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on Bone Marrow Smear
Meifang Wang*, Chunxia Dong, Yan Gao, Jianlan Li , Mengru Han and Lijun Wang

Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China

Aim: Bone marrow biopsy is essential and necessary for the diagnosis of patients with
aplastic anemia (AA), myelodysplastic syndromes (MDS), and acute myeloid leukemia
(AML). However, the convolutional neural networks (CNN) model that automatically
distinguished AA, MDS, and AML based on bone marrow smears has not been reported.

Methods: Image-net pretrained model of CNN was used to construct the recognition
model. Data extracted from the American Society of Hematology (ASH) Image Bank were
utilized to develop the model and data extracted from the clinic were used for external
validation. The model had two output layers: whether the patient was MDS (two-
classification) and which of AA, MDS, and AML the patient was (three-classification).
Different outcome weights (two-classification/three-classification = 5:5, 2:8, 1:9) and
epochs (30, 50, 200) were used to select the optimal model. The model performance
was evaluated by the Accuracy-Loss curves and calculating the area under the curve
(AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV).

Results: A total of 115 bone marrow smears from the ASH Image Bank and 432 bone
marrow smears from the clinic were included in this study. The results of Accuracy-Loss
curves showed that the best model training effect was observed in the model with the
outcome weight and epoch of 1:9 and 200. Similarly, this model also performed well
performances in the two-classification of MDS and the three-classification of AA, MDS,
AML. The AUC, accuracy and sensitivity of the MDS two-classification model in the testing
set were 0.985 [95% confidence interval (CI), 0.979-0.991], 0.914 (95%CI, 0.895-0.934),
and 0.992 (95%CI, 0.980-1.000), respectively. The AUC, accuracy and sensitivity of the
AA, MDS, AML three-classification model in the testing set were 0.968 (95%CI, 0.960-
0.976), 0.929 (95%CI, 0.916-0.941), and 0.857 (95%CI, 0.828-0.886), respectively.
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Conclusion: The image-net pretrained model was able to obtain high accuracy AA, MDS,
AML distinction, and may provide clinicians with a convenient tool to distinguish AA, MDS,
and AML.
Keywords: aplastic anemia, myelodysplastic syndromes, myeloid leukemia, identification model, convolutional
neural networks
INTRODUCTION

Myelodysplastic syndromes (MDS) are myeloid tumors
characterized by clonal proliferation of hematopoietic stem cells,
recurrent genetic abnormalities, myelodysplasia, ineffective
hematopoiesis, and peripheral blood cell reduction, and
progression to acute myeloid leukemia (AML) in one-third of
patients (1). Furthermore, aplastic anemia (AA) is also a marrow
disease that causes pancytopenia, and approximately 15% to 20% of
AA patients progress to MDS or AML (2, 3). Therefore, the correct
diagnosis has an important influence on the treatment, control, and
prognosis of these diseases. The laboratory diagnosis of MDS
depends on morphological changes based on peripheral blood
and bone marrow dysplasia, including peripheral blood smears,
bone marrow aspiration smears, and bone marrow biopsy (4, 5).
Since AA and MDS are all accompanied by significant cytopenia, it
is difficult to distinguish the two diseases, and both AA and MDS
may progress to AML (6, 7). In addition, there may be differences
in the accuracy of manual identification of these diseases. A tool
that can assist clinicians in automatically distinguishing AA, MDS,
and AML may be needed in clinical practice.

Deep learning is a type of machine learning that uses multiple
processing layers to learn data representations with multiple levels
of abstraction (8). Deep learning methods use the complete image
and associate the entire image with the diagnostic output (9).
The processing of images in deep learning usually relies on
convolutional neural networks (CNN), which is a neural network
that is particularly good at classifying images (10). CNN has an
outstanding image classification effect because it can imitate the
natural visual processing in the brain and can interpret dense
information (10). Therefore, the use of deep learning methods to
help clinicians diagnose image information is of great significance.
Recently, deep learning has been widely used in the identification
and classification of diseases (11–13). In the study on MDS
recognition, a recent study developed a deep learning model to
distinguish AA and MDS based on peripheral blood indicators (14).
Bone marrow biopsy is essential and necessary for the diagnosis of
patients with AA,MDS (6). However, studies based on bonemarrow
smears to identify AA, MDS, and AML has not been reported.

Herein, we aimed to develop and validate amodel based on bone
marrow smears using deep learning methods to identify whether
patients hadMDS, and to distinguish AA, MDS, and AML patients.
METHODS

Data Source and Populations
Data of this study were extracted from two different sources: The
American Society of Hematology (ASH) Image Bank (15) and
2

The Second Hospital of Shanxi Medical University data from July
2016 to December 2020. The determination of patients with AA,
MDS, and AML in the ASH Image Bank was based on the disease
category corresponding to the patient’s bone marrow smear in the
database. Diagnosis from hospital patients was based on the
following criteria. The diagnosis of AA is based on the
International Agranulocytosis and Aplastic Anemia criteria
(16), that is, the peripheral blood meets at least two of the
following three criteria: (1) hemoglobin ≤100 g/L; (2) platelets
≤50×109/L; (3) granulocytes ≤1.5×109/L. The diagnosis of MDS
and AML are according to the World Health Organization
classification of myeloid neoplasms and acute leukemia criteria
(2016 version) (17). In addition, peripheral blood or bone marrow
blasts ≥20% is a necessary condition for the diagnosis of AML, but
when the patient is confirmed to have clonal and reproducible
cytogenetic abnormalities t(8;21)(q22;q22.1), inv(16)(p13.1;q22)
or t(16;16)(p13.1;q22), and t(15;17)(q22;q12), even if bone
marrow blasts are less than 20%, it should be diagnosed as
AML (17). The sample images of AA, MDS, and AML were
displayed in Figure 1. A total of 115 bone marrow smears were
collected from the ASH Image Bank, including 32 were MDS, 26
were AA, and 57 were AML. Similarly, a total of 432 bone marrow
smears (MDS, 214; AA, 115; AML, 103) were also extracted from
the hospital. Data from the ASH Image Bank were used for model
development and internal validation, and data from the hospital
were utilized for external validation. The ASH Image Bank is a
web-based publicly available image library that provides a
comprehensive collection of images related to a wide range of
hematologic topics. This study was approved by the Institutional
Review Board of The Second Hospital of Shanxi Medical
University [approval number: No.2021(162)].
Data Enhancement
Data enhancement methods were widely used to increase the
sample size in deep learning algorithms, and reduce the error rate
of the model by providing better generalization (18–20). In this
study, the number of samples for each disease in the ASH Image
Bank is very limited. Eight image transformation methods,
including rotation, shift, sheer, flip, were used to obtain
different versions of original images, and each original image
was increased to three samples using each data enhancement
method. After data enhancement, the number of samples in the
ASH Image Bank dataset had been expanded by 24 times, from
115 to 2760. The detailed eight image transformations were as
follows: (1) rotation (35○), the picture was rotated 35 degrees in a
random direction (left or right) (Figure 2A); (2) ZCA whitening,
whitening can be used to reduce redundant information of
pictures and preserve important information (Figure 2B);
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(3) width shift (35%), the picture was randomly shifted to the left
or right by 40% (Figure 2C); (4) height shift (35%), it was
obtained by randomly shifting the image to up or down with 35%
(Figure 2D); (5) shearing (35○), it was done by shifting the
image counterclockwise by 35 degrees (Figure 2E); (6) zoom
(35%), the picture was zoomed by 35% to make the appearance
of objects in the image closer (Figure 2F); (7) horizontal flip, it
was obtained by flipping the image up and down (Figure 2G); (8)
vertical flip, it was obtained by flipping the image left and
right (Figure 2H).

Convolutional Neural Network
Convolutional neural network (CNN) is a deep learning model,
which includes three main components, convolution layer,
pooling layer, and output layer. The convolution layer is used to
extract important features in pictures, the pooling layer is utilized
to reduce the dimension of features, and the output layer is used
for prediction (21). The CNNmodel used in this study was Resnet
50. Figure 3 shows the architectural details of Resnet 50.

Deep Learning Model
The classification of images by deep learning mainly consists of
three processes (22): (1) image preprocessing, images used for
deep learning are normalized, and all images are resampled to
Frontiers in Oncology | www.frontiersin.org 3
size 256*256; (2) feature extraction and training, images of
different diseases may have their features, and the features
of images can be extracted and learned through CNN, which is
also known as model training; (3) classification, after the model
has learned features, the detected objects are classified by
appropriate classification techniques that compare the image
pattern with the target pattern. Although deep learning can
classify images, it is unknown which features deep learning
extracts in a single image. The Image-Net pretrained model of
the Resnet 50 was used to construct the recognition model. The
optimizer of the Resent 50 model was Adams, the loss function
was categorical cross-entropy, and the output layer had two
layers. Better model parameters are obtained by adjusting the
number of times the training set is learned in the model (epochs)
and the weight of the two output layers. The two output layers
were: (1) whether the patient was MDS (two-classification output
layer); (2) which of AA, AML, and MDS the patient was (three-
classification output layer). In addition, the two output layers
were given different weights during the model building process.
The detailed construction processes of the recognition model
were as follows: (1) data of the ASH Image Bank were randomly
divided into the training set and the testing set with a ratio of
7:3; (2) the weight of the two output layers (two-classifications/
three-classifications) was selected as 2:8, and three different
A B D

E F G H

C

FIGURE 2 | The effect of applying image transformation to the same image sample. (A) rotation; (B) ZCA whitening; (C) width shift; (D) height shift; (E) shearing; (F)
zoom; (G) horizontal flip; (H) vertical flip.
FIGURE 1 | Sample images of aplastic anemia (AA), myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML).
April 2022 | Volume 12 | Article 844978
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epochs (30, 50, and 200) were adopted to assess the impact of
different epochs on the recognition models; (3) three different
weights (5:5, 2:8, and 1:9) of the two output layers were used to
evaluate the influence of different outcome weights on the
recognition models; (4) the model performance was evaluated
by the Accuracy-Loss curves and calculating the area under
the curve (AUC), accuracy, sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV).
The detailed construction process of the model was shown
in Figure 4.

Statistical Analysis
The OpenCV and Keras libraries of Python were used for image
enhancement. The construction of the Image-Net pretrained
model was performed by the Python 3.8 software.
Frontiers in Oncology | www.frontiersin.org 4
RESULTS

Accuracy-Loss Curves of the Model in
Different Outcome Weights and Epochs
The Accuracy-Loss curves of the Resnet 50 Image-Net pretrained
model in different outcome weights and epochs were shown in
Figure 5. For models with different outcome weights, the
Accuracy-Loss curves of the model demonstrated that when
the outcome weights of the model were 5:5 and 2:8, the model
training effect raised slowly, and when the outcome weight of the
model was 1:9, the model training effect improved faster
(Figures 5A-C). For the influence of different epochs on the
model, the Accuracy-Loss curves showed that when the number
of the epochs was increased, the fluctuation of the Accuracy
curve and the Loss curve was similar (Figures 5C-E).
FIGURE 3 | The architectural details of Resnet 50.
FIGURE 4 | The construction process of the recognition model.
April 2022 | Volume 12 | Article 844978
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Performance of the MDS Two-
Classification Model
The performances of the MDS two-classification model with
different outcome weights on the training set, testing set, and
validation set were displayed in Table 1. When the outcome
weight of the model was 1:9, the model had the best
performances in the testing set. The AUC, accuracy, sensitivity,
specificity, PPV, and NPV of the model were 0.984 (95%CI,
0.978-0.990), 0.909 (95%CI, 0.889-0.929), 0.971 (95%, 0.950-
0.992), 0.882 (95%CI, 0.856-0.909), 0.783 (95%, 0.736-0.829),
and 0.986 (95%CI, 0.975-0.996), respectively. In the external
validation set, this model also had the highest AUC (0.965; 95%
CI, 0.947-0.983), accuracy (0.935; 95%CI, 0.916-0.954),
specificity (0.967; 95%CI, 0.950-0.983), and PPV (0.924, 95%
Frontiers in Oncology | www.frontiersin.org 5
CI, 0.887-0.961). The receiver operator characteristic (ROC)
curves of the model with different outcome weights were
shown in Supplementary Figure 1.

When the outcome weight of the model was fixed at 1:9, and
different epochs were used to train the model. The performances
of the MDS two-classification model with different epochs on the
training set, testing set, and validation set were shown in Table 2.
The results indicated that both 30 epoch and 200 epoch models
had good performance in the testing set. The AUC of the 30
epoch and 200 epoch models was 0.984 (95%CI, 0.978-0.990)
and 0.985 (95%CI, 0.979-0.991), respectively. In the validation
set, the 30 epoch and 200 epoch models still maintained good
performance. The ROC curves of the model with different epochs
were displayed in Supplementary Figure 2.
A B

D E

C

FIGURE 5 | Accuracy-Loss curves of the Resnet 50 Image-Net pretrained model in different outcome weights and epochs. (A) 30 epochs and 5:5 outcome weight;
(B) 30 epochs and 2:8 outcome weight; (C) 30 epochs and 1:9 outcome weight; (D) 50 epochs and 1:9 outcome weight; (E) 200 epochs and 1:9 outcome weight.
TABLE 1 | The performances of the MDS two-classification model with different outcome weights.

Models Data set Sensitivity
(95%CI)

Specificity
(95%CI)

PPV (95%CI) NPV (95%CI) AUC (95%CI) Accuracy
(95%CI)

30 epochs, 5:5 outcome
weight

Training
set

0.984 (0.974-
0.994)

0.905 (0.888-
0.921)

0.818 (0.789-
0.847)

0.992 (0.987-
0.997)

0.982 (0.977-
0.987)

0.929(0.917-
0.940)

Testing
set

0.963 (0.939-
0.987)

0.870 (0.842-
0.898)

0.763 (0.715-
0.811)

0.982 (0.970-
0.994)

0.969 (0.959-
0.978)

0.898(0.877-
0.919)

Validate
set

0.852 (0.804-
0.900)

0.934 (0.911-
0.957)

0.856 (0.809-
0.904)

0.932 (0.908-
0.955)

0.931 (0.903-
0.959)

0.908(0.886-
0.930)

30 epochs, 2:8 outcome
weight

Training
set

0.989 (0.981-
0.998)

0.898 (0.881-
0.914)

0.808 (0.779-
0.838)

0.995 (0.991-
0.999)

0.985 (0.981-
0.989)

0.925(0.913-
0.937)

Testing
set

0.959 (0.933-
0.984)

0.864 (0.836-
0.893)

0.755 (0.707-
0.803)

0.980 (0.967-
0.992)

0.979 (0.972-
0.986)

0.893(0.781-
0.914)

Validate
set

0.886 (0.843-
0.929)

0.934 (0.911-
0.957)

0.861(0.815-
0.907)

0.946 (0.925-
0.967)

0.916 (0.886-
0.945)

0.918(0.898-
0.939)

30 epochs, 1:9 outcome
weight

Training
set

1.000 (1.000-
1.000)

0.902 (0.886-
0.918)

0.817 (0.788-
0.846)

1.000 (1.000-
1.000)

0.989 (0.986-
0.992)

0.932(0.920-
0.943)

Testing
set

0.971 (0.950-
0.992)

0.882 (0.856-
0.909)

0.783 (0.736-
0.829)

0.986 (0.975-
0.996)

0.984 (0.978-
0.990)

0.909(0.889-
0.929)

Validate
set

0.867 (0.821-
0.913)

0.967 (0.950-
0.983)

0.924 (0.887-
0.961)

0.940 (0.918-
0.961)

0.965 (0.947-
0.983)

0.935(0.916-
0.954)
A
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Performance of the AA, MDS, and AML
Three-Classification Model
Similarly, Table 3 demonstrates the performances of the AA,
MDS, and AML three-classification model with different outcome
weights on the training set, testing set, and validation set. Among
the models with different outcome weights, the best model
performance in the testing set was observed in the model with
outcome weights of 1:9. The AUC, accuracy, sensitivity, specificity,
PPV, and NPV of the model were 0.958 (95%CI, 0.948-0.968),
0.926 (95%CI, 0.913-0.939), 0.841 (95%CI, 0.810-0.871), 0.972
(95%CI, 0.962-0.982), 0.941 (95%CI, 0.921-0.962), and 0.920 (95%
CI, 0.903-0.936), respectively. This model still had good
performance in the validation set, with an AUC of 0.925 (95%
Frontiers in Oncology | www.frontiersin.org 6
CI, 0.909-0.941). The ROC curves of the model with different
outcome weights were shown in Supplementary Figure 3.

The outcome weight of the model was chosen as 1:9 to
compare the effects of different epochs on the three-
classification model performance (Table 4). Compared with
the 30 epoch and 50 epoch models, the 200 epoch model had
the highest AUC (0.968; 95%CI, 0.960-0.976), accuracy (0.929;
95%CI, 0.916-0.941), sensitivity (0.857; 95%CI, 0.828-0.886), and
NPV (0.927; 95%CI, 0.911-0.942). In addition, the performance
of the 200 epoch model in the validation set was better than
the 30 epoch and 50 epoch models. The ROC curves of the
model with different epochs were demonstrated in
Supplementary Figure 4.
TABLE 2 | The performances of the MDS two-classification model with different epochs.

Models Data set Sensitivity
(95%CI)

Specificity
(95%CI)

PPV (95%CI) NPV (95%CI) AUC (95%CI) Accuracy
(95%CI)

30 epochs, 1:9 outcome
weight

Training
set

1.000 (1.000-
1.000)

0.902 (0.886-
0.918)

0.817 (0.788-
0.846)

1.000 (1.000-
1.000)

0.989 (0.986-
0.992)

0.932 (0.920-
0.943)

Testing set 0.971 (0.950-
0.992)

0.882 (0.856-
0.909)

0.783 (0.736-
0.829)

0.986 (0.975-
0.996)

0.984 (0.978-
0.990)

0.909 (0.889-
0.929)

Validate
set

0.867 (0.821-
0.913)

0.967 (0.950-
0.983)

0.924 (0.887-
0.961)

0.940 (0.918-
0.961)

0.965 (0.947-
0.983)

0.935 (0.916-
0.954)

50 epochs, 1:9 outcome
weight

Training
set

0.973 (0.960-
0.987)

0.894 (0.878-
0.911)

0.801 (0.771-
0.831)

0.987 (0.981-
0.994)

0.983 (0.979-
0.988)

0.918 (0.906-
0.931)

Testing set 0.950 (0.923-
0.978)

0.870 (0.842-
0.898)

0.761 (0.713-
0.809)

0.976 (0.962-
0.989)

0.975 (0.967-
0.983)

0.894 (0.873-
0.916)

Validate
set

0.857 (0.810-
0.904)

0.867 (0.836-
0.899)

0.750 (0.695-
0.805)

0.929 (0.904-
0.953)

0.888 (0.855-
0.921)

0.864 (0.838-
0.890)

200 epochs, 1:9 outcome
weight

Training
set

0.998 (0.995-
1.000)

0.907 (0.891-
0.923)

0.824 (0.795-
0.853)

0.999 (0.997-
1.000)

0.991 (0.988-
0.993)

0.935 (0.923-
0.946)

Testing set 0.983 (0.967-
1.000)

0.875 (0.848-
0.903)

0.775 (0.728-
0.821)

0.992 (0.984-
1.000)

0.985 (0.979-
0.991)

0.908 (0.888-
0.928)

Validate
set

0.895 (0.854-
0.937)

0.942 (0.921-
0.964)

0.879 (0.835-
0.922)

0.951 (0.931-
0.971)

0.924 (0.894-
0.953)

0.927 (0.908-
0.947)
Apri
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TABLE 3 | The performances of the AA, MDS, and AML three-classification model with different outcome weights.

Models Data set Sensitivity
(95%CI)

Specificity
(95%CI)

PPV (95%CI) NPV (95%CI) AUC (95%CI) Accuracy
(95%CI)

30 epochs, 5:5 outcome
weight

Training
set

0.884 (0.867-
0.902)

0.960 (0.952-
0.968)

0.922 (0.907-
0.937)

0.940 (0.930-
0.949)

0.970 (0.965-
0.976)

0.934 (0.926-
0.942)

Testing set 0.834 (0.803-
0.865)

0.952 (0.939-
0.965)

0.902 (0.876-
0.928)

0.915 (0.898-
0.931)

0.945 (0.934-
0.957)

0.911 (0.897-
0.925)

Validate
set

0.858 (0.826-
0.891)

0.880 (0.858-
0.901)

0.787 (0.751-
0.823)

0.923 (0.905-
0.941)

0.911 (0.892-
0.929)

0.872 (0.854-
0.890)

30 epochs, 2:8 outcome
weight

Training
set

0.855 (0.836-
0.874)

0.952 (0.943-
0.960)

0.905 (0.888-
0.921)

0.925 (0.914-
0.935)

0.971 (0.966-
0.976)

0.918 (0.909-
0.927)

Testing set 0.807 (0.774-
0.839)

0.929 (0.913-
0.944)

0.858 (0.828-
0.888)

0.900 (0.882-
0.918)

0.945 (0.933-
0.956)

0.886 (0.870-
0.902)

Validate
set

0.823 (0.788-
0.858)

0.889 (0.868-
0.910)

0.793 (0.757-
0.830)

0.906 (0.887-
0.926)

0.905 (0.886-
0.924)

0.866 (0.848-
0.885)

30 epochs, 1:9 outcome
weight

Training
set

0.890 (0.873-
0.907)

0.986 (0.981-
0.990)

0.970 (0.961-
0.980)

0.944 (0.935-
0.953)

0.976 (0.971-
0.981)

0.952 (0.945-
0.959)

Testing set 0.841 (0.810-
0.871)

0.972 (0.962-
0.982)

0.941 (0.921-
0.962)

0.920 (0.903-
0.936)

0.958 (0.948-
0.968)

0.926 (0.913-
0.939)

Validate
set

0.852 (0.819-
0.885)

0.901 (0.882-
0.921)

0.817 (0.783-
0.852)

0.921 (0.903-
0.940)

0.925 (0.909-
0.941)

0.884 (0.867-
0.902)
CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve.
Article 844978

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Recognition Models for AA/MDS/AML
Final Recognition Model
According to the evaluation indicators of the model in the results of
the two-classifications and three-classification, when the epoch of
the model was 200 and the outcome weight was 1:9, the model had
better performance in the two-classification of MDS and the three-
classification of AA, MDS, and AML. Therefore, the epoch was 200
and the outcome weight was 1:9 as the final model used. The
performances of the final model were shown in Table 5. The ROC
curves of the final model were demonstrated in Figure 6. In the final
model construction, each epoch took 4 minutes, the model took 800
minutes on the training set and 5 minutes on the testing set. When
the model is used in practice, the result can be obtained in 0.3
seconds after inputting a single bone marrow image of patients.
DISCUSSION

In this study, a recognition model based on bone marrow smears
was constructed using deep learning to distinguish whether the
Frontiers in Oncology | www.frontiersin.org 7
patient was MDS and which of AA, MDS, and AML the patient
was. The AUC and accuracy of the model to classify patients as
MDS were 0.985 and 0.914, respectively. When the model was
used to distinguish AA, MDS, and AML, the AUC and accuracy
of the model were 0.968 and 0.929, respectively. In addition, the
model still retained a good distinguishing ability in
external validation.

It has been reported that the risk of MDS/AML in AA patients
increased with the duration of the disease without reaching a
plateau, occurring in 4%-8% of patients at 5-6 years of follow-up
and in 9%-26% of patients at 10 years (23, 24). Among MDS
patients, approximately 30% will experience the evolution of
AML (25). Furthermore, patients with MDS are at a much
greater risk of progressing to AML than those with AA (26).
Therefore, the distinction between MDS and AA is very
important in disease control and treatment. The diagnosis of
these diseases depends on the judgment of the clinicians on the
diagnostic tests (17). Deep learning can assist clinicians in the
recognition of image results. The deep learning CNN method
TABLE 4 | The performances of the AA, MDS, and AML three-classification model with different epochs.

Models Data set Sensitivity
(95%CI)

Specificity
(95%CI)

PPV (95%CI) NPV (95%CI) AUC (95%CI) Accuracy
(95%CI)

30 epochs, 1:9 outcome
weight

Training set 0.890 (0.873-
0.907)

0.986 (0.981-
0.990)

0.970 (0.961-
0.980)

0.944 (0.935-
0.953)

0.976 (0.971-
0.981)

0.952 (0.945-
0.959)

Testing set 0.841 (0.810-
0.871)

0.972 (0.962-
0.982)

0.941 (0.921-
0.962)

0.920 (0.903-
0.936)

0.958 (0.948-
0.968)

0.926 (0.913-
0.939)

Validate set 0.852 (0.819-
0.885)

0.901 (0.882-
0.921)

0.817 (0.783-
0.852)

0.921 (0.903-
0.940)

0.925 (0.909-
0.941)

0.884 (0.867-
0.902)

50 epochs, 1:9 outcome
weight

Training set 0.892 (0.875-
0.909)

0.963 (0.956-
0.971)

0.928 (0.914-
0.942)

0.944 (0.934-
0.953)

0.975 (0.970-
0.979)

0.938 (0.931-
0.946)

Testing set 0.850 (0.820-
0.880)

0.958 (0.946-
0.971)

0.916 (0.892-
0.940)

0.923 (0.907-
0.939)

0.951 (0.939-
0.963)

0.921 (0.907-
0.934)

Validate set 0.834 (0.800-
0.868)

0.912 (0.893-
0.931)

0.830 (0.796-
0.865)

0.914 (0.895-
0.932)

0.894 (0.873-
0.916)

0.885 (0.868-
0.902)

200 epochs, 1:9 outcome
weight

Training set 0.901 (0.884-
0.917)

0.983 (0.977-
0.988)

0.965 (0.955-
0.975)

0.949 (0.940-
0.957)

0.983 (0.979-
0.987)

0.954 (0.947-
0.961)

Testing set 0.857 (0.828-
0.886)

0.967 (0.956-
0.978)

0.933 (0.911-
0.955)

0.927 (0.911-
0.942)

0.968 (0.960-
0.976)

0.929 (0.916-
0.941)

Validate set 0.887 (0.858-
0.916)

0.929 (0.912-
0.946)

0.866 (0.835-
0.897)

0.941 (0.925-
0.957)

0.948 (0.935-
0.961)

0.915 (0.900-
0.930)
April 2
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CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve.
TABLE 5 | The performances of the final two-classification and the three-classification models.

Models Data set Sensitivity
(95%CI)

Specificity
(95%CI)

PPV (95%CI) NPV (95%CI) AUC (95%CI) Accuracy
(95%CI)

Two-classification (200 epochs,
1:9)

Training set 0.996 (0.992-
1.000)

0.911 (0.895-
0.926)

0.830 (0.802-
0.858)

0.998 (0.996-
1.000)

0.991 (0.988-
0.993)

0.937 (0.926-
0.948)

Testing set 0.992 (0.980-
1.000)

0.881 (0.854-
0.908)

0.784 (0.737-
0.830)

0.996 (0.990-
1.000)

0.985 (0.979-
0.991)

0.914 (0.895-
0.934)

Validate set 0.886 (0.843-
0.929)

0.938 (0.916-
0.960)

0.869 (0.824-
0.914)

0.946 (0.926-
0.967)

0.942 (0.918-
0.967)

0.921 (0.901-
0.942)

Three-classification (200 epochs,
1:9)

Training set 0.901 (0.884-
0.917)

0.983 (0.977-
0.988)

0.965 (0.955-
0.975)

0.949 (0.940-
0.957)

0.983 (0.979-
0.987)

0.954 (0.947-
0.961)

Testing set 0.857 (0.828-
0.886)

0.967 (0.956-
0.978)

0.933 (0.911-
0.955)

0.927 (0.911-
0.942)

0.968 (0.960-
0.976)

0.929 (0.916-
0.941)

Validate set 0.887 (0.858-
0.916)

0.929 (0.912-
0.946)

0.866 (0.835-
0.897)

0.941 (0.925-
0.957)

0.948 (0.935-
0.961)

0.915 (0.900-
0.930)
CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve.
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can imitate the natural visual processing in the brain and can
interpret dense information (10). In clinical practice, the use of
deep learning method to assist clinicians in processing the
images of detection results may be able to avoid the impact of
differences in experience between clinicians on the diagnosis
results, and it has been applied to disease identification (27–29).
For example, Shafique et al. utilized the deep learning CNN
features for the typing of acute lymphoblastic leukemia cells, and
the sensitivity and specificity of the model achieve 95%-99% (28).

A deep learning model for identifying MDS patients by
dysplastic neutrophils in peripheral blood was constructed by
Acevedo et al. and the model achieved 95.5% sensitivity and 94%
accuracy (30). The sensitivity and accuracy of our bone marrow
smear-based deep learning model for identifying MDS patients
were 99.2% and 91.4%, respectively. However, few studies have
reported models based on deep learning to distinguish AA, MDS,
and AML. Only a recent study conducted by Kimura et al. used
the deep learning method to distinguish AA and MDS (14).
Their CNN model was based on peripheral blood indicators to
identify MDS from AA patients, and the AUC and sensitivity of
the model were 0.990 and 0.962, respectively. However, their
model used many blood indicators, which may not be convenient
in clinical practice, and the model lacked external validation. In
the current study, we also constructed a CNN model only based
on bone marrow smears to distinguish AA, MDS, and AML. The
model demonstrated a good ability to distinguish AA, MDS, and
AML, and the AUC of the model in the testing set and external
validation set were 0.968 and 0.948, respectively. Our model was
validated by external clinical data, and the results showed that
the model was reliable in clinical practice. In addition, our model
was more convenient in clinical practice. By inputting the
patient’s bone marrow smear image into our model, after 0.3
seconds we can know whether the patient has MDS, or which of
the patient has AA, MDS, and AML. Our model may provide
clinicians with a convenient and effective tool to distinguish AA,
MDS, and AML. The use of deep learning for disease recognition
is to extract relevant features based on the identified disease
Frontiers in Oncology | www.frontiersin.org 8
diagnosis images. Therefore, the wider application of deep
learning to disease recognition depends on more manual
diagnosis results. In addition to disease identification, future
studies may need to focus on the related disease progression,
such as predicting the risk of AA and MDS progression to AML
through deep learning methods.

Our study has constructed a model that can identify whether
a patient has MDS, and can distinguish which of the AA, MDS,
and AML diseases the patient has. In addition, our model has
been validated by external clinical data to ensure the applicability
of the model in clinical practice, and the model had a good ability
to distinguish AA, MDS, and AML. However, some limitations
of this study should be considered. First, the sample size of our
study was relatively small, and larger sample size studies may be
needed in the future. Second, although we used data
enhancement methods to increase the samples, there were still
differences between the increased sample and the independent
individual sample, which may have an impact on our results.
Third, we did not analyze the different subtypes of MDS and
AML due to the limited sample size of the ASH Image Bank.
Fourth, we cannot identify the features of cases that are
discordant or misclassified with the model due to the features
extracted by deep learning in a single image are unknown. Firth,
the differences between database patients and hospital patients
could not be analyzed due to the lack of relevant characteristics
of patients in the database, which may affect the extrapolation of
our results. However, the good performance of the model on the
external validation set indicates that the model is robust.
CONCLUSIONS

The image-net pretrained model had high recognition accuracy
in the two-classification of MDS and the three-classification
of AA, MDS, AML. This model can help clinicians identify
whether the patient had MDS through the patient’s bone marrow
smear image, and distinguish the types of AA, MDS, and AML.
A B

FIGURE 6 | The receiver operator characteristic (ROC) curves of the final recognition models. (A) ROC curves of the two-classification model; (B) ROC curves of the
three-classification model.
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This model may provide clinicians with a convenient tool to
distinguish AA, MDS, and AML in clinical practice.
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