efficiency
that correlated with the absolute value of the radical one-
electron reduction potential (72). In most cases, melanin
interacted with the radicals via simple one-electron transfer
processes, consistent with the presence of melanin oxidized and
reduced subunits. The obtained data indicated that synthetic
pheomelanin was more efficient in oxidizing the reducing
radicals, while synthetic eumelanin could interact more
efficiently with the oxidizing radicals. The effects of synthetic
eumelanin on iron-catalyzed free radical decomposition of
hydrogen peroxide was studied by EPR-spin trapping (74). At
low iron concentration, melanin dramatically decreased the yield
of hydroxyl radicals due to binding of ferrous ions; however, it
increased the rate of hydroxyl radicals particularly in the excess of
ferric ions due to the ability of melanin to reduce iron to ferrous
ions. Distinct inhibition of lipid peroxidation induced by ferrous
ions or a water-soluble free radical initiator by synthetic
neuromelanin, prepared by autooxidation of dopamine, was
reported (75). Although scavenging of oxidizing radicals could
in part be responsible for the observed antioxidant action of
melanin, sequestration of redox active iron ions plays the
dominant role as shown in a related study (76). Interestingly,
the protective action of melanin against peroxidation of lipids
induced by iron/ascorbate significantly diminished after bovine
retinal pigmented epithelium (RPE) melanosomes were subjected
to experimental photobleaching—an in vitro model for
melanosomes photoaging (77).

Several attempts to determine the oxidation (and reduction)
potential of synthetic and natural melanin by cyclic voltammetry
measurements gave somewhat different results, with the melanin
oxidation potential ranging between 0.125 and 0.6V and the
Frontiers in Oncology | www.frontiersin.org 3
melanin reduction potential being in the range −0.5 V–+0.4V
(72–76). Distinct pro-oxidizing activity of synthetic
pheomelanins was demonstrated in a study, in which the
efficiency of melanin containing different amount of
benzothiazole and benzothiazine to photooxidize reduced
glutathione was compared (78). The researchers found that
benzothiazole-rich pheomelanin was more efficient in depleting
glutathione (GSH) upon irradiation with UVA than
benzothiazine-rich melanin. Interestingly, in a non-related
study, it was demonstrated that partially photodegraded 5-S-
cysteinyldopa melanin, which exhibited higher percentage of
benzothiazole derivatives, compared to control non-photolyzed
melanin, photogenerated singlet oxygen with significantly higher
yield (79). A detailed discussion of the possible UV-dependent
and UV-independent chemical mechanisms underlying
pheomelanin-mediated oxidative stress, with special reference
to the oxygen-dependent depletion of glutathione and other cell
antioxidants, was presented in a review by Napolitano et al. (80).

The ability of melanin to reversibly bind metal ions, behaving
as a weak acid cation exchanger, has been recognized for over a
half century (81). Binding by melanin of cupric and other
paramagnetic metal ions is accompanied by significant
quenching of the EPR signal of melanin radicals (82). On the
other hand, the interaction of melanin with multivalent
diamagnetic metal ions, such as zinc(II), brings about a
significant increase in the melanin radical EPR signal (83). The
effect was explained as being due to a metal-ion-induced shift in
the comproportionation equilibrium between the fully reduced
and fully oxidized melanin subunits and melanin radicals
stabilized by the metal ions (61). Using EPR, Mossbauer, and
resonance Raman spectroscopies, atomic absorption
measurements, potentiometric titration, and selective chemical
blocking of specific functional groups, the role of phenolic
hydroxyl, ortho-semiquinone, amine, and carboxyl groups in
binding of copper(II) and iron(III) and zinc(II), at different pH,
was analyzed (84–86). It is important to realize that although
melanin is a vivid chelator of redox-active metal ions, such as
copper (II) and iron(III), under acidic conditions or in the case of
metal ion overload, melanin will tend to release bound metal ions
(84, 87). In addition, it was demonstrated that experimentally
photoaged RPE melanosomes from pig and bovine eyes lost part
of their metal ion binding capacity, which resulted in a reduced
antioxidant efficiency of such pigment granules (77, 88). It is
postulated that exposure of pigmented tissues to significant
fluxes of UV radiation or even short-wavelength visible light
energy can lead to physicochemical modification of the melanin,
particularly its metal ion binding and redox properties, which
could lower the protective ability of melanin and even increase its
pro-oxidizing potential (77, 89–91).

Thus, melanin pigment, being unquestionably protective
against light, can be a part of damaging circuity that is context
dependent in its physicochemical and biological environments.
We could speculate that billions of years of evolution established
precise biophysical mechanisms placed into a proper biological
context to protect integumental cells from the damage,
destruction or malignant transformation, or to destroy the
March 2022 | Volume 12 | Article 842496
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same cells that are beyond repair and would represent a danger
to the local and perhaps global homeostasis (2, 92). This would
make pigmentary responses crucial to organismal survival and/
or adaptation requiring very precise mechanisms regulating
them and leaving no room for random reactions in biological
context. Based on the biochemistry, physiochemistry, and
biology, it has already been postulated that melanogenically
active melanosomes serve and signaling molecules regulate
epidermal functions (93, 94) with concomitant function of
melanocytes and melanosomes in sensing, traducing, and
computing solar radiation (2).
MELANIN, WHILE PROTECTING AGAINST
UVR-INDUCED MELANOMAGENESIS,
ALSO CONTRIBUTES TO THE INITIATION
OF MALIGNANT TRANSFORMATION OF
MELANOCYTES

One of the important distinguishing features of melanoma is its
neuro-ectodermal, neural crest origin. This is actually a transient
organ, active in the embryonal development, and of the role of
producing embryonic cells that are able, and this is their main
role, to wander around the organism, settle various niches, and
differentiate toward the terminally differentiated cells (95). This
feature may be preserved during the whole lifetime, the example
of which are melanocytes, in particular the ones of the hair
follicle. Their progenitors preserve the possibility of migrating
and settling niches (96), so no wonder that the same feature is
very early manifested during the progression of melanoma,
which makes this tumor particularly invasive.

The neural crest is believed to be the only important
distinguishing feature of vertebrates, surprisingly not the spine
(95). The possibility to transform to melanoma cells should be,
consequently, preserved only to vertebrates. This seems to be the
case. Interestingly, other melanin-producing cells in vertebrates
such as the RPE transform mainly to benign tumors [this is more
of hyperplasia than neoplasia (97)], while the malignant tumors
are of a different histopathological character (98, 99). Meanwhile,
one of the most dangerous and invasive tumor in children,
neuroblastoma, reveals the character of immature, non-
differentiated, and not pigmented neural crest cells, not being
melanocytes (100).

Clearly, the development of melanoma is related to the
melanocytic line of neural crest development, and other tumors
of melanocytic origin are unknown. Nevertheless, there are
important in vivo models developed in non-vertebrates, often
used in research, namely, in Drosophila melanogaster (101). The
tumors can be there easily induced by mutation in particular genes
regulating cellular development (101). This melanomagenesis is
clearly non-melanin related. On the other hand, one cannot find
such melanomas developing spontaneously or under physical
conditions in D. melanogaster, only by mutations, which even
further couples melanomagenesis with melanin-producing
melanocytes or their progenitors. The decisions whether a
Frontiers in Oncology | www.frontiersin.org 4
particular part of neuroectoderm should differentiate towards
neural crest and, consequently, a part of them towards
pigmented melanocytes, is taken very early in embryogenesis, on
the stage of gastrulation (95), which also anchorages the
evolutionary pathways conditioning development of melanoma
very early in evolution. Melanoma cells very often reveal various
forms of mal-pigmentation, starting from the level of
melanogenesis (102–104), toward cytology (105, 106), and
transfer of melanosomes to the target tissues in human (107) or
in amphibians (108). Clearly, the possibility to develop melanoma
is a long-established toll paid for controlling melanogenesis by
specialized cells. One of the theories of evolution of melanogenesis
assumes that, due to the special chemical features of quinones,
melanogenesis evolved initially as a non-enzymatic, side pathway,
a consequence of the occurrence of oxygen in the atmosphere, and
the necessity to depose toxic quinones in a less aggressive form
(109). The primordial cells must have initially “learn” how to
inhibit melanogenesis and, later on, how to control melanogenesis
and its more efficient variant—eumelanogenesis (110). The
protective role of melanin must have developed in parallel with
the development of the endangerment by the photooxidative
stress; otherwise, the threat of destabilization of genetic material
might have quickly led to the Eigen error catastrophe (111, 112).
This process must have taken a substantial part of evolution, and
the process of melanomagenesis is, according to our latest
suggestion, the step back not only in ontogenesis but also in
phylogenesis (113).

Despite the fact that in clinically detectable melanomas there
are numerous mutations (114), of whommany play a critical role
in controlling melanogenesis, the actual genetic risk factors of
melanoma in humans concern mainly the three types of genes:
those controlling cell cycling and proliferation, those controlling
telomerase, and those controlling tumor–immunity interactions
(115). Even the typically melanoma-associated BRAF V600E/K
mutation is not 100% associated with malignant tumors and is
present in benign nevi (116). However, the data collected in this
paper convincingly show that melanogenesis is a risk factor of
malignant melanoma. This apparent paradox can be analyzed
with special attention to the progression of the tumor and risk
factors leading to massive metastasizing disease and
consequently death of the patient. In dissecting this problem, it
is important to pay attention to the processes of genetic
regulation of melanogenesis and of cell proliferation and
inhibition of apoptosis, which are in many cross-points
entangled (5, 117, 118). To initiate melanomagenesis, some key
mutations must be already present in the cellular genome, the
genome of cells particularly predestinated to melanin production
(115). Melanogenesis-activating factors (e.g., UV) may, at the
same time, activate the pathways controlling melanogenesis,
inhibiting apoptosis (because melanogenesis in cells
undergoing apoptosis makes a little sense) and facilitating cell
proliferation. If the two latter are mutated, this must enhance the
“local error catastrophe” (111, 112), enhance proliferation of
mutated cells, and, if the melanomagenic factor is still present,
cumulate secondary mutations, destabilizing the full control of
melanogenesis, leading to the release of toxic melanogenesis
March 2022 | Volume 12 | Article 842496
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intermediates, decrease in melanin production, and enhancement
of the full process in the loop of positive feedback, according
to Figure 1.

The presence of melanin paradoxically does not exclude
transformation of the melanocyte to the malignant state. In
addition, some studies have indicated that melanin is necessary
to induce melanoma. It has been called “a photocarcinogen for
cutaneous malignant melanoma” by Moan et al. (117). Indeed, it
was shown in mice that melanoma induction by ultraviolet A
(320–400 nm) required the presence of melanin pigment and was
associated with oxidative DNA damage within melanocytes
(119). However, UVB initiated melanoma in a pigment-
independent manner. It must be noted that among various
types and subtypes of natural melanins, pheomelanin is the
most dangerous one, as shown by Mitra et al. (120). In this
paper, an Mc1R−/− on the background of C57BL/6 was used.
Such mice do not express the melanocortin receptor type 1, but
melanin is generated due to the activation of “rescue”
melanogenetic pathways (5, 118). It leads to a limited activity
of tyrosinase and synthesis of low amounts of pigment with a big
proportion of pheomelanin. The mice produce yellow fur (just
like in the “lethal yellow”mutants) and develop melanomas with
no relations to UV when additionally transfected with the
BRafV600E “oncogenic driver”. In black and albino (c/c)
controls fewer melanomas developed with slower process of
melanomagenesis (120). This had been predicted by in vitro
studies on toxicity and phototoxicity of pheomelanin (80). More
Frontiers in Oncology | www.frontiersin.org 5
recently, melanin “in the dark” turned out to be toxic also for
non-related keratinocytes (121, 122), which provides further
argument for potentially toxic character of melanin, under
certain conditions.
MELANIN PIGMENT CAN ATTENUATE
CHEMO- AND RADIOTHERAPY

Almost 50 years ago, the different effects of ionizing of pigmented
and amelanotic melanoma cells were observed, and further
studies confirmed these observations and the possibilities to
enhance the melanoma cells sensitivity chemo- and
radiotherapy by targeting the melanogenesis (123–127).

Melanins, acting as protective molecules with metal chelating
properties, affect the anti-tumor drug chemosensitivity of
melanoma cells. Studies of the Cichorek group on Bomirski
hamster amelanotic and pigmented transplantable melanomas
(103, 106, 128, 129) reported the differences in biology of these
lines. They differed with ultrastructure, metabolism, growth rate,
ability to undergo apoptosis, and others (103, 104, 130–134). The
authors noticed the higher proliferation rate accompanied by
decreased ability to undergo spontaneous apoptosis in
amelanotic melanoma cells (130, 131, 135) and suggested that
these properties reflect more aggressive phenotype. However,
further studies of this group indicated higher susceptibility of
amelanotic melanoma cells to camptothecin-induced apoptosis,
FIGURE 1 | The role of melanin and of impairment of melanin synthesis in the initiation and progression of melanoma. The defective melanin synthesis in connection
with external factors (UV) and genetic predispositions plays a role in melanomagenesis in a positive feedback loop.
March 2022 | Volume 12 | Article 842496
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with crucial role of caspases (136). The killing effects of
camptothecin in melanoma cells depended on cell cycle phase
with strongest effects on amelanotic than pigmented cells (137).
In this same model, the higher expression of FasL, involved in the
induction of cytotoxic T lymphocytes and NK cells death, on
pigmented melanoma cells was observed (138). Furthermore,
induced melanogenesis in amelanotic cell line changed the
melanoma cells’ morphology and metabolism, decreased the
number of cells, and provoked the displacement of cells to
the subG0/G1 fraction, indicating the cell death pathway
(139–142). Our study on SKMel-188 cell line with inducible
melanogenesis had also showed the diversification of responses
of melanomas with different melanization level to the treatment
with chemotherapeutics (143). In this model, pigmented cells
were more resistant to cyclophosphamide sensitized to cytotoxic
action of cyclophosphamide with melanogenesis inhibitors
(143). The inhibition of melanogenesis with N-phenylthiourea
and D-penicillamine sensitized the pigmented melanomas to
cyclophosphamide, with strongest effects of the latter (143)
and to radiotherapy (144). We also observed the weaker effects
of activity of 20(OH)D3 on melanoma cell with active
melanogenesis (145). Protein-bound polysaccharides (PBPs)
from Coriolus Versicolor fungus in human SKMel-188
melanoma cell line induced cytotoxicity in non-pigmented
melanoma cells (146). This effect was caspase independent,
accompanied by an increased intracellular reactive oxygen
species, and was mediated by pathway involving RIP1 (146).
Further studies revealed that in amelanotic melanoma cells,
PBPs-induced death is related to inducing the RIPK1/RIPK3/
MLKL-mediated necroptosis (147). In melanoma cells with
active melanogenesis, the use of melanin synthesis inhibitors to
induce depigmentation could also restore the susceptibility of
melanoma cells to RIPK1/RIPK3/MLKL-mediated necroptosis
(148). On the contrary, moderately pigmentated mouse and
hamster melanoma cel ls were more susceptible to
antiproliferative effect of vitamin D analogs (149). However, in
human melanomas, induction of pigmentation led to an
increased resistance to anticancer activity of vitamin D3
hydroxyderivatives (145). In this study, active forms of vitamin
D were found to inhibit nuclear factor kappa B (NF-kB) activity
in non-pigmented cells while having no effect on pigmented cells,
and biopsies of non-pigmented and slightly pigmented
melanomas displayed higher nuclear NF-kB p65 expression
than highly pigmented melanomas.

A very probable hypothesis on the biological origin of
melanin from the point of view of their adaptative values is
their function as a radioprotector. Currently, this is difficult to
imagine due to a relatively low level of natural background
radiation, but in the past, there may have been periods of time
when exposition of the Earth and all the living organisms on the
ionizing radiation was much higher (150). The pigmented tissues
and organs should be particularly resistant to ionizing radiation
as compared with amelanotic materials.

This aspect brings about some notorious practical
implications in tumor therapy. Radiotherapy belongs to the
accepted and effective methods of tumor eradication, but this
Frontiers in Oncology | www.frontiersin.org 6
is not always the case for the pigmented tumors, in particular,
skin melanoma (151). Indeed, research carried out at Jagiellonian
University in Krakow, Poland in the 1970s revealed that the
pigmented variants of skin melanoma obtained in Syrian golden
hamsters (BHM) were much more resistant to radiotherapy than
their amelanotic variants, although without treatment growing
much faster that their pigmented counterparts (152). Soon, it
turned out that this distinction is only valid for radiations of a
low LET (linear energy transfer coefficient), such as X-ray. As a
therapy, its effect strongly depends on the concentration of
dioxygen. The effects of radiation are here clearly derivatives of
active oxygen species generated as radiation products and
sequestrated by melanin, if present. High-LET radiation (fast
neutrons) causes damage to direct biological targets (DNA) and
does not depend on dioxygen concentration. This subject was
described in detail in a recent review (152).

Application of a proton beam turned out, consequently, to be
an effective mode of therapy of melanotic tumors of the eye
(uveal melanoma) (153, 154), and inhibition of melanogenesis
(e.g., by the inhibition of tyrosinase activity via sequestration of
copper) or increase in oxygen level became a promising way to
sensitize melanoma tumors for radiotherapy (152, 155).

As the most dangerous factor associated with anticipated
long-way cosmic travels (e.g., the manned mission to Mars) is the
piercing component of the cosmic irradiation and solar wind
(which does not reach the Earth surface thanks to our
magnetosphere), melanin is recently being considered as an
important radioprotector (156). It must be noted that the
melanin is of fungal origin, and it plays a very special role in
biological divagations as believed to be a new step in the biologic
evolution (157). It turned out that some pigmented strains of
Cryptococci develop better and grow faster under sublethal doses
of gamma irradiation than their albino mutants (158). As the
production of biomass is also improved, it looks as if a new type
of metabolism—radiotrophy—has been described and identified.
This fact may also be of a crucial importance for astrobiology.
Also because of similar roles postulated for the so-called
phytomelanins, substances of polyphenolic character produced
in some groups of higher plants loosely related to animals and
fungi (159, 160).
INTERMEDIATES OF MELANOGENESIS
INHIBIT IMMUNE ACTIVITY, WHILE
MELANOGENESIS-RELATED PROTEINS
ARE TARGETS FOR IMMUNE RESPONSE

The intermediates of melanogenesis including quinones,
semiquinones, quinonimines, and their corresponding radical
form and reactive oxygen species (ROS) generated during this
process are highly cytotoxic, therefore, they affect the viability of
immune cells (reviewed in (1, 161). L-DOPA, an intermediate of
melanogenesis, significantly inhibits proliferation of activated
murine and human T and B lymphocytes while having less
pronounced effects against fibroblasts or non-activated
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lymphocytes (162). Anti-proliferative effect against human T
lymphocytes was also demonstrated with cell cycle arrest at the
G1/0 phase with concomitant inhibition of interleukin (IL)-1, IL-
6, tumor necrosis factor alpha (TNF-a), and IL-10 gene
expression (143). These inhibitory effects were observed at a
concentration of DOPA ranging from 1 to 100 µM, and the
effects were independent whether L- or D-DOPA was used.
Furthermore, cytotoxicity by IL-2-activated peripheral blood
lymphocytes was low in pigmented vs. non-pigmented
melanoma, and lymphocyte-mediated killing effect was
significantly increased by inhibition of melanogenesis by N-
phenylthiourea or D-penicillamine (D-pen) sensitized melanoma
cells (143). Similarly, the inhibition of melanogenesis by D-pen or
kojic acid inmelanoma cells stimulated the IL-1, IL-2, IL-6, and IL-
12 cytokine expression when co-cultured with peripheral blood
mononuclear cells (148).

Separate studies have shown that incubation with either L-
DOPA or dopamine resulted in a dose-dependent inhibition of
lymphocyte proliferation and differentiation (163). L-DOPA,
dopamine (DA) and norepinephrine dose-dependently
suppressed mitogen-induced proliferation and differentiation
of mouse lymphocytes, suppressed lymphocyte proliferation
and cytokine production, and induced apoptosis (164). Others
showed that DA suppressed expression of non-receptor tyrosine
kinases, Lck and Fyn, and caused inhibition of anti-CD3 mAb-
induced release of Th1 and Th2 cytokines, IL-2, interferon
gamma (IFN-g), and IL-4 from T cells (165). While these
authors indicated involvement of dopamine receptors in these
effects, other authors proposed that DA-induced inhibition of T-
cell proliferation represented nonspecific cell killing (166–169).
Although we cannot completely exclude a receptor-mediated
effect for L-DOPA in immunosuppression, we favor nonspecific
killing because DOPA and catecholamines undergo autoxidative
transformation to melanin or neuromelanin, in a process that is
regulated by pH and presence of metal cations. For example, L-
DOPA inhibited glycoproteins phosphorylation (6, 170), which
was dependent on Mn+2 (cation that induces DOPA oxidation)
in the reaction mixture (171).

In other systems, the downregulation of the afferent phase of
T-cell-mediated pulmonary inflammation and immunity was
associated with melanin production by Cryptococcus
neoformans (172) and DOPA-melanin pathway was associated
with fungal resistance to phagocytosis by macrophages (173). In
addition, immune cells can undergo apoptosis in response to the
oxidative stress generated in the tumor environment (174). Note
that melanogenesis generates a highly oxidative environment.
Therefore, the above studies clearly indicate that melanogenesis
either starting from DOPA or catecholamines will have an
immunosuppressive effect within the tumor environment and/
or systemically.

Melanogenesis-related proteins (MRPs) including tyrosinase,
TRP-1, TRP-2, gp100, and MART-1 are classified as major
histocompatibility complex (MHC)-restricted tumor antigens,
and specific peptides derived from processing of MRPs can
activate T-lymphocyte responses against melanoma cells (175–
180). Such T-cell immune responses are variable because
Frontiers in Oncology | www.frontiersin.org 7
peptides derived from MRPs recognized by T cells are
associated with specific MHC haplotypes and therefore limits
their therapeutic utility (181, 182). Although the experimental
effort for vaccination against melanoma using tyrosinase is being
investigated (183), the major clinical effort is currently focused
on checkpoint inhibitors (184, 185). In this context, the
immunosuppressive effects of intermediates and byproducts of
melanogenesis must be seriously considered by physicians, since
immunotherapy is the most promising strategy in handling
melanomas (186). We recommend inhibition of active
melanogenesis in metastatic melanoma to improve the
immune responses against the tumor. Interestingly, patients
with advanced desmoplast ic melanoma (amelanotic
phenotype) had substantial clinical benefit from PD-1 or PD-
L1 immune checkpoint blockade therapy (187), which is
consistent with a recommendation presented above. Metastatic
melanotic melanomas not only can release immunosuppressive
intermediates but also tyrosinase and other enzymes secondary
to cell damage or death leading to uncontrolled melanogenesis in
the tumor environment or at the systemic level. In this context,
immunization against tyrosinase may represent an additional
step in eliminating this enzyme from the extracellular
environment (182, 188). Moreover, during progression of
advanced melanotic melanomas, levels of tyrosinase or
different intermediates of melanogenesis are increased in the
serum (189, 190), contributing to general melanosis (182).
MELANOGENESIS CAN ENHANCE
MELANOMA PROGRESSION

The basic properties of melanin pigment and biochemistry of
melanogenesis that are contributing to malignant transformation
of melanocytes and their progression has been previously
discussed earlier in this review. Briefly, active melanogenesis
generates free radicals and highly reactive intermediates with
genotoxic and mutagenic activities (55, 161, 191–195), while
melanin, its monomers, pheomelanin in particular, under
specific conditions can generate pro-oxidative environment
and induce DNA damage (58, 60, 80, 196, 197). Melanin
pigments can also have direct proinflammatory and pro-
oxidant effects in keratinocytes, independently from light
exposure (121). Thus, uncontrolled melanogenesis in the
melanosome or outside (through autooxidation of its soluble
metabolites), via depletion of major cell antioxidants and
generation of ROS, and the direct action of quinone and
semiquinone intermediates on RNA, DNA, and regulatory
proteins will generate pro-mutagenic environment contributing
to melanomagenesis (Figure 2).

Most malignant tumors rely on aerobic glycolysis for its
growth, expansion, and progression (198–201). Different types
of cellular and glucose metabolism play a central role in the
natural history of tumors and their resistance to the therapy (200,
202, 203). Melanin pigment consumes oxygen (204, 205), while
its intermediate L-DOPA can stimulate glycolysis in melanotic
melanomas (133). It also stimulated pentose phosphate pathway
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with melanogenesis being involved in this process (206).
Melanogenesis and L-DOPA oxidation can also lead to
dramatic changes in glycoproteins phosphorylation pattern
(171). The use of high-resolution magic angle spinning
(HRMAS) nuclear magnetic resonance (NMR) has also shown
that induction of melanogenesis is associated with changes in
Frontiers in Oncology | www.frontiersin.org 8
glucose and sodium acetate metabolism (142). We have also
shown that induction of melanogenesis in melanoma cells leads
not only to increased HIF-1a accumulation but also to the robust
upregulation of HIF-1-dependent and independent pathways,
suggesting a role for melanogenesis in the regulation of cellular
metabolism and behavior of melanoma cells (Figure 3) (207).
A B

FIGURE 2 | Role of melanogenesis and melanin in melanoma progression and therapy. (A) Melanogenesis stimulates melanoma progression and attenuates therapy;
(B) inhibition of melanogenes sensitizes melanotic melanoma to diverse therapeutic modes.
FIGURE 3 | Complex interactions between melanogenesis, glucose metabolism, and HIF-1-dependent pathways. SM, stimulators of melanogenesis; ROS, reactive
oxygen species; QS, quinones and semiquinones; IOM, intermediates of melanogenesis; POMC, proopiomelanocortin; CRH, corticotropin-releasing hormone;
PCSK1/2, proprotein convertase subtilisin/kexin types 1 and 2. Reproduced from (207) with a permission from the publisher.
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Furthermore, immunohistochemistry performed in the above
study revealed higher levels of HIF-1a and GLUT-1 in advanced
melanomas in comparison to melanocytic nevi or thin
melanomas localized to the skin.

In addition, precursors to melanin are not only able to
stimulate melanogenesis (208–210) but also stimulate
expression and activity of its regulators such as melanocyte-
stimulating hormone (MSH) receptors (210–212) and
production of proopiomelanocortin (POMC) and POMC-
derived peptides (213). Of note, POMC peptides including
MSH are immunosuppressive (214–216), and increased
expression of POMC peptides was noted during progression of
melanomas to advanced stages (217–222).

In summary, stimulation of melanogenesis leads to a pro-
oxidative and mutagenic environment and rewires cellular
metabolism, which includes stimulation of glycolysis and HIF-1a
activation that, combined with immunosuppressive effects, would
lead to melanoma progression and resistance to immunotherapy.
The biophysical properties of melanin would also make melanoma
resistant to chemo- and radiotherapy. This indicates that inhibition
of melanogenesis in advanced melanotic melanomas would be an
educated approach to improve immunotherapy, chemotherapy, and
radiotherapy or perhaps by itself will attenuate melanoma growth
(Figure 2B). However, there is another aspect of melanin
pigmentation that makes the Yin and Yang issue in the case of
melanoma even more intriguing. It is related to mechanistic effects
of melanosomes that apparently play a role in the trans-migration
abilities of melanoma cells in vitro (223). In a follow-up study, it was
demonstrated that human melanoma cells containing melanin were
less capable to spread in nudemice thanmelanoma cells without the
pigment (224). These results suggest that the presence of melanin
can inhibit formation of melanomametastases. However, it remains
to be tested whether either in vivo simulation or inhibition of
melanogenesis would affect the metastatic cascade. Under in vitro
conditions, stimulation of melanogenesis leads to changes in
adhesive properties of melanoma cells and detachment of heavily
melanized cells from the substratum (141, 152, 207, 225). Such
process in vivo could lead to the detachment of cells from the
primary or secondary tumors, a hypothesis that remains to be tested
experimentally. Therefore, further research is needed on the relative
contribution of the pro-oxidizing conditions induced by
melanogenesis or melanin itself or the inhibitory effects of
melanin granules, due to their mechanical properties, in
melanoma progression to metastatic stage.
CLINICOPATHOLOGICAL CORRELATION
BETWEEN MELANOGENESIS AND
MELANOMA PROGRESSION

Melanin can affect the clinical course of both cutaneous
(Figure 4) and uveal melanomas. Our previous studies
revealed that patients with cutaneous pigmented metastasizing
melanomas were characterized by poorer prognosis as assessed
by both shorter disease-free survival (DFS) and overall survival
(OS) than amelanotic cases (226). Similarly, the pigmentation of
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lymph node melanoma metastases was related to a worse
prognosis (shorter OS and DFS (226). In addition, decreasing
pigmentation in metastatic tumors versus primary melanomas
was related to longer DFS (226). In this same group of patients,
we found a significant lower level of melanin in primary pT3-4
versus pT1-2 melanoma, with its concomitant significantly
elevated level in reticular versus papillary dermis. In addition,
pT3–4 primary melanomas that developed metastases were
characterized by significantly higher pigmentation than pN0
melanomas. The melanization of lymph node melanoma
metastases of pT4 tumors were more pronounced than those
of pT2–3 tumors similarly to melanization of lymph node
melanoma metastases in patients that developed distant
metastases (pM1) (227). Since significantly shorter OS and
DFS in stage III and IV pigmented melanomas was observed,
we analyzed the radiotherapy efficiency in melanoma patients in
relation to the melanization level and found better OS in patients
with amelanotic melanoma treated with RTH and CHTH or
RTH (227).

Shields’s group published the results consistent with our data
(228, 229). For uveal melanomas stage III, pigmentation was one of
the factors predicting metastases, while for stage II melanomas,
pigmentation was one factor predicting death (228). The other
paper based on multivariate analysis reported the pigmentation as a
factor related to higher risk of death and increased metastases rate
independently on race (229). In addition, the continuous increase in
the pigmentation with tumor advancement was also reported (228).

In addition, the vitamin D receptor (VDR) and retinoic acid
orphan receptors (ROR)a and g expression decreased in
melanized melanoma cells in comparison to amelanotic or
poorly pigmented cells (230, 231). Similarly, in uveal
melanomas, melanin level inversely correlated with VDR
expression (232). In addition, the expression of the enzyme-
activating vitamin D (CYP27B1) was inversely related to melanin
in melanoma cells in vivo and melanoma cells cultured in vitro
(233), while the expression of CYP24A1 was lower in non-
pigmented melanomas vs. highly melanized ones (234). These
clinical–pathological studies indicate that melanization level can
affect the local vitamin D endocrine system, which plays an
important role in melanoma biology (235, 236).
CONCLUDING REMARKS AND FUTURE
DIRECTIONS

It is commonly believed that the most important biological function
of melanin in humans is the protection against noxious insults
including UVR-induced cancerogenesis and melanomagenesis.
However, under certain conditions, melanin can also be
phototoxic. Although such different actions of melanin may
appear difficult to reconcile, conceivable explanation for both
photoprotective and phototoxic properties of melanin is based on
unusual physicochemical and photochemical properties of melanin
pigments. Over the last decades, major advances have beenmade on
the communication between melanogenesis and cell energy yielding
metabolism, immune functions, and other networks regulating local
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homeostasis and melanocytes activities in negative and positive
fashions. For example, the biosynthesis of melanin affects cellular
metabolism because this pathway consists of a series of tightly
coupled oxidoreduction reaction, and active melanogenesis and
melanin consume oxygen, leading to relative intracellular hypoxia.
Its intermediates, such as free radicals and highly reactive quinone
compounds, can display cytotoxic, genotoxic, and mutagenic
activities or other regulatory functions. In addition, melanin acts
as a scavenger of free radicals, metal cations, and cellular toxins
including chemotherapeutics (5, 237, 238). In normalmelanocytes,
the process of melanin synthesis is highly controlled, since it takes
place within the boundaries of specialized membrane-bound
organelles, the melanosomes. In such conditions, the process of
melanin synthesis plays a protective role against environmental
insults and protects against UVR-induced cancers. However,
despite its protective role against UVR, melanin pigment appears
Frontiers in Oncology | www.frontiersin.org 10
to have the contribution to malignant transformation of
melanocytes (117, 120, 239). In melanoma cells, this process can
be dysregulated with intermediates of melanogenesis leaking
outside melanosomes, which will affect the behavior of melanoma
cells or their surrounding environment (Figure 3), which is further
discussed in (161, 240). Therefore, an uncontrolled melanogenesis
has a role, perhaps critical, in the progression of melanotic
melanoma, and, together with melanin pigment, it can attenuate
radio-, chemo- and phototherapy and immunotherapy (Figure 2).
This hypothesis is supported by clinicopathological data showing
that increased melanin pigmentation leads to shorter OST
and DFST (226, 227) and identifying melanogenesis as a risk
factor in uveal melanomas (228, 229). Thus, the inhibition of
melanogenesis can improve diverse therapeutic modes or perhaps
may even directly improve the clinical outcome of melanotic
melanomas (Figure 2).
FIGURE 4 | Relationship between melanization and survival of cutaneous melanoma patients. (I) Correlation between melanin level and disease-free (DFS) and
overall (OS) survival in patients with melanomas (n = 73). Reproduced from (226) with a permission from the publisher. (A) DFS and (B) OS curves in all melanoma
patients (localized [n = 37]) and metastatic disease [n = 36]) stratified according to melanin content. OS curves of primary metastasizing melanomas [(C); c2 = 7.554,
p = 0.0229; amelanotic vs. strongly pigmented: c2 = 6.113, p = 0.0134, c2 = 6.570, p = 0.0104; amelanotic vs. moderately pigmented: c2 = 5.656, p = 0.0174] and
lymph node metastases [(D); c2 = 3.972, p = 0.0463; amelanotic vs. strongly pigmented: c2 = 6.603, p = 0.0102] stratified according to melanin content. (E) DFS
curves of melanoma lymph node metastases stratified according to melanin content in metastatic tumors (c2 = 11.43, p = 0.0033; amelanotic vs. moderately
pigmented: c2 = 10.23, p = 0.0014; amelanotic vs. strongly pigmented: c2 = 7.812, p = 0.0052). (F) DFS curves of metastatic melanomas stratified into groups with
decreased or increased melanin content in metastases relative to primary melanomas (log-rank test, c2 = 4.071, p = 0.0436). (II) Survival time of melanoma patients
after radiotherapy (RTH). (A) Survival of melanoma patients received both RTH and CHTH or only RTH (n = 57; c2 = 4.62, p = 0.03). (B) Survival of melanoma
patients received only RTH treatment (n = 33; c2 = 4.33, p = 0.04). Melanomas were stratified according to melanin level in melanoma metastases. Representative
amelanotic (C) and pigmented [(D); two cases separated with dotted line] lymph node melanoma metastases. Scale bars = 200 µm. Reproduced from (227) with a
permission from the publisher. (III) Survival after RTH and OS in melanoma patients with pigmented and amelanotic metastatic melanomas that were confirmed
histologically, and who received radiotherapy (n = 57). CTHT, chemotherapy; RTH, radiotherapy; OS, overall survival time from primary diagnosis to the end of
observation or death of patient, *survival time from the end of radiotherapy treatment to the end of observation or death of patient. Reproduced from (227) with a
permission from the publisher.
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There are several challenges in understanding a broader
context of the Yin and Yang action of melanogenesis and
melanin pigment that is protective under physiological and
destructive under pathological conditions (Figure 5). These
actions could depend on physicochemical and biochemical
properties described above. However, the simple linear
interactions are unlikely and should be placed in the larger
context of local regulatory networks including bidirectional
communication with CRH/POMC/MSH&ACTH axis, HIF-1a,
NF-kb, MITF, PKA, PKC, second messengers, phosphorylation
cascades, and nuclear receptor signaling (including vitamin D)
that would act in a nonlinear fashion involving direct and
indirect effects. These pathways would act as sensors of
melanogenesis distress signals and their regulators under
physiological conditions. When melanogenesis is deregulated,
regulatory pathways will be out of tune, leading to the
amplification of the disruptive signals and “cellular chaos” on
the local level facilitating tumor progression and resistance to
therapy (241). The effects of melanogenesis on the local and
systemic immune functions can be crucial in the context of
immunotherapy and immune checkpoint inhibitors that are
emerging as a frontline treatment for melanoma.

Therefore, one can envision use of well-established inhibitors
of melanogenesis such as N-phenylthiourea, D-penicillamine
(copper chelator), kojic acid, or other non-toxic inhibitors of
tyrosinase to enhance radio-, chemo-, or immunotherapy of
melanotic melanomas. Furthermore, diet deficient in melanin
Frontiers in Oncology | www.frontiersin.org 11
precursors such as L-phenylalanine and L-tyrosine can be used to
systematically inhibit melanogenesis during treatment of
melanotic melanomas, however, with some limitations (242–
244). We also acknowledge that an opposite strategy, use of
melanin precursors for experimental therapy of melanoma, was
proposed (245–249), however, this strategy did not reach the
patient's bed.

In summary, the Yin and Yang effects of melanogenesis
should be considered in mechanism-oriented preclinical
studies on melanomagenesis and melanoma progression and
clinical effort to handle this devastating disease for the benefit of
the patients.
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FIGURE 5 | Yin and Yang action of melanogenesis and melanin pigment.
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an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.
March 2022 | Volume 12 | Article 842496

https://doi.org/10.1016/j.mayocp.2014.02.009
https://doi.org/10.1002/1097-0142(196605)19:5%3C657::AID-CNCR2820190509%3E3.0.CO;2-J
https://doi.org/10.1002/1097-0142(196605)19:5%3C657::AID-CNCR2820190509%3E3.0.CO;2-J
https://doi.org/10.1111/j.1699-0463.1973.tb00502.x
https://doi.org/10.1007/bf00058152
https://doi.org/10.1016/0277-5379(91)90319-9
https://doi.org/10.2174/187152009789056886
https://doi.org/10.1016/s0006-2952(98)00090-2
https://doi.org/10.1034/j.1600-0749.2003.00069.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Melanoma, Melanin, and Melanogenesis: The Yin and Yang Relationship
	Biochemistry and Chemistry of Melanin Pigmentation
	Electron-Exchange and Metal Ion-Binding Properties of Melanin Relevant for its Antioxidant and Photoprotective Action
	Melanin, While Protecting Against UVR-Induced Melanomagenesis, Also Contributes to the Initiation of Malignant Transformation of Melanocytes
	Melanin Pigment Can Attenuate Chemo- and Radiotherapy
	Intermediates of Melanogenesis Inhibit Immune Activity, While Melanogenesis-Related Proteins Are Targets for Immune Response
	Melanogenesis Can Enhance Melanoma Progression
	Clinicopathological Correlation Between Melanogenesis and Melanoma Progression
	Concluding Remarks and Future Directions
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


