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Using combined CT-clinical
radiomics models to identify
epidermal growth factor
receptor mutation subtypes
in lung adenocarcinoma

Ji-wen Huo1, Tian-you Luo1, Le Diao2, Fa-jin Lv1,
Wei-dao Chen2, Rui-ze Yu2 and Qi Li1*

1Department of Radiology, The First Affiliated Hospital of Chongqing Medical University,
Chongqing, China, 2Ocean International Center, The Infervision Medical Technology Co., Ltd.,
Beijing, China
Background: To investigate the value of computed tomography (CT)-based

radiomics signatures in combination with clinical and CT morphological

features to identify epidermal growth factor receptor (EGFR)-mutation

subtypes in lung adenocarcinoma (LADC).

Methods: From February 2012 to October 2019, 608 patients were confirmed

with LADC and underwent chest CT scans. Among them, 307 (50.5%) patients

had a positive EGFR-mutation and 301 (49.5%) had a negative EGFR-mutation.

Of the EGFR-mutant patients, 114 (37.1%) had a 19del -mutation, 155 (50.5%)

had a L858R-mutation, and 38 (12.4%) had other rare mutations. Three

combined models were generated by incorporating radiomics signatures,

clinical, and CT morphological features to predict EGFR-mutation status.

Patients were randomly split into training and testing cohorts, 80% and 20%,

respectively. Model 1 was used to predict positive and negative EGFR-mutation,

model 2 was used to predict 19del and non-19del mutations, and model 3 was

used to predict L858R and non-L858R mutations. The receiver operating

characteristic curve and the area under the curve (AUC) were used to

evaluate their performance.

Results: For the three models, model 1 had AUC values of 0.969 and 0.886 in

the training and validation cohorts, respectively. Model 2 had AUC values of

0.999 and 0.847 in the training and validation cohorts, respectively. Model 3

had AUC values of 0.984 and 0.806 in the training and validation cohorts,

respectively.
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EGFR, epidermal growth factor receptor; LADC, lung

progression-free survival; ROC, receiver operating char
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Conclusion: Combined models that incorporate radiomics signature, clinical,

and CT morphological features may serve as an auxiliary tool to predict EGFR-

mutation subtypes and contribute to individualized treatment for patients with

LADC.
KEYWORDS

lung cancer, epidermal growth factor receptor, radiomics, computed tomography,
machine learning
Introduction

Lung cancer, the leading cause of cancer-associated

mortality worldwide, is a heterogeneous disease whose

incidence rate increases each year (1, 2). Approximately 85%

of lung cancers are non-small-cell lung cancer, which has the

most frequent histological subtype of lung adenocarcinoma

(LADC) (2, 3).

Epidermal growth-factor receptor (EGFR), an effective

therapeutic target for LADC, has been widely studied. Previous

research has revealed that patients with an EGFR-mutation have

a higher response rate to tyrosine kinase inhibitors (TKIs) and a

longer progression-free survival (PFS) than those without an

EGFR-mutation (4–6). The two most frequent mutant subtypes

include EGFR exon 19 deletion (19del) and exon 21 mutation

(L858R), which account for about 90% of all EGFR mutations

(7). A few recent studies showed that 19del and L858Rmutations

had differing computed tomography (CT) and clinical

characteristics (8). Additionally, several reports indicated that

patients with a 19del-mutation had a longer PFS after receiving

TKI treatment (9–12), while those with a L858R-mutation may

be more responsive to chemotherapy or an immune checkpoint

blockade treatment (13, 14). Therefore, the identification of

EGFR-mutation subtypes is critical to select the appropriate

targeted molecular therapy for patients with LADC. Biopsy and

sequence testing are often used to analyze the EGFR genotype.

However, detecting mutations can be hindered by the challenge

of obtaining histologic samples, especially in unresectable or

advanced tumors. Furthermore, biopsies may increase the risk of

cancer metastasis and some patients with poor underlying

conditions may not tolerate biopsy. In these situations, a

noninvasive and easy-to-use method is needed to predict the

EGFR-mutation status.

Radiomics, which allow for deeper excavation, prediction,

and analysis using large volumes of high-throughput image data,
mputed tomography;

adenocarcinoma; PFS,

acteristic; ROI, region

02
is an auxiliary tool for clinical diagnosis and treatment (15).

Previous studies have demonstrated that radiomics can

distinguish tumors with EGFR mutations from those with

wild-type EGFR (16, 17) and provides a noninvasive and

quantified approach to gain insight into tumor heterogeneity.

Unfortunately, our attempts to predict tumors with EGFR

subtypes using radiomics features have not yet yielded results

appropriate for use in the clinic. Some studies have shown that

the prediction efficiency of tumors with EGFR mutations

improved when clinical, CT, and radiomics features are

combined in a model (18, 19). However, these studies lacked

the necessary stratification to distinguish EGFR-mutation

subtypes, and the related radiomics models have not been

well evaluated.

The present study aimed to develop and validate several

combined models that incorporate radiomics signatures, clinical,

and CT morphological features to predict EGFR-mutation

tumor status, focusing on the predominant 19del and L858R

subtypes in patients with LADC.
Materials and methods

Patient data

This study was approved by the ethical committee of our

institution, and the requirement for patient-informed consent

was waived due to the retrospective nature of study. In total,

1095 patients admitted to our hospital from February 2012 to

October 2019 were initially included. The inclusion criteria for

target population were that the patients 1) were pathologically

confirmed with LADC; 2) obtained EGFR-mutation testing

results; 3) had completed clinical data, including age, gender,

smoking history, and clinical cancer stage; and 4) had available

chest contrast-enhanced CT data. Another 487 patients were

excluded using the following criteria: 1) they received antitumor

therapy prior to chest CT scans and EGFR gene detection; 2)

they had multiple primary tumors; 3) their tumor had a

boundary that could not be determined; 4) they had more

than one EGFR-mutation subtype. There were 608 LADC
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patients finally included. Among them, 307 patients (50.5%) had

an EGFR-mutation and 301 (49.5%) had a wild-type EGFR. Of

the EGFR-mutant patients, 114 (37.1%) harbored a single 19del,

155 (50.5%) harbored a single L858R, and 38 (12.4%) harbored

other rare mutations.
Mutation detection

Molecular analyses were performed on tumor histologic or

cytology samples. The EGFR-mutation statuses were detected

using a real-time polymerase chain reaction-based amplification

refractory mutation system using the Human EGFR Gene

Mutations Detection Kit (Amoy Dx, Xiamen, China).

Polymerase chain reaction included the 18 to 21 exons

sequence and evaluated the 19del, L858R, T790M, 20 ins,

G719X, S768I, and L861Q locus mutations.
Image acquisition

All patients underwent chest contrast-enhanced CT scans

using one of two CT systems (GE Healthcare, Milwaukee, WI,

USA; Siemens Healthineers, Erlangen, Germany). All CT scans

were performed at the end of inspiration, during a single breath-

hold gap. The parameters were a 100–130 kVp tube voltage,

100–250 mA tube current, 5 mm/5 mm scanning slice thickness/

interval, and a reconstruction thickness/interval of 0.625, 1 mm/

0.625, 1 mm. After an unenhanced CT scanning, a non-ionic

iodized contrast agent (300 mg iodide/mL) was injected through

the antecubital vein with a double high-pressure injector at a

dose of 1.5 mL/kg body weight (total volume 80–110 mL) at a

flow rate of 3.0 mL/s. The contrast agent was followed by a 50

mL injection of saline solution. The arterial and delayed phase

acquisition times were triggered at 30 and 120 s, respectively.

Finally, the images were transferred to the picture archiving and

communication system workstation system and exported to the

DICOM format for image feature extraction.
Evaluation of clinical and CT features

Images were analyzed by two radiologists, blinded to the

clinical data, with more than 10 years of experience in chest CT

interpretation. A consensus on differences in opinions was

reached through consultation. Clinical indicators including

age, gender, smoking history, and clinical staging were

collected. The following CT features were observed: tumor

location (central, involving the segmental or more-proximal

bronchi; peripheral, involving the subsegmental or more-distal

bronchi), tumor size (the longest tumor diameter in the lung

window setting), margin (spiculation, lobulation), density
Frontiers in Oncology 03
(subsolid, tumor with ground-glass opacity [GGO]; solid,

tumor without GGO), internal characterist ics (air

bronchogram, air-filled bronchus within the tumor; air space,

air attenuation within the tumor including cavity and pseudo-

cavity; necrosis, focal area of low attenuation without

enhancement; calcification), external characteristics (vascular

convergence sign, convergence of vessels toward the tumor;

pleural retraction, linear or tentiform structures connected

between the tumor and pleura), and associated findings

(pleural effusion; lymphadenopathy, the short diameter of

lymph node >1 cm); multiple pulmonary metastases (number

of metastases >10).
Image segmentation and
feature extraction

All CT images were imported to the Infer Scholar Center

platform (https://www.infervision.com/, Infer Scholar). The

region of interest (ROI) was manually outlined by two

radiologists with more than 10 years of experience in chest CT

interpretation using the Infer Scholar Center platform, which

was defined as the maximum contour of tumor on axial CT

image (20). Five samples were randomly selected from patients

with negative EGFR-mutation, 19del-mutation, L858R-

mutation, and other rare mutations (20 samples together),

respectively, for the ROI segmentation. To assess interobserver

repeatability, the ROI segmentation was performed in a blinded

way by the two radiologists. To evaluate intra observer

repeatability, observer 1 repeated the ROI segmentation 4

weeks after the first assessment. Thereafter, the intra-class

correlation coefficients (ICCs) were calculated to evaluate the

stability and reproducibility of feature extraction and these

features with both inter- and intra-observer ICC values greater

than 0.75 were included in this study. Radiomics feature

extraction was performed with P-y-Radiomics (https://

pyradiomics.readthedocs.io/en/latest/), a flexible open-source

platform capable of extracting a large panel of engineered

features from medical images (20). For each accurately

segmented tumor, the P-y-Radiomics algorithms were used to

automatically extract tumor region features. A total of 919

Radiomics features and 18 clinical and CT factoring features

were initially extracted.
Model establishment and
performance evaluation

For model 1, the least absolute shrinkage (LASSO) and

selection operator algorithm were used to select the optimal

predictive features and a five-fold cross-validation was used to

select the best machine learning algorithm. Finally, we used the
frontiersin.org
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Gradient Boost Tree by combing radiomics, clinical, and CT

morphological features to build model 1. For models 2 and 3,

instead of feature selection, 919 Radiomics features and 18

clinical and CT features were initially included for obtaining a

better performance. And then, we used light GBM algorithm to

conduct feature screening and classification of model modeling.

We first trained light GBM model and conducted feature

importance ranking using Permutation Importance method,

and selected important features through supervised learning

for modeling prediction. The permutation feature importance

is defined to be the decrease in a model score when a single

feature value is randomly shuffled (21). Finally, we used 202

features whose importance score is greater than 0 to build model

2, including 29 first-order features, 4 shape 2D features, 159

advanced textural features (43 GLCM, 32 GLDM, 38 GLRLM, 35

GLSZM, 11 NGTDM) as well as 10 clinical and CT

morphological features, and we used 358 features whose

importance score is greater than 0 to build model 3, including

64 first-order features, 1 shape 2D features, 282 advanced

textural features (106 GLCM, 54 GLDM, 56 GLRLM, 42

GLSZM, 24 NGTDM) as well as 11 clinical and CT

morphological features.

In all models, patients were randomly split into training and

testing cohorts, 80% and 20%, respectively. The detailed split-

sample settings for each model are shown in Figure 1. Model 1

was used to identify positive and negative EGFR mutations,

model 2 was used to distinguish 19del from non-19del

mutations, and model 3 was used to determine L858R from

non-L858R mutations in LADC patients. The workflow is shown

in Figure 2. The receiver operating characteristic curve (ROC)

and the area under the curve (AUC) of training and validation

sets as well as the accuracy, sensitivity, and specificity in

validation sets were used to evaluate the performance of

three models.
Frontiers in Oncology 04
Statistical analysis

Statistical analyses were performed by using SPSS statistics

(version 25; IBM, Armonk, NY, USA). The clinical and CT

features between patients with positive and negative EGFR

mutations, between patients with 19del and non-19del

mutations, and between patients with L858R from non-L858R

mutations were compared, respectively. Furthermore, for testing

whether the background factors between cohorts were balanced,

the clinical and CT features of patients in training and validation

sets in each model were compared respectively. For continuous

variables of clinical and CT morphological features, two

independent samples Student’s t test was performed; for

categorical variables, Chi-square test was used for comparisons

between groups. A two-tailed p-value of < 0.05 was considered

statistically significant.
Results

Clinical and CT morphological features

Among the 608 patients with LADC, 272 patients were

women and 336 were men with an average age of 61.7 ± 10.4

(range: 30–85) years. For clinical staging, 190 patients (31.2%)

were in stages I-II and 418 (68.8%) in stages III-IV. Compared

to patients without EGFR-mutation, female, nonsmokers,

tumor size<3cm, subsolid density, air bronchogram, air

space, spiculation, pleural retraction, vascular convergence

sign, and multiple pulmonary metastases were more

common in those with EGFR-mutation (all p <0.05).

Compared to patients with non 19del-mutation, younger

age, female, nonsmokers, tumor size <3cm, subsolid density,

air bronchogram, pleural retraction, and vascular convergence
FIGURE 1

The detailed split-sample settings for each model.
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sign were more frequent in those with 19del-mutation (all p

<0.05). Compared to patients with non L858R-mutation,

female, nonsmokers, pleural retraction, vascular convergence

sign, and without necrosis were more common in those with

L858R-mutation (all p <0.05) (Table 1). The clinical data and
Frontiers in Oncology 05
CT morphological features of patients in training and

validation cohorts for model 1 to 3 were shown in Tables 2–

4, respectively. No significant differences were observed in

clinical and CT morphological features between both cohorts

in each model (all p > 0.05).
TABLE 1 Clinical and CT morphological features of patients with LADC between different EGFR-mutation groups.

EGFR-mutation statuses

Clinical and CT
features

EGFR (+) vs EGFR (-)
(307 vs 301)

p-value 19del vs Non-19del
(114 vs 494)

p-
value

L858R vs Non-L858R
(155 vs 453)

p-
value

Age (years) 61.1 ± 10.8 vs 62.2 ± 10.0 0.224a 60.9 ± 11.9 vs 61.8 ± 10.1 0.013a 60.9 ± 10.1 vs 61.9 ± 10.6 0.317a

Sex (female) 180 (58.6%) vs 92 (30.6%) <0.001b 72 (63.2%) vs 200 (40.5%) <0.001b 86 (55.5%) vs 186 (41.1%) 0.002b

Non-smokers 213 (69.4%) vs 122 (40.5%) <0.001b 81 (71.1%) vs 254 (51.4%) <0.001b 107 (69.0%) vs 228 (50.3%) <0.001b

Clinical stage (I ~ II) 107 (34.9%) vs 83 (27.6%) 0.053b 35 (30.7%) vs 155 (31.4) 0.889b 55 (35.5%) vs 135 (29.8%) 0.188b

Location (peripheral) 243 (79.2%) vs 221 (73.4%) 0.097b 93 (81.6) vs 371 (75.1%) 0.143b 115 (74.2%) vs 349 (77.0%) 0.472b

Tumor size≥3cm 161 (52.4%) vs 193 (64.1%) 0.004b 54 (47.4%) vs 300 (60.7%) 0.009b 92 (59.4%) vs 262 (57.8%) 0.741b

Subsolid density (presence) 59 (19.2%) vs 24 (8.0%) <0.001b 28 (24.6%) vs 55 (11.1%) <0.001b 26 (16.8%) vs 57 (12.6%) 0.19b

Spiculation (presence) 89 (29.0%) vs 65 (21.6%) 0.036b 37 (32.5%) vs 117 (23.7%) 0.052b 37 (23.9%) vs 117 (25.8%) 0.629b

lobulation (presence) 291 (94.8%) vs 275 (91.4%) 0.096b 108 (94.7%) vs 458 (92.7%) 0.442b 145 (93.5%) vs 421 (92.9%) 0.795b

Air bronchogram (presence) 64 (20.8%) vs 28 (9.3%) <0.001b 30 (26.3%) vs 62 (12.6%) <0.001b 27 (17.4%) vs 65 (14.3%) 0.357b

Air space (presence) 60 (19.5%) vs 55 (18.3%) 0.689b 23 (20.2%) vs 92 (18.6%) 0.703b 29 (18.7%) vs 86 (19.0%) 0.94b

Necrosis (presence) 28 (9.1%) vs 65 (21.6%) <0.001b 7 (9.6%) vs 82 (16.6%) 0.063b 14 (9.0%) vs 79 (17.4%) 0.012b

Calcification (presence) 15 (4.9%) vs 14 (4.7%) 0.892b 7 (6.1%) vs 22 (4.5%) 0.446b 7 (4.5%) vs 22 (4.9%) 0.864b

Vascular convergence sign (presence) 107 (34.9%) vs37 (12.3) <0.001b 39 (34.2%) vs 105 (21.3%) 0.003b 49 (31.6%) vs 95 (21.0%) 0.007b

Pleural retraction sign (presence) 197 (64.2%) vs 116 (38.5%) <0.001b 73 (64.0%) vs 240 (48.6%) 0.003b 102 (65.8%) vs 211 (46.6%) <0.001b

Pleural effusion (presence) 67 (21.8%) vs 89 (29.6%) 0.029b 34 (29.8) vs 122 (24.7%) 0.258b 30 (19.4%) vs 126 (27.8%) 0.037b

Lymphatic metastasis (presence) 166 (54.1%) vs 200 (66.4%) 0.002b 65 (57.0%) vs301 (60.9%) 0.442b 84 (54.2%) vs 282 (62.3%) 0.077b

Multiple pulmonary metastases (n≥10) 53 (17.3%) vs 28 (9.3%) 0.004b 21 (18.4%) vs 60 (12.1%) 0.076b 27 (17.4%) vs 54 (11.9) 0.082b
frontier
aTwo independent samples Student’s t test.
bChi-squared test.
FIGURE 2

Study workflow.
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TABLE 3 Clinical and CT morphological features of patients with LADC in training and validation cohorts of model 2.

Clinical and CT features Training cohort (n=486) Validation cohort (n=122) p-value

19del (n=91) Non-19del (n=395) 19del (n=23) Non-19del (n=99)

Age (years) 61.0 ± 11.5 61.5 ± 9.8 60.7 ± 13.2 63.1 ± 10.8 0.987a

Female 58 (63.7%) 160 (40.5%) 14 (60.9%) 40 (40.4%) 0.643b

Non-smokers 67 (73.6%) 198 (50.1%) 14 (60.9%) 56 (56.6%) 0.320b

Clinical stages (I~II) 24 (26.4%) 118 (29.9%) 11 (47.8%) 37 (37.4%) 0.925b

Location (peripheral) 73 (80.2%) 297 (75.2%) 20 (87.0%) 74 (74.7%) 0.612b

Tumor size ≥3cm 45 (49.5%) 235 (59.5%) 9 (39.1%) 65 (65.7%) 0.077b

Spiculation 29 (31.9%) 86 (21.8%) 8 (34.8%) 31 (31.3%) 0.077b

Lobulation 86 (94.5%) 368 (93.2%) 22 (95.7%) 90 (90.9%) 0.668b

Subsolid density 21 (23.1%) 40 (10.1%) 8 (34.8%) 14 (14.1%) 0.153b

Air bronchogram 22 (24.2%) 49 (12.4%) 9 (39.1%) 12 (12.1%) 0.564b

Air space 16 (17.6%) 76 (19.2%) 7 (30.4%) 16 (16.2%) 1.000b

Necrosis 8 (8.8%) 68 (17.2%) 3 (13.0%) 14 (14.1%) 0.744b

Calcification 5 (5.5%) 18 (4.6%) 2 (8.7%) 4 (4.0%) 1.000b

Vascular convergence sign 29 (31.9%) 82 (20.8%) 9 (39.1%) 24 (24.2%) 0.390b

Pleural retraction 58 (63.7%) 187 (47.3%) 16 (69.6%) 52 (52.5%) 0.342b

Pleural effusion 27 (29.7%) 98 (24.8%) 6 (26.1%) 25 (25.3%) 1.000b

Lymphatic metastasis 53 (58.2%) 246 (62.3%) 10 (43.5%) 57 (57.6%) 0.219b

Multiple pulmonary metastases 17 (18.7%) 46 (11.6%) 4 (17.4%) 14 (14.1%) 0.710b
Frontiers in Oncology
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aTwo independent samples Student’s t test.
bChi-squared test.
TABLE 2 Clinical and CT morphological features of patients with LADC in training and validation cohorts of model 1.

Clinical and CT features Training cohort (n=487) Validation cohort (n=121) p-value

EGFR (+) (n=246) EGFR (-) (n=241) EGFR (+) (n=61) EGFR (-) (n=60)

Age (years) 61.5 ± 11.6 62.5 ± 10.0 61.1 ± 10.6 61.0 ± 10.0 0.568a

Female 31 (50.8%) 77 (32.0%) 149 (60.6%) 15 (25.0%) 0.175b

Non-smokers 44 (72.1%) 100 (41.5%) 169 (68.7%) 22 (36.7%) 0.972b

Clinical stages (I ~ II) 24 (39.3%) 64 (26.6%) 83 (33.7%) 19 (31.7%) 0.491b

Location (peripheral) 50 (82.0%) 174 (72.2%) 193 (78.5%) 47 (78.3%) 0.321b

Tumor size ≥3cm 29 (47.5%) 152 (63.1%) 132 (53.7%) 41 (68.3%) 1.000b

Spiculation 70 (28.5%) 57 (23.7%) 19 (31.1%) 8 (13.3%) 0.462b

Lobulation 234 (95.1%) 223 (92.5%) 57 (93.4%) 52 (86.7%) 0.208b

Subsolid density 48 (19.9%) 21 (8.7%) 11 (18.0%) 3 (5.0%) 0.550b

Air bronchogram 52 (21.1%) 24 (10.0%) 12 (19.7%) 4 (6.7%) 0.608b

Air space 46 (18.7%) 48 (19.9%) 14 (23.0%) 7 (11.7%) 0.719b

Necrosis 21 (8.5%) 52 (21.6%) 7 (11.5%) 13 (21.7%) 0.780b

Calcification 15 (6.1%) 12 (5.0%) 0 (0.0%) 2 (3.3%) 0.119b

Vascular convergence sign 83 (33.7%) 33 (13.7%) 24 (39.3%) 4 (6.7%) 0.970b

Pleural retraction 155 (63.0%) 96 (39.8%) 42 (68.9%) 20 (33.3%) 1.000b

Pleural effusion 56 (22.8%) 72 (29.9%) 11 (18.0%) 17 (28.3%) 0.554b

Lymphatic metastasis 134 (54.5%) 160 (66.4%) 32 (52.5%) 40 (66.7%) 0.944b

Multiple pulmonary metastases 42 (17.1%) 24 (10.0%) 11 (18.0%) 4 (6.7%) 0.853b
aTwo independent samples Student’s t test.
bChi-squared test.
ersin.org
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Establishment and validation of
prediction models

Model 1 was built with 137 radiomics features, including 25

first-order features, two shape 2D features, 110 advanced

textural features (30 GLCM, 35 GLSZM, 20 GLRZM, 13

NGTDM, and 12 GLDM) as well as 18 clinical and CT

morphological features. The AUCs for predicting EGFR-
Frontiers in Oncology 07
mutation positive cases were 0.969 and 0.886 in the training

and validation cohorts, respectively. The accuracy, sensitivity,

and specificity of the validation cohort were 0.810, 0.902, and

0.717, respectively (Figure 3).

Model 2 was built with all 202 features and the top 10 ones

sorted by their importance scores included 5 radiomics features

(5 advanced texture features), 3 clinical features (female, no-

smokers, younger age), and 2 CT morphological features (tumor
TABLE 4 Clinical and CT morphological features of patients with LADC in training and validation cohorts of model 3.

Clinical and CT features Training cohort (n=486) Validation cohort (n=122) p-value

L858R (n=122) Non-L858R (n=364) L858R (n=33) Non-L858R (n=89)

Age (years) 60.8 ± 9.7 61.7 ± 10.6 62.8 ± 9.6 62.9 ± 10.1 0.568a

Female 66 (54.1%) 153 (42.0%) 20 (60.6%) 33 (37.1%) 0.987b

Non-smokers 83 (68.0%) 181 (49.7%) 24 (72.7%) 47 (52.8%) 0.504b

Clinical stages (I ~ II) 41 (33.6%) 107 (29.4%) 14 (42.4%) 28 (31.5%) 0.604b

Location (peripheral) 88 (72.1%) 283 (77.7%) 27 (81.8%) 66 (74.2%) 1.000b

Tumor size≥3cm 70 (57.4%) 208 (57.1%) 22 (66.7%) 54 (60.7%) 0.477b

Spiculation 31 (25.4%) 93 (25.5%) 6 (18.2%) 25 (28.1%) 0.926b

Lobulation 115 (94.3%) 336 (92.3%) 30 (90.9%) 85 (95.5%) 0.711b

Subsolid density 21 (17.2%) 45 (12.4%) 6 (18.2%) 11 (12.4%) 1.000b

Air bronchogram 25 (20.5%) 49 (13.5%) 3 (9.1%) 15 (16.9%) 1.000b

Air space 24 (19.7%) 70 (19.2%) 6 (18.2%) 15 (6.9%) 0.684b

Necrosis 12 (9.8%) 68 (18.7%) 1 (3.0%) 12 (13.5%) 0.147b

Calcification 7 (5.7%) 16 (4.4%) 0 (0.0%) 6 (6.7%) 1.000b

Vascular convergence sign 36 (29.5%) 80 (22.0%) 14 (42.4%) 14 (15.7%) 0.925b

Pleural retraction 78 (63.9%) 174 (47.8%) 25 (75.8%) 36 (40.4%) 0.791b

Pleural effusion 27 (22.1%) 100 (27.5%) 3 (9.1%) 26 (29.2%) 0.676b

Lymphatic metastasis 67 (54.9%) 228 (62.6%) 17 (51.5%) 54 (60.7%) 0.688b

Multiple pulmonary metastases 19 (15.6%) 43 (11.8%) 7 (21.2%) 12 (13.5%) 0.503b
fronti
aTwo independent samples Student’s t test.
bChi-squared test.
A B

FIGURE 3

Model 1 validation. (A) The ROC curves for model 1 to identify positive and negative EGFR mutation cases. (B) The confusion matrix for model 1.
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size<3cm, subsolid density). The AUC values for predicting

19del-mutation were 0.999 and 0.847 in the training and

validation cohorts, respectively. The accuracy, sensitivity, and

specificity in the validation cohort were 0.852, 0.739, and 0.879,

respectively (Figure 4). The radiomics, clinical, and CT

morphology features used for establishing model 2 and their

importance scores are detailed in Supplementary Table 1.

Model 3 was built with all 358 features and the top 10 ones

sorted by their importance scores included 6 radiomics features

(2 first-order features, 4 advanced texture features), 2 clinical

(no-smokers, female) and 2 CT morphological features (pleural

retraction, vascular convergence sign). The AUCs for predicting

L858R-mutation were 0.984 and 0.806 in the training and

validation cohorts, respectively. The accuracy, sensitivity, and

specificity in the validation cohort were 0.713, 0.879, and 0.652,

respectively (Figure 5). The radiomics, clinical, and CT
Frontiers in Oncology 08
morphology features used for establishing model 3 and their

importance scores are detailed in Supplementary Table 2.
Discussion

With the development of targeted therapy technology, the

prognosis of LADC patients has greatly improved. The

noninvasive and quantified prediction of EGFR-mutation

status would provide great value to clinicians in selecting the

best LADC therapy, which could further extend PFS.

Therefore, we established and validated three combined

models that incorporated radiomics signatures, clinical

indicators, and CT morphological features to better predict

the mutation status of EGFR, focusing on the prediction of

19del and L858R mutations.
A

B

FIGURE 4

Model 2 validation. (A) The ROC curves for model 2 to identify 19del mutations. (B) The confusion matrix for model 2.
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First, we built model 1 to identify positive and negative

EGFR-mutation in LADC. In this model, 137 radiomics features

as well as 18 clinical and CT morphological features were

included with AUCs of 0.965 and 0.886 in the training and

validation cohorts, respectively. Jia et al. (22) reported that

random forest model features combined with sex and smoking

history had the potential to predict EGFR-mutation status of

LADC with an AUC of 0.828. Zhang et al. (18) demonstrated

that a Squeeze-and-Excitation Convolutional Neural Network

(SE CNN) can recognize EGFR-mutation status of LADC with

AUCs of 0.910 and 0.841 for the internal and external test

cohorts, respectively. Paralleled with previous research, our
Frontiers in Oncology 09
research has several advantages. First, our model was based on

the machine learning model of the classic general algorithm,

which can be applied to a range of scenarios and withstand

verification. Since the universality of the classical algorithm is

well established, it has potential to be clinically implemented.

Second, our models performed better than those in other studies.

We only used the biggest level to establish the model instead of

multi-layer and multi-sequence labeling, which saves time and

reduces the clinician workload.

Previous studies indicated that LADC patients with different

EGFR-mutation subtypes may exhibit different prognoses to

targeted therapy (9, 11). Investigators have elucidated the
A

B

FIGURE 5

Model 3 validation. (A) The ROC curves for model 3 to identify L858R mutations. (B) The confusion matrix for model 3.
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mechanism(s) underlying the different sensitivities to EGFR-

TKI treatment between patients with 19del and L858R

mutations. Zhu et al. (23) suggested that G1 arrest levels were

higher in cells with 19del-mutation than those with L858R-

mutation after treatment with gefitinib. Sordella et al. (24) found

that di fferent EGFR -mutat ion subtypes may al ter

autophosphorylation and downstream signaling pathways. An

accurate assessment of EGFR-mutation subtypes of tumors may

help select the optimal treatment strategy, thereby improving the

quality of life and prolonging survival of patients with LADC.

Therefore, we further established models 2 and 3 to differentiate

19del and L858R mutation statuses, respectively.

Both models exhibited good performances and found some

important features to identify EGFR-mutation subtypes. For

clinical features, our results showed that female and no-

smokers were correlated to 19del-mutation and L858R-

mutation, which is consistent with previous studies (7, 9).

Moreover, we found 19del-mutation was more common in

younger patients. For CT morphological features, 19del-

mutation were more frequent in tumors with size<3cm and

subsolid density, while L858R-mutation were more frequent in

those with pleural retraction and vascular convergence sign,

which is similar to the results of other scholars (8, 25). For

radiomics features, we found that 5 advanced texture features

were associated with 19del-mutation, whereas 2 first-order

features and 4 advanced texture features were related to

L858R-mutation. Generally, advanced texture features are used

to describe the surface properties of the scene corresponding to

the image or image area, while first-order features are used to

describe the distribution of voxel intensities within the ROI

using common and basic metrics (26, 27), indicating that tumors

with 19del and L858R mutations may correlate to

aforementioned characteristics.

Actually, some studies have reported the clinical, CT

morphological, and radiomics features can be used to predict

predominant EGFR-mutation subtypes. Shi et al. (7) used

clinical and CT morphological characteristics to identify 19 del

and L858R mutations of LADC, and the AUC for the model was

0.793. Li et al. (28) used combined model incorporating clinical

and radiomics features can predict the common subtypes of

EGFR-mutation in LADC, and the AUC for the model was

0.775. Additionally, Song et al. (29) applied a deep learning

model to classify EGFR-mutation subtypes, and they confirmed

that imaging phenotypes of the two mutation-subtype tumors

(19del, L858R) were different with AUCs of models to identify

the two subtypes were 0.78 and 0.79, respectively. However,

those studies did not achieve a satisfactory effectiveness and may

be difficult to apply in the clinic. Compared to previous reports,

our models had a superior performance when incorporating

clinical characteristics, CT morphological features, and

radiomics signatures. The two combined models could be an

auxiliary tool to predict EGFR-mutation subtypes in

LADC patients.
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Recently, some studies have indicated that 18F-FDG-

PET/CT-based and MRI-based radiomics models were

promising alternatives to predict the EGFR-mutation

subtypes in LADC patients. Liu et al. (30) showed that 18F-

FDG PET/CT-based radiomics features may be valuable for

identifying 19del and L858R mutations in LADC; the AUC

values were 0.77 and 0.92, respectively. However, the

increased radiation doses and high examination costs of

PET/CT have restricted its clinical application (31). Rao

et al. (32) demonstrated that a MRI-based radiomics

nomogram can be adopted to differentiate exons 19 and 21

in EGFR mutation by analyzing spinal bone metastases in

patients with LADC; the AUC values for these models were

0.87 and 0.86, respectively. However, compared with chest CT

scan, MRI fails due to a weak lung signal, increased inspection

time, obvious respiratory artifacts, and poor image

quality (33).

This study has several limitations. First, this work was

performed in a single center and lacked external verification.

We are preparing to conduct a multicenter study to verify the

reliability and general applicability of this model. Second,

incomplete patient records mean that some clinical parameters

and serum biomarkers were not included in this study. Finally,

this study only predicted EGFR-mutation in LADC and

excluded other lung cancer gene mutations. Therefore, further

studies are needed.

In conclusion, combined models that incorporate radiomics

signatures, clinical, and CT morphological features have the

potential to identify EGFR-mutation subtypes, which may

contribute to individualizing LADC patient therapy.
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