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Purpose: Machine learning models were developed and validated to identify lung
adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) using clinical
factors, laboratory metrics, and 2-deoxy-2[18F]fluoro-D-glucose ([18F]F-FDG) positron
emission tomography (PET)/computed tomography (CT) radiomic features.

Methods: One hundred and twenty non-small cell lung cancer (NSCLC) patients (62
LUAD and 58 LUSC) were analyzed retrospectively and randomized into a training group
(n = 85) and validation group (n = 35). A total of 99 feature parameters—four clinical
factors, four laboratory indicators, and 91 [18F]F-FDG PET/CT radiomic features—were
used for data analysis and model construction. The Boruta algorithm was used to screen
the features. The retained minimum optimal feature subset was input into ten machine
learning to construct a classifier for distinguishing between LUAD and LUSC. Univariate
and multivariate analyses were used to identify the independent risk factors of the NSCLC
subtype and constructed the Clinical model. Finally, the area under the receiver operating
characteristic curve (AUC) values, sensitivity, specificity, and accuracy (ACC) was used to
validate the machine learning model with the best performance effect and Clinical model in
the validation group, and the DeLong test was used to compare the model performance.

Results: Boruta algorithm selected the optimal subset consisting of 13 features, including
two clinical features, two laboratory indicators, and nine PEF/CT radiomic features. The
Random Forest (RF) model and Support Vector Machine (SVM) model in the training
group showed the best performance. Gender (P=0.018) and smoking status (P=0.011)
construct the Clinical model. In the validation group, the SVM model (AUC: 0.876, ACC:
0.800) and RF model (AUC: 0.863, ACC: 0.800) performed well, while Clinical model
(AUC:0.712, ACC: 0.686) performed moderately. There was no significant difference
between the RF and Clinical models, but the SVM model was significantly better than the
Clinical model.
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Conclusions: The proposed SVM and RF models successfully identified LUAD and
LUSC. The results indicate that the proposed model is an accurate and noninvasive
predictive tool that can assist clinical decision-making, especially for patients who cannot
have biopsies or where a biopsy fails.
Keywords: [18F]F-FDG PET/CT, radiomics, lung adenocarcinoma, lung squamous cell carcinoma, machine learning
INTRODUCTION

In 2020, about 1.8 million people died of lung cancer, accounting
for one-fifth of cancer-related deaths (1). Of these, 80%–85%
were cases of non-small cell lung cancer (NSCLC), of which lung
adenocarcinoma (LUAD, ~50%) and lung squamous cell
carcinoma (LUSC, ~40%) are the most common subtypes (2,
3). Due to the different histologic and biological characteristics of
LUAD and LUSC, there are significant differences in their
treatment regimen, prognosis, and relapse rates (4, 5). For
example, targeted drugs can significantly improve the
prognosis of patients with LUAD in genetic mutations such as
epidermal growth factor receptor or anaplastic lymphoma
kinase. By contrast, treatment options for advanced LUSC have
limited first-line and relapsed/refractory settings (6).
Additionally, a concurrent chemotherapy regimen combined
with pemetrexed and cisplatin/carboplatin can be adopted after
NSCLC surgery (7). Scagliotti et al. found that pemetrexed
significantly prolonged the overall and progression-free
survival of LUAD patients but reported the opposite effects for
LUSC patients (8). Accordingly, distinguishing between these
two NSCLC subtypes before treatment is critical for clinical
decisions. In current clinical practice, bronchoscopy and
computed tomography (CT)-guided biopsies are the gold
standards for recognizing lung cancer subtypes. Unfortunately,
as an invasive examination, contraindications and complications
of manipulation are unavoidable. Moreover, a repuncture biopsy
is more difficult when less pathological tissue is obtained from
the first puncture and does not meet the requirements for
accurate diagnosis (9). Of note, tumor heterogeneity can also
have an impact on biopsy results. It is wise to explore non-
invasive tools that can assist NSCLC subtype judgment.

Although clinicians can distinguish NSCLC subtypes based
on different imaging characteristics and clinical manifestations,
experience-based judgment is complex as an accurate and
quantitative means of measurement. Some reports testify that
indicators such as 2-deoxy-2[18F]fluoro-D-glucose ([18F]F-FDG)
positron emission tomography (PET)/CT radiomic features (4,
10–14) can all provide quantitative biomarkers for distinguishing
NSCLC subtypes. These promising preliminary results motivated
further studies to develop noninvasive detection methods to
identify NSCLC subtypes for the purpose of early diagnosis
and treatment. Radiomics, in particular, is called a virtual
biopsy (15). This technique enables a noninvasive and
comprehensive quantification of tumor phenotypes by
converting medical images into diggable high-dimensional
quantitative data (16). Deep mining of radiomic features using
machine learning techniques proved effective in accurately
2

distinguishing LUAD from LUSC (4, 10–14). As mentioned
above, however, tumors are heterogeneous, and a single factor
is often insufficient for a complete description of the overall
situation of the tumor lesion. Clinical factors and laboratory
indicators are critical in distinguishing LUAD from LUSC in
different ways (10, 11). Ren et al. attempted to evaluate the value
of clinical factors, laboratory indicators and radiomics features in
identifying NSCLC subtypes. Their results showed that
combining clinical factors and laboratory indicators could
further improve the prediction effect of radiomic features
(10). However, this is a preliminary study and the model is
simple. There are many machine learning algorithms available,
and only a few experiments have explored which model is more
suitable for the classification task of NSCLC (11, 12). Multiple
factors and multiple models can facilitate comprehensive
evaluations of tumors and promote the construction of more
accurate models.

As such, this study mainly wants to solve two problems. The
first is to identify machine learning algorithms suitable for the
classification task of identifying NSCLC. The second is to
develop a precise machine learning model that combines
clinical factors, laboratory indicators, and radiomic features to
assist in identifying NSCLC pathological subtypes.
MATERIALS AND METHODS

Patients
The retrospective investigation consisted of 210 lung cancer patients
treated at the First Affiliated Hospital of Harbin Medical University
(Harbin, China) between January 2016 and December 2020. The
inclusion criteria were as follows (1): patients were pathologically
diagnosed as LUAD or LUSC (2); no anti-tumor treatment was
performed before performing the [18F]F-FDG PET/CT scan; and
(3) no history of other malignancies. The exclusion criteria were as
follows (1): the size of the primary tumor lesion was not enough for
texture analysis (LIFEx software only calculates the texture features
of lesions with ≥ 64 voxels) (2); the primary lesion or its boundaries
could not be identified by the PET image (3); clinical data, including
gender, age, smoking status, and family history, and/or laboratory
indicators, including carcinoembryonic antigen (CEA), squamous
cell carcinoma antigen (SCCA), cytokeratin 19 fragment antigen21-
1 (CA211), and neuron-specific enolase (NSE), were absent.

A total of 120 NSCLC patients were included in the study: 62
patients with LUAD and 58 patients with LUSC. The patients
were first divided into a training group (n = 85) and a validation
group (n = 35), and the R package “createDataPartition” function
with “caret” was used to divide the dataset completely randomly
May 2022 | Volume 12 | Article 875761
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by positive and negative sample ratios. The proportion of
positive and negative samples in the training and validation
groups was roughly the same as the complete dataset. The
training group data were used for model training adjustment,
and validation group data were used to evaluate the
generalization ability of the model. This study was approved by
the ethics review board of the First Affiliated Hospital of Harbin
Medical University, and the informed consent was waived
because of the study’s retrospective properties.

PET/CT Image Acquisition
All patients were required to fast for 6–8 hours, and venous
blood glucose levels were controlled to less than 8.0 mmol/L. In
the patient’s dorsal or elbow vein, 3.7–7.4 MBq/kg of [18F]F-FDG
isotope (HM-12, Sumitomo Heavy Industries Ltd., Tokyo, Japan,
radiochemical purity > 95%) was intravenously injected. After
urinating in quiet, light-avoidance conditions (60 ± 5 min), the
PET/CT images were acquired using a 16-slice Gemini GXL
PET/CT scanner (Philips Medical System). A low-dose CT scan
(tube voltage: 120 kV, tube current: 50 mAs, slice thickness:
5.0 mm, pitch: 1.0) was acquired for attenuation correction, and
then the PET images were acquired (1.5 min per bed position, 6–
7 PET bed positions). According to the agency’s standard clinical
protocols, the scan range was from the head to the mid-thigh.
The line of response reconstruction algorithm was used to
reconstruct the image without post-reconstruction filtering
after automatic random and scattering correction.

Radiomic Feature Extraction
and Evaluation
The lung cancer lesions in the PET images were analyzed slice by
slice by two independent nuclear medicine physicians (Reader 1 and
Reader 2) using LIFEx software (version 7.0.0, http://www.lifexsoft.
org) (17), and the volume of the area of interest (VOI) was
Frontiers in Oncology | www.frontiersin.org 3
automatically delineated at a threshold of 40% of the maximum
standardized uptake value (SUV). Absolute resampling was used for
spatial resampling. VOI voxels were resampled to 4.0 × 4.0 × 4.0
mm, the range of the SUV was set at 0.0–20.0, and the number of
grey levels was set to 64.0 bins (bin width: 0.3125). The same VOI
was used for the extraction of the CT feature parameters. During the
extraction of CT feature parameters, voxels within the VOI were
resampled to 2.0 × 2.0 × 2.0 mm, the range of CT values was set to
−1000.0–3000.0 HU, and the number of grey levels was selected to
400.0 bins (bin width: 10). Finally, 47 PET feature parameters (six
conventional indices, nine first-order features, and 32 second-order
features) and 45 CT feature parameters (four conventional indices,
nine first-order features, and 32 second-order features) were
extracted. The formulation of the feature parameters is available
at http://www.lifexsoft.org.

Reader 1 completed VOI segmentation in all patients. After
14 days apart, 20 patients (10 LUAD patients and 10 LUSC
patients) were randomly selected. Reader 1 and Reader 2 each
segmented regions of interest for delineation and feature
extraction. The two observers were blinded to each other and
blinded to the histopathological diagnosis. Inter-observer and
intra-observer agreement of tumor segmentation was assessed by
inter-and intra-class correlation coefficients (ICCs). When the
inter-observer and intra-observer ICCs were > 0.75, the feature
was considered good reproducibility and was retained. The ICCs
between the two observers reached 0.982 ± 0.036, ranging from
0.741–1.000. The ICCs within the same observer reached 0.986 ±
0.036, with a range from 0.725–1.000. Only one feature (grey-
level zone-length matrix (GLZLM)_Long-zone low grey-level
emphasis (LZLGE)PET) was deleted due to poor reproducibility
(intra-observer ICCs = 0.725; inter-observer ICCs = 0.741).
Thus, 91 PET/CT radiomic features were used for the
subsequent experiments. A heatmap of the radiomic features in
the training and validation groups is shown in Figure 1.
FIGURE 1 | Heatmap of 91 radiomic features (in columns) distributed in the training group (n = 85) and (in rows) distributed in the validation group (n = 35).
May 2022 | Volume 12 | Article 875761
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Feature Selection
In the training group cohort, 99 characteristic parameters were
screened: four clinical characteristics (gender, age, smoking
status, and family history), four laboratory indicators (CEA,
SCCA, NSE, and CA211), and 91 PET/CT radiomic features.
All features but three classification features (gender, smoking
status, and family history) were processed by z-score
standardization. This increased the classification accuracy, as
the more extensive numerical range had more minor effects on
the prediction. Then, the Boruta algorithm was performed to
further feature screening (18), which belongs to a wrapper
algorithm. This algorithm adds randomness to a given dataset
by creating shadow features. It then iterates to check if a natural
feature is more important than the best shadow feature and
continually removes features it deems very unimportant. Finally,
the algorithm outputs a minimum and optimal subset of features.
Model Building and Validation
The filtered features were brought into ten machine learning
classifiers, including Logistic Regression (LR), Linear
Discriminant Analysis (LDA), Naive Bayes (NB), K-Nearest
Neighbor (KNN), Support Vector Machine (SVM) with radial
basis function kernel, Decision Tree (DT), Random Forest (RF),
eXtreme Gradient Boosting (XGBoost), AdaBoost and Artificial
Neural Network (ANN). The best-performing model was
selected by comparing the area under the receiver operating
characteristic curve (AUC) and accuracy (ACC) values. The
control parameters of the best model were further optimized
by grid search and ten-fold cross-validation.

Then, the Clinical model was constructed. First, a univariate
analysis of clinical factors and laboratory indicators was performed
to obtain statistically different distribution variables between the
LUAD and LUSC groups. The variance inflation factor (VIF) of
these different distribution variables was calculated to ensure no
collinearity between variables. The differential variables were input
into forwarding stepwise regression for obtaining the independent
risk factors distinguishing LUAD and LUSC. The regression
equation was listed to construct the Clinical model.

Subsequently, the model’s effect was validated in the
validation group cohort (n = 35) using AUC, sensitivity (SEN),
specificity (SPE), and ACC. The DeLong test was used to
compare the performance of the models.

Statistical Analysis
Data analyses were performed using SPSS software version 25.0
(SPSS, Chicago, IL, USA). Continuous variable data are presented as
the mean ± standard deviation, and categorical variables are offered
as rates or percentages. Differences in the clinical data distribution in
the training and validation groups were compared using the t-test or
chi-squared test. Univariate analysis was performed by t-test/Mann-
Whitney U test and chi-squared test. Drawing and machine
learning models were performed using R language (version 3.6.3,
http://www.r-project.org) packages: “irr”, “caret”, “Boruta”, “e1071”,
“glm”, “stepLDA”, “nb”, “knn”, “svmRadial”, “rpart”, “ranger”,
“xgbTree”, “ada”, “nnet”, “ggplot2”, “pROC”, “reportROC”, etc.
A two-tailed P value < 0.05 was considered statistically significant.
Frontiers in Oncology | www.frontiersin.org 4
RESULTS

1. Demographic and Clinical
Characteristics of the Patients
A total of 120 NSCLC patient samples were collected in this
study: 62 patients with LUAD (51.7%), the mean age of 60.92 ±
10.38 years, 82 men (66.7%); 55 patients with smoking history
(46.7%), and 11 patients with family history (8.9%). Then, 70% of
the total sample was chosen using hierarchical random sampling
to train the model, and the remaining 30% was used as a
validation group to evaluate the model performance. The
training group contained 85 patients (44 patients with LUAD,
58 men and 27 women, with a mean age of 61.33 ± 10.79 years),
and the validation group included 35 patients (18 patients with
LUAD, 24 men and 11 women, with a mean age of 59.94 ± 9.39
years). There was no statistically significant difference (P > 0.05)
between the training and validation groups. Details of the
demographic and clinical characteristics of the training and
validation cohorts are presented in Table 1.

2. Feature Selection Results
The Boruta algorithm was used to filter 99 features in the training
cohort. Boruta algorithm determines the threshold by creating
shadow features. It divided the input features into 12 confirmed
important features, 13 tentative features, and 74 confirmed
unimportant features. The iterative results of the feature
screening process are shown in Figure 2. Eventually, an
optimal subset of 13 essential features, including two clinical
characteristics (gender and smoking status), two laboratory
indicators (CEA and SCCA), and nine radiomic features
(Grey-level run-length matrix (GLRLM)_Short-run high grey-
level emphasis (SRHGE)PET, Neighbourhood grey-level different
matrix (NGLDM)_BusynessPET, GLZLM_Short-zone low grey-
level emphasis (SZLGE)PET, CONVENTIONAL_HUmeanCT,
DISCRETIZED_AUC_CSHCT, Grey-level co-occurrence matrix
TABLE 1 | Demographic differences in the training and validation cohorts.

Characteristic Training group
(n=85)

Validation group
(n=35)

P value

Subtype (%) 0.973a

LUAD 44 (51.8) 18 (51.4)
LUSC 41(48.2) 17 (48.6)

Gender (%) 0.971a

Men 58 (68.2) 24 (68.6)
Women 27 (31.8) 11 (31.4)

Age (years, mean±SD) 61.33±10.79 59.94±9.39 0.508b

Smoking status (%)
yes 39 (45.9) 16 (45.7) 0.987a

no 46 (54.1) 19 (54.3)
Family history
yes 22 (25.9) 6 (17.1) 0.304a

no 63 (74.1) 29 (82.9)
May 20
22 | Volume 12 | Article
There is no statistically significant difference (P > 0.05) between the training and
validation groups.
aChi-square test.
bStudent’s t-test.
Lung adenocarcinoma, LUAD; Lung squamous cell carcinoma, LUSC; Standard
deviation (SD).
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(GLCM)_CorrelationCT, Grey-level run-length matrix (GLRLM)
_ High grey-level run emphasis (HGRE)CT, GLZLM_ Grey-level
non-uniformity for the zone (GLNU)CT, GLZLM_ Zone length
non-uniformity (ZLNU)CT) were output to construct the
machine learning models.

3. Development of the Machine
Learning Model
In this study, 10 machine learning models all showed good
predictive performance, and the evaluation indexes of model
performance are shown in Figure 3. RF (AUC: 0.904, ACC:
0.837) and SVM (AUC: 0.899, ACC: 0.844) models showed the
best prediction performance. DT (AUC: 0.764, ACC:0.731) and
LDA (AUC: 0.765, ACC:0.766) models performed the worst. The
rest of the LR (AUC: 0.864, ACC:0.794), NB (AUC:0.875, ACC:
0.832), KNN (AUC: 0.867, ACC: 0.825), XGBoost (AUC: 0.873,
ACC: 0.821), AdaBoost (AUC: 0.892, ACC: 0.892) and ANN
(AUC:0.881, ACC: 0.804) classification models have medium
performance. Considering the two indicators comprehensively,
the parameters of RF and SVM models were further optimized
and adjusted by using ten-fold cross-validation and grid search
techniques based on AUC value. The parameter tuning results
are shown in Figures 4A, B. The AUC value of RF model (mtry =
1, splitrule = “gini”, min.node.size = 5) after parameter tuning
was 0.906, and the AUC value of SVM model (sigma = 0.03, C =
0.7) after parameter tuning was 0.910.

4. Clinical Model
Thirty-eight men with LUSC (92.7%) and three women with
LUSC (7.3%). Thirty patients with a smoking history had LUSC
(73.2%), and 11 patients without a smoking history had
LUSC (26.8%). Pearson’s Chi-square test showed that the risk
Frontiers in Oncology | www.frontiersin.org 5
of LUSC was significantly higher in men with smoking history
than in women without smoking history (all P < 0.001). The
median of CEA was 3.040ng/ml in LUSC patients and 7.370 ng/
ml in LUAD patients. The median of SCCA was 1.300ng/ml in
LUSC patients and 0.900ng/ml in LUAD patients. Mann-
Whitney U test showed that CEA and SCCA were significantly
different in LUSC and LUAD groups (P =0.001 and 0.004,
respectively). There were no significant differences in age
(P=0.788), family history (P=0.424), NSE(P=0.327), and
CA211 (P=0.342) between LUSC and LUAD groups. The VIF
of gender (VIF= 1.079), smoking status (VIF=1.111), CEA
(VIF=1.159), and SCCA (VIF=1.146) were all less than 10.
Therefore, the differential variables were input into forwarding
stepwise regression for evaluating the effects on NSCLC
subtypes. The risk of LUSC was 8.119 times higher in men
than in women and 5.753 times higher in patients with a
smoking history than in those without a smoking history. In
addition, the risk of LUSC increased by 0.913-fold for each 1-unit
increase in CEA and 1.801-fold for each 1-unit increase in
SCCA. Among the four variables, gender (P=0.018) and
smoking history (P=0.011) could be used as independent risk
factors to distinguish NSCLC subtypes, and the results of
stepwise regression are shown in Figure 5. The Clinical model
(y=2.182*Gender+1.885*Smoking status-2.560) (Gender:
women=0, men=1; Smoking status: no=0, yes=1) included
gender and smoking history.

5. Predictive Performance of the Model
Two machine learning models and a clinical model were
validated in the validation cohort. The SVM (AUC: 0.876,
ACC: 0.800, SEN: 0.667, SPE: 0.941) and RF (AUC: 0.863,
ACC: 0.800, SEN: 0.667, SPE: 0.941) models performed well
FIGURE 2 | Relevant features (highlighted in green) to the NSCLC subtypes selected with the Boruta algorithm. NSCLC, Non-small cell lung cancer.
May 2022 | Volume 12 | Article 875761
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FIGURE 3 | Scatter diagram of machine learning classifiers prediction performance. The horizontal axis represents ACC, the vertical axis represents AUC. AUC, The
area under the receiver operating characteristic curve; ACC, Accuracy; LR, Logistic Regression; LDA, Linear Discriminant Analysis; NB, Naive Bayes; KNN, K-
Nearest Neighbor; SVM, Support Vector Machine; DT, Decision Tree; RF, Random Forest; XGBoost, eXtreme Gradient Boosting; ANN, Artificial Neural Network.
A B

FIGURE 4 | The tuning parameter grid of SVM (A) and RF (B) machine learning classifier. The gallery can be used to examine the relationship between the
estimates of performance and the tuning parameters. The closer the square color is to blue, the higher the AUC is, while the closer the square color is to red, the
lower the AUC value is. AUC, The area under the receiver operating characteristic curve; SVM, Support Vector Machine; RF, Random Forest.
Frontiers in Oncology | www.frontiersin.org May 2022 | Volume 12 | Article 8757616
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and correctly distinguished between LUAD and LUSC. The
Clinical model had moderate predictive performance
(AUC:0.712, ACC: 0.686, SEN: 0.882, SPE: 0.500). The
predicted performance of the model is shown in Table 2. The
receiver operating characteristic (ROC) curves of the models are
shown in Figure 6. The DeLong test was used to compare the
performance of the three models. There was no significant
difference between the SVM model and the RF model
(P=0.825), but the SVM model was significantly better than
the Clinical model (P=0.037). The difference between the RF
model and Clinical model was not statistically significant
(P=0.144). The model comparison results are shown in Table 3.
DISCUSSION

Convenient and low-risk methods of distinguishing between
LUAD and LUSC have significant clinical significance, as the
two differ in terms of their biological characteristics, clinical
characteristics, and prognosis. In this study, we have completed
two main works. First, we constructed 10 machine learning
classifiers and determined that SVM (AUC: 0.876, ACC: 0.800,
SEN: 0.667, SPE: 0.941) and RF (AUC: 0.863, ACC: 0.800, SEN:
0.667, SPE: 0.941) models were more suitable classifiers for the
classification task of NSCLC. Secondly, we tried to combine
clinical factors-laboratory metrics-radiomic features to construct
prediction models and compared them with the Clinical model.
The results showed that the input of multiple factors could help
the classifier better characterize the tumor to some extent.
Importantly, we proposed a noninvasive method for
Frontiers in Oncology | www.frontiersin.org 7
differentiating NSCLC subtypes that can assist in the clinical
identification of different pathological subtypes of NSCLC,
particularly in cases where patients are unsuitable for biopsy or
where biopsy fails.

Recently, radiomics has been combined with machine learning
to distinguish NSCLC subtypes. Alvarez-Jimenez et al. constructed
an SVM with a linear kernel based on the radiomic features of CT
images to classify LUAD and LUSC. Their method had an AUC of
0.72 ± 0.01 (95% CI: 0.65–0.77) and accuracy of 0.69 ± 0.01 (95%
CI: 0.61–0.74) (19). Zhu et al. found that a radiomic signature
computed using five CT radiomic features correctly distinguished
between the LUAD and LUSC, with AUCs of 0.905 and 0.893 in the
training and validation cohorts, respectively (20). Different machine
learningmodels may perform differently for the task of classification
of NSCLC, so the choice of the classifier is helpful to explore the
FIGURE 5 | Results of stepwise regression of clinical factors and laboratory
indicators. CEA, Carcinoembryonic antigen; SCCA, squamous cell carcinoma
antigen; OR, Odd ratio.
TABLE 2 | Comprehensive performance of prediction models for predicting NSCLC subtypes in the validation group.

Model AUC (95%CI) ACC (95%CI) SEN (95%CI) SPE (95%CI)

SVM 0.876 (0.761-0.990) 0.800 (0.791-0.809) 0.667 (0.449-0.884) 0.941 (0.829-1.053)
RF 0.863 (0.742-0.983) 0.800 (0.791-0.809) 0.667 (0.449-0.884) 0.941 (0.829-1.053)
Clinical model 0.712 (0.547-0.878) 0.686 (0.674-0.698) 0.882 (0.729-1.036) 0.500 (0.269-0.731)
May 2022 | Volume
The area under the receiver operating characteristic curve, AUC; Sensitivity, SEN; Specificity, SPE; Accuracy, ACC; Support Vector Machine, SVM; Random Forest, RF.
FIGURE 6 | ROC curves of prediction models. SVM, Support Vector
Machine; RF, Random Forest; ROC, Receiver operating characteristic.
TABLE 3 | DeLong test within different prediction models.

Model-1 Model-2 P value

SVM RF 0.825
SVM Clinical model 0.037
RF Clinical model 0.144
12 | Article
Support Vector Machine, SVM; Random Forest, RF.
875761
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optimal solution to this problem, which has been preliminarily
explored in a previous study (12). Considering that most previous
studies only explored one model, we further determined the best
algorithm for this binary classification task in this experiment by
comparing 10 common machine learning models to determine the
best classifier (SVM and RF) for the classification of NSCLC. After
optimizing the parameters of the models, we further verify the
validity of the model in the validation cohort. Although the SVM
model was significantly superior to the Clinical model, the difference
between the RF model and the Clinical model was not statistically
significant. However, it is hopeful that the RF model proposed by us
could improve the performance compared with the Clinical model.
The reason for no significant difference is that limited by small data
sets; it is not possible to determine statistically whether the machine
learning model is superior to the Clinical model (21). For both
machine learning models and Clinical models, the calculated AUC
indicated that the machine learning classifiers had high
diagnostic accuracy.

Most traditional feature selection algorithms follow
a minimal optimization method that relies on a small
subset of features and produces minimal errors in selection
classification. We use the Boruta algorithm to filter
features. Boruta follows all the relevant feature selection
methods, and it can capture all the features related to the
result variable. In this study, the Boruta algorithm returned 3
PET radiomic features and 6 CT radiomic features in the
dominant feature subset. Since all tumor scales (macro,
physiological, micro, and genetic) are heterogeneous, structural
and metabolic heterogeneity (22, 23). This study extracted the
radiomic features from PET and CT images. As a multimodal
image, PET/CT explores the internal tumor heterogeneity in
terms of both anatomy and function. Although the signal-to-
noise ratio and resolution of PET images are poor, radiomic
features extracted based on PET images can reveal tumor
metabolic heterogeneity, which is an informative supplement
to CT radiomic features that can only respond to anatomical
heterogeneity. This was demonstrated by Koyasu et al., who
obtained PET/CT images of a group of lung cancer patients (156
LUAD and 32 LUSC) from a public database (13). Through
Bayesian optimization, a gradient tree boosting model was
constructed with optimal radiomic features consisting of
metabolic indices in PET, histograms of CT, histograms of
PET, and local binary patterns of CT. The accuracy of their
model reached 0.830 when distinguishing LUAD from LUSC
(13). Han et al. built an LDA model using 50 PET/CT radiomic
features. They achieved optimal predictive performance (AUC of
0.863 and accuracy of 0.794), further confirming the value of the
PET/CT radiomic features combined with machine learning to
distinguish LUAD from LUSC (12).

In addition, the Boruta algorithm and univariate analysis
showed that clinical factors and laboratory indicators were also
helpful in differentiating NSCLC subtypes. This is because men
with a smoking history are at higher risk of LUSC (24, 25). Serum
tumor markers levels are susceptible in the diagnosis of non-
small cell lung cancer (26). SCCA in lung SCC patients is
significantly higher than that in lung ADC patients, while
Frontiers in Oncology | www.frontiersin.org 8
CEA is at a low level (10, 27). Recent reports have
further demonstrated the positive role of clinical factors and
laboratory indicators (10, 11). In a retrospective analysis
involving 315 NSCLC patients, the authors used a least
absolute shrinkage and selection operator regression model
with two clinical factors, two tumor markers, seven PET
radiomic, and three CT radiomic features to predict NSCLC
subtypes (10). They confirmed that the combined multi-factor
constructed model performed better than using them alone (10).
While the linear model is simple, more complex models may
provide more accurate tools for clinical practice. Therefore,
Hyun et al. constructed 5 machine learning models with these
two clinical factors (gender and age) and 13 PET radiomic
features (11). Their results showed that the LR model had the
best predictive performance, with an AUC value of 0.859 and an
ACC of 0.769 (11). Unfortunately, this study only considered
clinical factors and PET radiomic factors.

Inspired by previous studies, we, for the first time attempted to
combine clinical factors, laboratory indicators, PET and CT
radiomic features to construct prediction models, and identified
the most suitable prediction model for the subtypes of NSCLC. In
other words, we have a better description of the tumor, and this
study is a further supplement to the previous research results. We
note that Han et al. explored the value of the VGG16 deep learning
model in differentiating NSCLC subtypes based on PET/CT images,
and the predictive performance of the VGG16 deep learning model
was superior to that of traditional machine learning models (12).
This is an exciting result, but comparing with traditional machine
learning models, deep learning models require a larger sample
size for training (12). In addition, the training cost of the deep
learning model also needs to be solved. Although the results from
different study cohorts cannot be directly compared, the SVM and
RF models proposed by our study are accurate and convenient.
SVM model has the advantages of being suitable for small sample
machine learning data and strong generalization ability, and this
algorithm is very convenient for binary classification tasks (28). RF
model is an integration algorithm based on the DT model. One of
the significant advantages of the RF model is that it can maintain
model accuracy even if there is missing data (29, 30), which is very
suitable for clinical application scenarios because it is not always
possible to ensure that all clinical information of patients is
complete in clinical practice. As a result, RF and SVM models
constructed in this study are significant for the clinical identification
of NSCLC subtypes.

In addition, the replication and validity of the radiomic
feature extraction process are essential for translating potential
applications into clinical practice (31, 32). Semi-automatic
segmentation seems more conducive to the realization of this
goal. Although manual segmentation was used in this study, we
assessed the segmentation reproducibility inter-and intra-class
and excluded one feature with poor reproducibility. Strict
reproducibility detection increased the generalizability of the
results of this experiment.

Our experimental results are encouraging, but several limitations
in our study should be noted. First, additional testing should be
performed for the generalization of the model. Because the sample
May 2022 | Volume 12 | Article 875761
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size was small and came from a single medical institution, the model
may not be robust. Second, although as many characteristic
parameters as possible were included in our study, a proportion
of patients lacked clinical factors and laboratory indicators. As such,
other characteristics might further enhance the performance of the
model. Third, the ratio of LUAD and LUSC in the sample data was
different from real cases. To ensure the performance of radiomic
features, primary lesions in some LUAD patients were excluded
because they showed weak [18F]F-FDG uptake or small tumor
volume. This led to the proximity of LUAD to LUSC patients in the
experiment. Thus, further evaluation is needed to determine
whether other samples affect our model.
CONCLUSION

The proposed machine learning models constructed with clinical
factors, laboratory indicators, and [18F]F-FDG PET/CT radiomic
features can assist with the clinical identification of LUAD and
LUSC. The model is convenient, noninvasive, and accurate, and
it is especially suitable in cases where patients are unsuitable for
biopsy or where biopsy fails.
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