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Diffuse large B-cell lymphoma (DLBCL) is one type of highly heterogeneous lymphoid
malignancy with 30%~40% of patients experiencing treatment failure. Novel risk
stratification and therapeutic approaches for DLBCL are urgently needed. Endothelial-
to-mesenchymal transition (EndMT), which contributes to tumor angiogenesis,
metastasis, drug resistance, and cancer-associated fibroblast generation, has been
detected in the microenvironment of many types of cancers. However, the existence of
EndMT in the hematological malignancies microenvironment remains unknown. Here, we
identified the existence of EndMT in DLBCL-associated endothelial cells and the clinical
relevance of EndMT markers in DLBCL, which was associated with advanced clinical
stage and poor prognosis. In vitro experiments confirmed that DLBCL cells stimulated
angiogenesis and EndMT of human umbilical vein endothelial cells (HUVECs). We further
unveiled the molecular mechanisms underlying this process. We demonstrated that
WNT10A, a WNT family member overexpressed in DLBCL tissues and correlated with
clinical features in DLBCL, promoted EndMT through glycogen synthase kinase 3f
(GSK3B)/B-catenin/snail signaling. WNT10A inhibited the binding of GSK3B to B-
catenin/snail, resulting in B-catenin and snail nuclear accumulation and target gene
transcription. Silencing B-catenin and snail respectively attenuated WNT10A-induced
angiogenesis and EndMT. The interplay between B-catenin-dependent and snail-
dependent signaling was also confirmed in this study. Collectively, these findings
identified that WNT10A/GSK3/B-catenin/snail pathway performed vital roles in
DLBCL-induced EndMT and indicated that EndMT markers and WNT10A may serve as
novel predictors of clinical outcome.

Keywords: angiogenesis, diffuse large B-cell lymphoma, endothelial-to-mesenchymal transition, WNT/8-
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INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL), the most common
adult lymphoid malignancy, is highly genetically and clinically
heterogeneous (1). Patients are differentially characterized by
involved organs, therapeutic efficacy, and prognosis. Though the
overall remission rate has been significantly increased along with
the application of rituximab, 30%~40% of DLBCL patients
suffered from primary refractory or disease progression (2).
Therefore, it is essential to explore new markers for DLBCL
early detection, risk stratification, and prognosis prediction. In-
depth studies of the molecular mechanisms underlying DLBCL
progression and novel therapeutic approaches were also
urgently needed.

Endothelial-to-mesenchymal transition (EndMT) is a type of
cellular transdifferentiation in which endothelial cells revealed
substantial plasticity such as cytoskeleton rearrangement, loss of
intercellular tight conjunction, and acquisition of migratory
potential. During this process, endothelial cells downregulate
endothelial markers including CD31 and vascular-endothelial
cadherin (VE-cadherin) and acquire mesenchymal markers such
as o-smooth muscle actin (0-SMA), fibronectin (FN), vimentin,
collagen type I (COLI), and serpinel (3). EndMT has been
detected and been proved to play a pivotal role during
embryonic development as well as pathologies such as
malignancy, fibrosis, and vascular diseases. During malignancy,
EndMT was a source of cancer-associated fibroblasts, which can
facilitate tumor growth through extracellular matrix (ECM)
remodeling, growth factor production, and immunoregulation
(4, 5). EndMT can also promote angiogenesis, cancer metastasis,
and therapy resistance (6, 7). Nevertheless, the existence of
EndMT in DLBCL and its role in DLBCL progression
remain elusive.

Numerous signaling pathways (including TGF-3, wingless-
related integration site (WNT), endothelin-1, hypoxia-inducible
factor-1, and Notch pathway) and transcription factors
(including SNAI1 (snail), ZEB1, ZEB2, and TWIST1)
participate in the EndMT process (8). WNT signaling is
aberrantly activated in plenty of tumors including lymphoma
and contributes to the development of cancer (9, 10). WNT
ligands attenuate GSK3P activity through the interaction
between WNT receptor and GSK3f, which prevents the
phosphorylation of B-catenin and facilitates PB-catenin
cytoplasmic accumulation, nucleus translocation, and target
gene transcription (11-13). Apart from B-catenin, several
dozen proteins are also reported to function as the
phosphorylation substrates of GSK3f and regulated by WNT.
This process is referred to as WNT-dependent stabilization of
proteins (WNT/STOP) now (12, 14). Snail, a master
transcription factor in EndMT, differs from the other
transcription factors. Unlike the other transcription factors,
snail also plays a crucial role in angiogenesis and is one of the
Wnt/STOP target proteins (15).

WNT family comprises 19 secreted glycoproteins implicated
in both embryogenesis and virtually every adult tissue hemostasis
(16-18). WNT10A, one member of the WNT family, has been

previously elucidated in ectodermal disorders (19). Mutation of
WNT10A may lead to abnormal tooth development and kinds of
skin alterations (19, 20). In addition, a series of studies have
reported that WNT10A was upregulated in colorectal cancer and
esophageal cancer. Overexpression of WNT10A was associated
with cancer invasion as well as poor prognosis via regulation of
B-catenin (21, 22). Yet the role of WNT10A in EndMT and
hematological malignancy progression remains elusive.

Based on these previous studies, we detected the presence of
EndMT in the supportive tissues of DLBCL. Our investigation
identified that WNT10A was exceptionally overexpressed in
DLBCL and played a pivotal role in DLBCL-induced
angiogenesis and EndMT. Mechanistically, we observed that
WNTI10A blunted GSK3P activity, thereby reducing its
interaction with B-catenin and snail. Increased accumulation of
[B-catenin and snail in the nucleus subsequently upregulated the
expression of genes triggering EndMT and angiogenesis.

MATERIALS AND METHODS

Cell Culture and Reagents

Human umbilical vein endothelial cells (HUVECs) and DLBCL cell
line OCI-LY3 were purchased from American Type Culture
Collection (ATCC, Manassas, VA, USA). DLBCL cell line
SU-DHL-4 was kindly provided by Stem Cell Bank, Chinese
Academy of Science. Cells were maintained in high-glucose
Dulbecco’s modified Eagle’s medium (DMEM) (Gibco, Grand
Island, NY, USA), IMDM (Gibco, USA), and Roswell Park
Memorial Institute (RPMI)/1640 (Gibco, USA) supplemented with
10% fetal bovine serum (FBS, Gibco). Recombinant human
WNTI10A (thWNT10A) was purchased from Cloud-Clone Corp.
(Wuhan, China). IWR-1 was purchased from Sigma (St. Louis, MO,
USA). Antibodies against the following proteins were purchased from
Abcam (Boston, MA, USA): WNT10A (ab106522), snail (ab216347),
CD31 (ab9498), vimentin ab (ab8978), o--SMA (ab7817), Lamin B
(ab16048), and IL-1B (ab234437). Antibodies against GSK3[
(#12456), P-catenin (#8480), total/phospho-p65 (#8242, #3033),
total/phospho-IkB-o. (#4814, #2859), B-actin (#3700), and VE-
cadherin (#2500) were purchased from Cell Signaling Technology
(Danvers, MA, USA). Antibodies against FN (CY5621), ICAM-1
(CY5391), VCAM-1 (CY5427), COLI (CY5120), anti-COX-2
(CY5580), and GAPDH (AB0036) were purchased from Abways
Technology (Shanghai, China). Antibodies for immunoblot and
immunoprecipitation were used at a dilution of 1:1,000 and 1:50,
respectively, while antibodies for immunohistochemistry and
immunofluorescence were used at a dilution of 1:100.

Co-Culture Model

In this study, an indirect two-layer co-culture model was
established to mimic the tumor microenvironment. HUVECs
cultured in the lower chamber were incubated with DLBCL cells
in the upper chamber and were harvested at indicated time
points for further analyses. HUVECs and DLBCL cells were
separated by the transwell chamber (pore size 0.4 um, Corning,
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New York, NY, USA), while they can interact with each other
through the medium, which could diffuse freely across
the membrane.

Immunohistochemistry and
Immunofluorescence Staining

For tissue immunofluorescence and immunohistochemistry,
paraffin-embedded human tissues were de-paraffinized and
underwent antigen retrieval in citrate antigen retrieval solution
at 95°C for 20 min. Sections were then blocked by 3% bovine
serum albumin (BSA) for 30 min and incubated with primary
antibody overnight at 4°C. Secondary antibodies were added on
the next day. For immunofluorescence, the nucleus was
counterstained with DAPI solution, and slides were imaged
with Z-stack using confocal microscopy (Eclipse Ti, NIKON,
Melville, NY, USA). For immunohistochemistry, objective tissue
was covered with DAB color-developing solution, and the
nucleus was counterstained with hematoxylin stain solution.
Slides were scanned with Pannoramic 250FLASH
(3DHISTECH, Budapest, Hungary). Three random fields were
selected per sample for quantified analysis.

For cell immunofluorescence staining, cells were cultivated on
glass coverslips. Cells were fixed with 4% polyformaldehyde,
permeabilized with 0.2% Triton X-100, and blocked with 5%
BSA, followed by incubation with primary antibodies at 4°C
overnight. On the next day, after incubation with secondary
antibodies for 1 h, 3 random fields per coverslip were selected
and imaged by fluorescence microscopy for further analysis.

For the WNT10A assessment, stained sections were scored by
two pathologists in a blind manner. The staining intensity was
scored as 0 (negative), 1 (weak), 2 (median), and 3 (strong). The
extent of staining was scored as 0 (<5%), 1 (5%-25%), 2 (26%-
50%), 3 (51%-75%), and 4 (76%-100%). The final staining index
(SI) was determined by intensity score x staining score. SI < 3
was defined as low expression, while SI > 4 was defined as a
high expression.

Immunoblot Analysis and
Co-Immunoprecipitation Assay
Total cell protein was extracted using radioimmunoprecipitation
assay (RIPA) lysis buffer (Beyotime, Shanghai, China) with
proteasome inhibitor cocktail (Sigma, USA). Nuclear and
cytoplasmic proteins were extracted using Nuclear and Cytosol
Fractionation Kit (BioVision Inc., Milpitas, CA, USA). In
immunoblot analysis, the protein was electrophoresed by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) and transferred to polyvinylidene fluoride
membrane (Millipore, Billerica, MA, USA). Membranes were
blocked with 5% BSA for 1 h and then incubated at 4°C overnight
with primary antibodies. On the next day, membranes were
incubated with a secondary antibody for 1 h and detected by
enhanced chemiluminescence (ECL).

HUVECs were lysed by NP-40 lysis for subsequent co-
immunoprecipitation (Co-IP). Extracted proteins were
incubated with the corresponding antibody at 4°C for 2 h and

then incubated with protein A/G agarose beads at 4°C overnight.
After centrifuging, samples were subjected to immunoblot.

RNA Isolation and Quantitative

Real-Time PCR

RNA was extracted using RNeasy Mini Kit (Qiagen, Hilden,
Germany), followed by reverse transcription. Quantitative Real-
Time PCR (qRT-PCR) was performed with ChamQ Universal
SYBR qPCR Master Mix (Vazyme, Nanjing, China) according to
the instruction manuals. The primer sequences used in this study
are listed in Table S1.

Cell Permeability

HUVECs were seeded on transwell insert (pore size 0.4 pwm;
Corning) until they generated an intact monolayer, and then
DLBCL cells were added to the lower compartment. After co-
culture for 24 h, the medium in the upper compartment was
replaced with 1 mg/ml of fluorescein isothiocyanate (FITC)-
dextran (molecular weight 70,000 kDa, Sigma, USA) diluted with
the medium; 100 pl of the medium was collected from the lower
compartment after 60 min, and fluorescence intensity was
measured with excitation/emission of 490/520 nm.

Cell Proliferation Assay

A total of 4,000 HUVECs were seeded into 96-well plates and co-
cultured with DLBCL cells or WNT10A. At 24, 48, and 72 h, the
medium was removed, and HUVECs were gently washed with
warm PBS to remove any adherent DLBCL cells, which was
further confirmed under microscopy. Then, 100 pl of culture
medium containing 10 ul of Cell Counting Kit-8 (CCK-8)
solution (Dojindo Laboratories, Tokyo, Japan) was added.
After incubation for 2 h, absorbance at 450 nm was measured
by a microplate reader.

Transwell Migration Assay

Migration assays were performed in a 24-well transwell plate (pore
size 8 um, Corning, USA). Approximately 5 x 10> HUVECs in
serum-free medium were seeded on the transwell insert; 600 pul of
complete culture medium was added to the lower chamber. After
incubation for 24 h, unmigrated cells were carefully wiped with a
cotton swab, and migrated cells were fixed with 4%
polyformaldehyde. After being washed with PBS, cells were dyed
with crystal violet and counted under a microscope.

Gelatin Zymography

Extracted proteins of HUVECs were separated using SDS-PAGE
containing 1 mg/ml of gelatin. Following electrophoresis, gels
were washed in buffer containing 2.5% Triton-X 100, 50 mM of
Tris-HCI, 5 mM of Cacl,, and 1 UM of Zncl, and incubated in
buffer containing 50 mM of Tris-HCI, 150 mM of Nacl, 10 mM
of Cacly, 1 UM of Zncl,, and 0.02% Brij for 48 h. After being
stained by Coomassie Blue Staining Solution (Beyotime, China)
for 3 h, gels were washed in Coomassie Blue Staining Destaining
Solution (Beyotime, China). Images were captured by Gel Doc'
EZ Imager (Bio-Rad, Hercules, CA, USA).
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Matrigel Tube Formation Assay

Pre-cold 96-well plates were coated with 50 ul of pre-thawed
Matrigel (BD Biosciences, San Jose, CA, USA) for 1 h at 37°C.
The harvested HUVECs were suspended in DMEM with 3% FBS
alone or other specific treatments and seeded onto the Matrigel.
Tube formation ability was observed and captured at 5 and 9 h.
Total tube length and number of nodes were quantified by
Image] software.

RNA Interference and Reporter Assay

Transfection was performed with Lipofectamine 3000 (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s instructions.
WNT10A siRNA, B-catenin siRNA, and snail siRNA were designed
and synthesized by Genomeditech (Shanghai, China) and were
transfected into cells at 75 nM. The knockdown efficacies of siRNAs
were confirmed by quantitative real-time PCR (qRT-PCR) and
immunoblot, and the results are shown in Figure S1. Sequences of
siRNAs used in this study are listed in Table S2. In luciferase
reporter assay, Top/FopFlash reporter construct or [B-catenin
promoter construct (GeneChem, Shanghai, China) along with
pRL-TK Renilla plasmid (Promega, Madison, WI, USA) were
co-transduced into HUVECs. After 24 h of transfection, cells
were treated with WNTI0A for 24 h, and luciferase activity was
detected with Dual-Lumi' ™ II Luciferase Reporter Gene Assay Kit
(Beyotime, China). Reporter activity in each group was calculated as
the ratio of firefly luciferase intensity to renilla luciferase intensity.

Statistical Analysis

All experiments were performed three independent times.
Quantitative results were expressed by mean + SD. Two-tailed
Student’s t-test was used for 2 group comparisons, and one-way
ANOVA was used for comparison between multiple groups.
Survival curves were plotted by the Kaplan-Meier method, and
differences between subgroups were calculated using a log-rank
test. p < 0.05 was considered to be statistically significant.

RESULTS

Endothelial-to-Mesenchymal Transition
Was Present in Diffuse Large B-Cell
Lymphoma Tissues and Associated With
Patient Survival

Exosomes were membrane vesicles with an average diameter of
30-100 nm in all biological fluids (23). Serum exosomes
containing nucleic acids, proteins, lipids, amino acids provide a
pure sample without plasma and can offer useful information for
clinical analysis. Our group previously investigated the protein
expression profiles of exosomes through label-free quantification
proteomics. Serum exosomes were extracted from 20 DLBCL
patients and 10 healthy donors who were divided into 3 groups.
Group A included 10 DLBCL patients with a high International
Prognostic Index (IPI) score (4-5), advanced clinical stage (III-
IV), and poor prognosis. Group B included 10 DLBCL
patients with low IPI scores (0-1), early clinical stage (IA/IB),
and favorable prognosis. Group C included 10 healthy donors. We

found endothelial cell marker VE-cadherin was downregulated in
group A compared with group B, whereas mesenchymal cell
markers vimentin and MMP9, were upregulated in group A
compared with group B. Vascular cell adhesion molecule-1
(VCAM-1), an endothelial activation marker, was also
upregulated in Group A. In addition, overexpression of
mesenchymal cell markers FN, vimentin, COLIL and serpinel
were detected in DLBCL patients compared with healthy donors
(Figures 1A, B). Though these changes were consistent with the
process of EndMT, they are not enough to be an indication of
EndMT, as serum exosomes can be secreted by a wide range of cell
types (not only endothelial cells), and there are many reasons for
the upregulation of these mesenchymal-specific proteins such as
excessive secretion by mesenchymal cells. However, these findings
do inspire us to figure out whether EndMT is present in DLBCL-
associated endothelial cells, which could partially contribute to
these changes in serum exosomes.

In the previous authoritative reports, endothelial marker/
mesenchymal marker co-localization revealed by double
immunofluorescence staining is suggestive of tissue endothelial cells
undergoing EndMT (24-26). In this study, paraffin-embedded
sections from DLBCL lymph nodes and matched normal lymph
nodes were stained with double immunofluorescence for endothelial
marker CD31 and mesenchymal cell marker o-SMA. In vessels of
normal lymph nodes, as expected, most of the a--SMA expression was
around the endothelial layer, while in DLBCL patients, endothelial
cells co-expressed CD31/a-SMA (Figure 1C). Using confocal
imaging with Z-stack, we confirmed CD31/a-SMA co-localization
in DLBCL tissues not only in a two-dimensional plane but also in the
three-dimensional space, and representative orthogonal views are
demonstrated in Figure 1C.

Statistically, the percentage of CD31/0-SMA co-localization
vessels prominently increased in DLBCL patients (Figure 1D). We
also performed survival analysis with EndMT markers vimentin,
COLI CD31, VE-cadherin, and FN in DLBCL tissues using Gene
Expression Omnibus (GEO) datasets (GSE10846). Consistent with
the above results, the Kaplan-Meier plotter analysis demonstrated
that high expression levels of vimentin and COLI in DLBCL
tissues were correlated with poor overall survival (Figures 1E, F).
However, CD31, VE-cadherin, and FN showed no relevance to
overall survival in this dataset (data not shown).

Human Umbilical Vein Endothelial Cells
Co-Cultured With Diffuse Large B-Cell
Lymphoma Cells Have Undergone
Endothelial-to-Mesenchymal Transition

To investigate the interaction between ECs and DLBCL cells, we
selected two types of DLBCL cell lines, germinal center B cell
(GCB; SU-DHL-4) and activated B cell (ABC; OCI-LY3), and we
established an indirect co-culture system using a transwell
chamber. HUVECs in the lower chamber were co-cultured
with DLBCL cells in the upper chamber for 48 h. As displayed
in Figure 2A, immunoblot assay revealed the reduction of
endothelial markers CD31 and VE-cadherin and induction of
mesenchymal markers vimentin, FN, o-SMA, and COLI in
HUVECs after co-culture with SU-DHL-4 and OCI-LY3 cells
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(Figure 2A). Meanwhile, SU-DHL-4 and OCI-LY3-induced
EndMT were further confirmed by qRT-PCR and
immunofluorescence staining (Figures 2B, C). We also
detected the mRNA levels of classical transcription factors
including SNAI1, ZEB1, ZEB2, and TWIST1 in HUVECs after
co-culture with DLBCL cells for 24 h. The results showed that,
among these transcription factors, only the mRNA level of
SNAII was statistically increased in HUVECs, while no
significant increase was observed in the mRNA levels of ZEB1,
ZEB2, and TWIST1 (Figure 2B). As skeleton rearrangement was
a key step involved in EndMT, F-actin filaments in HUVECs
were stained by rhodamine phalloidin. Increased lamellipodia,
filopodia, and actin bundles were observed in HUVECs co-
cultured with SU-DHL-4 or OCI-LY3 cells (Figure 2D). The
cell margin of HUVECs co-cultured with DLBCL cells was
rougher accompanied by more tiny protrusions. As proved in
previous studies, EndMT was always companied with vascular
inflammation; we therefore confirmed that both of the cell lines
induced the production of inflammatory mediators (Figures
S2A, B). In addition, SU-DHL-4 and OCI-LY3 cells increased
the permeability of the endothelial cell layer, which indicated
impaired structure and dysfunction of vascular endothelium
(Figure S2C).

Diffuse Large B-Cell Lymphoma Cells
Prompted Proliferation, Extracellular
Matrix Degradation, Migration, and Tube
Formation of Human Umbilical Vein
Endothelial Cells

Angiogenesis was a complex process that consists of multiple
steps including proliferation, ECM degradation, migration, and
tube formation. We evaluated the viability of HUVECs and
found that SU-DHL-4 and OCI-LY3 cells were able to
promote HUVEC proliferation after 48 and 72 h co-culture
(Figure 3A). Additionally, HUVECs were observed with
enhanced MMP2/9 enzymatic activities and migration
potential after co-culture with SU-DHL-4 and OCI-LY3 cells
(Figures 3B, C). Tube formation assay, which replicates multiple
steps in angiogenesis, has been widely used as a screen for
angiogenesis (27). In the tube formation experiment, HUVECs
formed capillary-like tubular structures on Matrigel; quantitative
analysis showed that the number of the nodes and total tube
length significantly increased in the presence of SU-DHL-4 or
OCI-LY3 cells (Figure 3D). Since VEGFA was a key pro-
angiogenetic growth factor, SU-DHL-4 and OCI-LY3 cells also
upregulated the mRNA level of VEGFA in HUVEC:s (Figure 3E).
These results comprehensively demonstrated the angiogenetic
phenotype changes GCB and ABC DLBCL cells made
upon HUVECs.

Human Umbilical Vein Endothelial Cells
Undergoing Endothelial-to-Mesenchymal
Transition Activated p-Catenin Signaling in
Diffuse Large B-Cell Lymphoma Cells

After proving the capacity of DLBCL cells to induce EndMT in
HUVECs, we further checked whether the acquisition of an

EndMT profile by endothelial cells could in turn have any effect
on DLBCL cells. It is well known that B-catenin signaling is
associated with tumor cell growth, migration, invasion, and
survival. Thus, we detected the activation of B-catenin
signaling in DLBCL cells co-cultured with HUVECs
undergoing EndMT in the present study. Immunoblot assays
showed that co-culture with HUVECs undergoing EndMT
robustly activated B-catenin signaling in both SU-DHL-4 and
OCI-LY3, manifesting as increased protein levels of B-catenin
and its downstream genes including c-myc and cyclin D1
(Figure S3). Considering the complex and distinctive effects
that endothelial cells could make upon different kinds of DLBCL
cells, more extensive functional experiments and mechanistic
investigations are needed in further studies.

Canonical WNT Signaling and Snail Were
Involved in Diffuse Large B-Cell
Lymphoma-induced Endothelial-to-
Mesenchymal Transition

After incubation with either DLBCL cells, HUVECs showed
obvious upregulation of B-catenin (Figure 2A). Furthermore,
immunofluorescence analysis showed enhanced nuclear
accumulation of B-catenin (Figure 4A). In order to verify
whether canonical WNT signaling is involved in DLBCL-
induced EndMT, IWR-1 (an inhibitor of the canonical WNT
signaling) was added into the co-culture system, and
downregulation of B-catenin protein level proved that IWR-1
treatment worked in inhibiting the canonical WNT signaling.
Results showed that IWR-1 alleviated SU-DHL-4/OCI-LY3-
induced EndMT (Figure 4B). Knocking down snail using
siRNA showed similar results, suggesting that SU-DHL-4/OCI-
LY3-induced EndMT was snail-dependent (Figure S4). Taken
together, these results indicated that canonical WNT signaling
and snail performed vital roles in DLBCL-induced EndMT.

WNT10A Was Overexpressed in Diffuse
Large B-Cell Lymphoma and Predicted
Poor Prognosis

Next, we examined differentially expressed genes between
normal lymph nodes and DLBCL tissues using microarray
analysis to identify which kind of WNT ligand mediates
DLBCL-induced EndMT. Among WNT family members, the
increase of WNT10A mRNA expression was most significant in
DLBCL tissues compared with normal tissues (Figure 4C). The
level of WNT10A mRNA expression was also analyzed using
Gene Expression Profiling Interactive Analysis (GEPIA)
database, showing a much higher WNT10A level in 47 DLBCL
tissues than in 337 normal tissues (Figure 4D). qRT-PCR
analyses and immunoblot further confirmed the expression of
WNT10A in SU-DHL-4 and OCI-LY3. Relative mRNA
expression and protein level of endogenous WNTI10A in
DLBCL cell lines SU-DHL-4 and OCI-LY3 were significantly
higher than in B lymphocytes from healthy donors (negative
control) (Figure 4E). Analyzing WNT10A expression in The
Cancer Genome Atlas (TCGA) database indicated that elevated
WNT10A expression in DLBCL patients was concerned with
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FIGURE 3 | GCB and ABC DLBCL cells promoted proliferation, MMP2/9 activity, migration, and tube formation of endothelial cells. (A) Proliferation of endothelial cells was
assessed by CCK-8 assay at indicated time points (24, 48, and 72 h). (B) Activity levels of MMP2/9 were evaluated by gelatin zymography. Representative images and
quantitative analysis of MMP2/9 activity are shown. (C) Cell migration of HUVECs was detected by a transwell migration assay. Representative images and quantitative analysis
of migratory cells are shown. Scale bar, 200 um. (D) HUVECs seeded on Matrigel were co-cultured with or without DLBCL cells. Representative images of tube formation
assay at 5 and 9 h were shown. Number of nodes per field and total tube length were quantified using ImageJ. Scale bar, 1 mm. (E) VEGF mRNA expression in HUVECs
was analyzed by gRT-PCR. Error bars, SD; n = 3 independent experiments; “p < 0.05, *p < 0.01, **p < 0.001. ns, not significant; GCB, germinal center B cell; ABC,
activated B cell; DLBCL, diffuse large B-cell lymphoma; CCK-8, Cell Counting Kit-8; HUVEC, human umbilical vein endothelial cell.
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advanced clinical stages (III and IV) (Figure 4F). Consistent with
data in the database, immunohistochemical staining also
revealed WNTI10A overexpression in DLBCL patients, and
higher WNTI10A expression was associated with advanced
clinical stages and poor overall survival (Figures 4G-I).

WNT10A Promoted Endothelial-to-
Mesenchymal Transition in Human
Umbilical Vein Endothelial Cells via
GSK3p/B-Catenin/Snail Signaling

Based on the above clinical and experimental findings, we
assumed DLBCL-derived WNT10A induces EndMT. To verify
this assumption, we first treated HUVECs with different
concentrations of thWNTI10A (Figure 5A). Following this
treatment, 500 ng/ml of WNT10A markedly downregulated
expressions of CD31 and VE-cadherin and upregulated the
expressions of vimentin and FN, while some indicators were
not significantly changed with lower concentrations of
WNT10A. Thus, we chose 500 ng/ml as the concentration of
WNTI10A for the following experiments. In Figure 5B,
cytoskeleton reorganization was observed in HUVECs after
being treated with rhWNT10A. We further established
WNT10A knockdown DLBCL cells to co-culture with
HUVECs. As expected, depletion of WNTI0A partially
reduced DLBCL-induced EndMT, which could be rescued by
exogenous WNT10A (Figure S5).

Considering the upregulation of B-catenin and snail in
HUVEC:s treated with WNT10A, we further explored whether
WNT10A-induced EndMT is B-catenin and snail-dependent.
Knocking down B-catenin and snail in HUVECs treated with
WNT10A restored the expression of CD31 and VE-cadherin and
abrogated the upregulation of vimentin and FN (Figures 5C, D).
Since no obvious protein expression change of GSK3[ was
observed in HUVECs treated with WNT10A (Figure 5A), we
hypothesized that WNT10A acts through influencing the
interaction between GSK3P and B-catenin or snail. We next
performed Co-IP to verify the interaction between GSK3 and -
catenin/snail discovering WNT10A disrupted GSK3[/B-catenin/
snail interactions in HUVECs, which promoted the stability of -
catenin and snail (Figure 5E). Immunoblot of nuclear protein
suggested WNT10A prompted nuclear translocation of B-
catenin and snail (Figure 5F).

WNT10A Affected Human Umbilical Vein
Endothelial Cell Proliferation, Extracellular
Matrix Degradation, Migration, and Tube
Formation via p-Catenin and Snail

We next assessed the effects of WNT10A on angiogenesis and the
underlying mechanisms. Enhanced proliferation, MMP2/9
enzymatic activities, and migration capability of HUVECS
were detected after WNT10A treatment and can be blocked by
B-catenin siRNA or snail siRNA (Figures 6A-C). Moreover,
WNT10A treatment remarkably increased tube formation in
HUVECs, which was also mediated by B-catenin and snail

(Figure 6D), supporting the notion that WNT10A functions as
an important mediator causing abnormal angiogenesis
in DLBCL.

B-Catenin Interacted With Snail

Both activations of B-catenin and snail in WNT10A-induced
EndMT inspired us to investigate whether B-catenin and snail
interact with each other. Figure 5C shows blocking B-catenin
prevented WNT10A-induced snail upregulation, suggesting snail
is a downstream gene of 3-catenin. Therefore, Co-IP analysis was
performed to identify whether B-catenin interacts with snail
directly. We found WNT10A facilitated Co-IP of snail with B-
catenin in lysates of HUVECs (Figure 6E). TopFlash reporter
activity was enhanced by WNT10A, indicating that WNT10A
enhanced the transcriptional activity of B-catenin (Figure 6F).
Snail knockdown prevented WNT10A induced B-catenin-
dependent transcription. Furthermore, a dual-luciferase
reporter assay was used to determine the activity of the -
catenin promoter. Silencing snail decreased [3-catenin promoter
activity, demonstrating that snail transcriptionally activates [3-
catenin (Figure 6G).

DISCUSSION

EndMT, one type of intricate cellular differentiation, shapes
tumor microenvironment and favors tumorigenesis (7). It has
been identified in the microenvironment of multiple solid
malignancies including glioblastoma, pancreatic ductal
adenocarcinoma, oral squamous cell carcinoma, and
esophageal adenocarcinoma (28-31). Our study first proved
robust endothelial plasticity in hematological malignancy.
Immunofluorescence analysis demonstrated that endothelial
cells in the DLBCL microenvironment have undergone
EndMT, which was barely seen in healthy lymph nodes.
Furthermore, EndMT markers may have potential in disease
staging and prognosis prediction. In our serum exosome
proteomics data, EndMT markers significantly differed
between DLBCL patients with distinct clinical features and
healthy donors. In addition, we confirmed the clinical
significance of EndMT markers in a GEO database and
revealed for the first time that mesenchymal markers vimentin
and COLI were associated with overall survival in DLBCL
patients. This finding supplies the previous conclusion that
vimentin was overexpressed and contributed to cancer
progression (32, 33). Although a larger sample size was needed
to validate these findings, they provide insight into the
development of potential new biomarkers in DLBCL for early
diagnosis and prognosis prediction. In a study of pancreatic
ductal adenocarcinoma, investigators proposed a potential
EndMT index and revealed that a positive EndMT index was
related to patients’ T4 staging (29). A similar EndMT index in
DLBCL is needed for quantification of the EndMT level and
confirmation of the association between EndMT and
clinical characteristics.
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Apart from in vivo study, we established an indirect EC and
DLBCL cell co-culture model to verify if DLBCL cells contribute
to the mesenchymal transition of ECs in vitro. SU-DHL-4 and
OCI-LY3 cell lines selected in this study represented two main

subtypes of DLBCL. Consistent with our hypothesis, DLBCL
cells repressed the expression of endothelial markers CD31 and
VE-cadherin and stimulated the expression of mesenchymal
markers vimentin, FN, and o-SMA. Besides changes in
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EndMT markers, cells that have undergone EndMT were always
accompanied by cytoskeleton reorganization, increased motility,
and enhanced ECM degradation (7). In the present study, ECs
were characterized by increased protrusions of lamellipodia and
filopodia as well as actin filament formation after co-culture with
DLBCL cells. Previous studies provided evidence that MMP2 and
MMP?9 triggered cell migration and invasion, and they were two
major MMPs involved in tumor angiogenesis, increasing the
bioavailability of VEGF (34). In our study, DLBCL cells
enhanced the properties of migration and activity of MMP2/9
in HUVECGs.

Accumulating evidence demonstrated the role of angiogenesis
in lymphoma progression (35). During angiogenesis, a part of ECs,
so-called “tip cells,” gained migration and invasion capability
response to the angiogenic signal. These “tip cells” were
followed by the so-called “stalk cells,” which proliferated and
maintained the structure of nascent vessels (36). ECs involved in
this process shared some EndMT features; thus, angiogenesis was
deemed as a “partial EndMT.” A previous study unveiled colon
cancer cells induced angiogenesis through induction of “partial
EndMT” (37). Lymphangiogenesis in squamous cell carcinoma
was accompanied by EndMT (30). Here we distinctly
demonstrated that DLBCL cells prompted EndMT along with
angiogenesis. Detection of EndMT offered thread for the
mechanisms underlying increased angiogenesis and may provide
new targets for antiangiogenic therapies in DLBCL.

It is worth noting that although GCB and ABC DLBCL were
characterized by different mutation patterns, GCB and ABC
DLBCL cell lines selected for the present study exerted
similar effects on EC transdifferentiation described above
including acquiring mesenchymal phenotypes and enhanced
angiogenesis. Nevertheless, since there was only one type of
GCB and ABC DLBCL cell lines applied in this study, further
studies were needed for the suasive comparison between these
two subtypes of DLBCL.

After verifying the influences DLBCL made upon endothelial
cells, we further aimed to investigate the precise molecular
mechanism. EndMT was triggered by various signals depending
on specific cell types (8, 38, 39). Many investigations confirmed the
role of the WNT pathway in EndMT and angiogenesis (39-42).
WNT3B contributed to the EndMT in keloid pathogenesis.
WNT5A/GSK3P/B-catenin signaling played a pivotal role in
the angiogenesis of glioma-derived endothelial cells (41).
Wang revealed that WNT5B modulated EndMT and
lymphangiogenesis (30). In addition, snail, a key transcription
factor, was dominantly reported for its pivotal role in EndMT and
angiogenesis (43, 44). Consistent with these reports, our study
demonstrated that canonical WNT signaling and snail were
involved in DLBCL-induced EndMT.

Despite the extensive studies of various WNT gene
expression profiles in different tumors, it was rarely
investigated in DLBCL. Here, we screened the expression
profile of the WNT family in DLBCL via microarray data
and GEPIA database analyses, which demonstrated that
WNT10A was significantly upregulated in DLBCL. However,
less is known regarding the roles of WNT10A in hematological

malignancies. Furthermore, we found a high expression of
WNTI10A predicted advanced clinical stage and poor
prognosis. These data implied that WNT10A may play an
important role in DLBCL progression.

To explore the novel mechanism that WNTI0A signaling
played in EndMT, we performed a series of experiments.
Blocking WNT10A in DLBCL cell lines partially reversed
WNT10A-induced EndMT and could be rescued by
rhWNT10A. ECs treated with rhWNTI10A acquired
mesenchymal characteristics and enhanced angiogenesis
capability, which could be attenuated by silencing 3-catenin or
snail. These results suggested DLBCL-derived WNT10A
prompted angiogenesis and EndMT in a B-catenin/snail-
dependent way. In addition, it is worth noting that DLBCL
cells upregulated the expression of mesenchymal cell markers
COLI and o-SMA, while WNT10A had no obvious influence on
them. Thus, we suspected that other DLBCL-derived inducers
may contribute to DLBCL-induced EndMT.

In the absence of WNT ligand, B-catenin is phosphorylated by
a destruction complex consisting of GSK3, axin, adenomatous
polyposis coli (APC), and casein kinase 10, followed by ubiquitin-
proteasomal degradation (45). GSK3p also induces nuclear export
and ubiquitylation of snail by phosphorylating it (15). The binding
of WNT ligands to their receptor complexes results in the
inactivation of GSK3p, increased stability, and nuclear
translocation of snail as well as B-catenin (46-48). Consistent
with previous studies, our study revealed that administration of
WNT10A resulted in reduced binding of GSK3P to [B-catenin/
snail, causing nuclear accumulation of snail and B-catenin.

EndMT was a special form of Epithelial-mesenchymal
transition (EMT) since the endothelial cell was a kind of
epithelial cell (38). They shared similar processes and signaling
pathways. A previous study reported B-catenin and snail-
dependent signaling interacted during EMT, strengthening the
robustness of two signaling ways (49). Our data proved that snail
induced B-catenin-dependent transcriptional activity as well as the
activity of the B-catenin promoter. On the other hand, WNT10A-
induced snail upregulation was influenced by the protein level of
[-catenin. For the first time, our research not only demonstrated
the direct roles of B-catenin and snail in WNT10A-induced
EndMT but also revealed the interconnection between these two
crucial pathways activated by WNT10A. A schematic diagram of
our hypothesis on the mechanisms of EndMT induced by DLBCL-
derived WNT10A is shown in Figure 7.

To our knowledge, this is the first study that comprehensively
sheds light on the existence, clinical relevance, phenotypic
characteristics, and molecular mechanisms of DLBCL-associated
EndMT and angiogenesis, revealing novel crosstalk between ECs
and DLBCL cells in the lymphoma microenvironment. Nevertheless,
in this study, we mainly focused on the effects of DLBCL on
endothelial cells. Considering the significance of EndMT, which has
been previously described in the progression of many other types of
tumor, figuring out the involvement and impacts of EndMT on
DLBCL can also make sense. Our further study will pay attention to
the functional roles of EndMT during tumorigenesis, invasion, and
metastasis. Especially, we will verify whether the in vivo inhibition of
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FIGURE 7 | Schematic representation of the proposed mechanisms
underlying DLBCL-induced angiogenesis and endothelial-to-mesenchymal
transition. DLBCL, diffuse large B-cell ymphoma.

EndMT via suppressing WNT signaling impacts the progression
of DLBCL. This will greatly enrich the results in the present
study and may provide WNT10A/GSK3[/B-catenin/snail axis as a
potentially effective target for anti-DLBCL therapy.
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