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Hematopoietic disorders are serious diseases that threaten human health, and the
diagnosis of these diseases is essential for treatment. However, traditional diagnosis
methods rely on manual operation, which is time consuming and laborious, and examining
entire slide is challenging. In this study, we developed a weakly supervised deep learning
method for diagnosing malignant hematological diseases requiring only slide-level labels.
The method improves efficiency by converting whole-slide image (WSI) patches into low-
dimensional feature representations. Then the patch-level features of each WSI are
aggregated into slide-level representations by an attention-based network. The model
provides final diagnostic predictions based on these slide-level representations. By
applying the proposed model to our collection of bone marrow WSIs at different
magnifications, we found that an area under the receiver operating characteristic curve
of 0.966 on an independent test set can be obtained at 10× magnification. Moreover, the
performance on microscopy images can achieve an average accuracy of 94.2% on two
publicly available datasets. In conclusion, we have developed a novel method that can
achieve fast and accurate diagnosis in different scenarios of hematological disorders.

Keywords: hematological malignancies, deep learning, digital pathology, weakly supervised, hematopathology
1 INTRODUCTION

Hematopoietic disorders are complex diseases, and their early diagnosis is critical for proposing
correct treatments (1–3). The diagnosis, prognosis, and follow-up of most hematological diseases,
especially hematologic malignancies [e.g., acute myeloid leukemia (AML) and acute lymphoid
leukemia (ALL)] are strongly dependent on the manual examination of the bone marrow (4, 5). In
the traditional analysis of bone marrow smears, a hematologist first selects the regions of interest
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(ROIs) with the appropriate distribution of cellular trails, usually
at the body end of the smear, and then performs a morphological
analysis of hundreds of cells in the ROIs (6, 7). Hence, in this
manner, the examiner’s effort is considerable, and the accuracy
is strongly dependent on the expertise level of the examiner.
The morphological differences in the bone marrow cell
developmental stages during diagnosis are small and prone to
inter-observer variability, with studies showing inter-observer
kappa averages ranging from 0.352 to 0.630 (8, 9).

In recent years, the development of digital imaging
technology has facilitated the use of whole-slide images (WSIs)
for tumor diagnosis (10, 11), tumor origin (12, 13), prognostic
analysis (14, 15), and other digital pathology developments,
which have improved the efficiency and accuracy of clinical
diagnosis. For digital pathology, glass slides are scanned to
generate files that typically have several gigapixels (20×
magnification), and slide-level labels are only relevant to tiny
regions in the WSI (16, 17). The peculiarity of WSI has led most
efforts in digital pathology to rely on applying supervised
learning to classify small patches, which requires extensive
annotation at the pixel level (18, 19). Recent studies shown
that deep learning methods based on a variant of multiple-
instance learning (MIL) for analyzing WSI in a weakly
supervised environment exhibit excellent performance (20–22).
The MIL directly utilizes slide-level labels, assigns patches to the
same labels as slides, and predicts cancer if the k highest scoring
patches are predicted to be cancer (23). However, these methods
require thousands of slides for training to obtain a performance
comparable to those of fully supervised methods, and clinical
data collection on such a huge scale is difficult, especially for
some rare diagnoses (17). Recently, Lu et al. proposed an
attention-based MIL to predict the origin of cancer and
achieved a high-performance accuracy of 0.96 using only slide-
level labels (12). The MIL-based method’s performance indicated
that weakly supervised deep learning methods can be competent
for medical diagnosis, significantly reducing the difficulty of
data collection.

The development of artificial intelligence provides
opportunities for the intelligent diagnosis of hematological
diseases, and studies attempting to diagnose leukemia through
a direct analysis of microscopic images have been reported.
Huang et al. achieved the classification of AML, ALL, and
chronic myeloid leukemia (CML) (24) using DenseNet121,
having an accuracy of 95.3%. Shafique et al. and Rehman et al.
used convolutional neural networks (CNNs) to realize the
subtype classification of ALL, achieving accuracies of 97.78%
and 96.06% (25, 26). However, these methods lack
interpretability studies and use limited imaging. By creating
large-scale cell annotation datasets, studies have achieved
expert-level nucleated cell differential counting (NDC) of bone
marrow micrographs or single-cell images using CNNs (27–30).
However, these methods still require manual involvement to
obtain the ROIs and locate cellular trails. Recently, Wang et al.
achieved the fully automated analysis of bone marrow smears
through NDC using WSIs, which automatically selects ROIs at
low magnifications, followed by cell counting under a 40× oil
Frontiers in Oncology | www.frontiersin.org 2
microscope, achieving a recall performance of 0.90 (31).
However, this method requires thousands of cell-level labels,
data acquisition is difficult, and the bone marrow cell
developmental diversity leads to inter-observer variability,
which affects the quality of annotation (32, 33).

In this study, we developed a weakly supervised method
that can be applied to hematopoietic disorders, especially
hematological malignancies. To the authors’ knowledge, this
is the first report using only slide-level labels to diagnose
hematologica l diseases . Our method achieves high
performance using only slide-level labels, and the proposed
model is data-efficient and interpretable. It aims to address the
drawback of the heavy reliance on the manual detection of
hematological malignancies.
2 MATERIALS AND METHODS

2.1 WSI Dataset
The Ethics Committee ethically approved this study of Xinxiang
Medical University (2019S026). All bone marrow aspirate smears
used were historical samples, which were identified,
photographed, and preserved by experts before inclusion in the
study. Due to its retrospective design, informed patient consent
was waived. For the in-house dataset, we collected bone marrow-
stained slides of 129 patients from the First People’s Hospital of
Xinxiang City for 5-fold cross-validation and 30 patients from
the Third Affiliated Hospital of Xinxiang Medical University as
an independent test set. Fifty-five of the slides were AML, 20
were CML, 31 were ALL, 29 were chronic lymphoid leukemia
(CLL), and 24 were multiple myeloma (MM) (Table 1). All slides
were imaged using an Austar43 scanner (AiMco, Xiamen/China)
in 10×, 40×, and oil-immersion 100× objective lens scans. Slides
were collected from a selection of in-house case files from 2015
to 2020.

2.2 Public Dataset
We used micrographs from three publicly available datasets,
ALL-IDB (34), SN-AM(ALL), and SN-AM(MM) (35), to test the
performance of our model. ALL-IDB is a public dataset of ALL
patients’ peripheral blood, containing ALL-IDB1 and ALL-IDB2,
where ALL-IDB2 contains only single-cell images. Thus, we only
analyzed ALL-IDB1, which was captured using the Canon
PowerShot G5 with a resolution of 2592 × 1944 and
magnification range from 300 to 500 and included 49 images
of ALL and 59 images of healthy individuals (36). The SN-AM
(ALL) and SN-AM(MM) included bone marrow aspirate smears
prepared with Jenner–Giemsa stain from patients diagnosed with
TABLE 1 | Dataset description.

AML CML ALL CLL MM

In-house dataset 45 16 25 23 20
External dataset 10 4 6 6 4
Total 55 20 31 29 24
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ALL and MM and contained 30 images for each dataset. The
images were captured at 100× magnification with a resolution of
2560 × 1920. These datasets were also available for public
download from The Cancer Imaging Archive (37).

2.3 Data Preprocessing
2.3.1 WSI
WSIs are huge, especially at 100× magnification (slide
dimensions in pixels is ~7,000,000 × ~10,000,000), making
them difficult to be analyzed. The ROI [as recommended by
the International Council for Standardization in Hematology
guidelines (6)] and other regions (containing dense cell
distribution and non-cells view) were manually randomly
selected in the training dataset for 5-fold cross-validation to
improve efficiency. The manually selected region accounts for
5.15% of each WSI with an average size of 220000 × 98304 pixels,
22.81 mm2 at 100×magnification. The selected regions were used
in the training phase, and the entire WSI was applied to validate
and test to ensure the results reliability. The background in each
digitized slide was subsequently filtered out using the Otsu (38)
algorithm to reduce unnecessary computations at a 16×
downsampled resolution, and the foreground region was
cropped into 256 × 256 patches. After background removal, an
average of 0.33, 6.65, and 6.15 million patches per WSI were
included in the training, validation, and test datasets.

2.3.2 Microscopy Images
We treated each micrograph as a separate individual because the
public datasets do not have detailed annotations for each image.
All images were subsequently downsampled to a magnification
of 10× and copied into 256 × 256 patches. The number of
extracted patches per set ranged from 30 to 70.

2.4 Network Structure and Training
2.4.1 Model Architecture
For the WSI and microscopic images, after preprocessing, the
ResNet50 (39) pretrained on ImageNet was utilized to convert
each 256 × 256 patch into a 1024-dimensional feature vector.
The computed low-dimensional features were then fed into a
weakly supervised deep learning framework for training, which is
based on the clustering-constrained-attention multiple-instance
learning (CLAM) framework (17). The proposed framework had
N parallel attention branches for predicting N attention scores
for each patch, corresponding to each category of the
classification task. By assigning different category attention
scores to each patch, the model can explicitly learn which
patches were positive features of a particular category and then
summarize each category’s unique slide-level representations.
Finally, each category of the slide representation was examined
by a classification layer to obtain the final predictions of the WSI.
Specifically, the two fully connected layers Fc1 and Fc2 with the
parameter of 1024, 512 neurons converted each patch feature
vector into a 512-dimensional vector and each Fc layer followed
by rectified linear unit activation. Fc2 was followed by an
attention network consisting of several fully connected layers,
with the first two fully connected layers Attention-Fc1 and
Frontiers in Oncology | www.frontiersin.org 3
Attention-Fc2 with weight parameters Wattn1 ∈ R384×512 and
Wattn2 ∈ R384×512. The attention network then splits into N
parallel attention branches Pa,1,…,Pa,n ∈ R1×384 to compute
patch feature class attention score. Each patch attention score
si,k was calculated:

si,k =
exp Pa,i(tanh(Wattn1hk) o ̇ sigmoidðWattn2hk)

� �

oN
j=1exp Pa,i(tanh(Wattn1hk) o ̇ sigmoidðWattn2hk)

� � (1)

where hk is the kth patch feature, i is the corresponding class, ȯ is
the element-wise product, and the bias parameters are excluded
from the equation for simplicity. And N parallel independent
classifiers (Wc,1,…,Wc,n ∈ R1×512) were built to score each class-
specific slide-level representation. The slide-level score for the ith
class was calculated:

sslide,i = Wc,ihslide,i

= Wc,i(oK
k=1ai,khk)

(2)

where K the number of patches in a WSI, and hslide,i is the slide-
level representation. After each attention backbone layer, we
used dropout (P=0.3) for regularization. Then, we predicted the
slide-level scores for each class using the softmax function.

2.4.2 Instance-Level Clustering
Similar with CLAM (17), instance-level clustering was used to
further learn the class features. The instance-level clustering layer
was placed after Fc2. The attention network clusters the positive
and negative features of each class by optimizing a subset of the
number of B patches with the most and least attention. The
smooth SVM loss function (40) was used as the loss function for
the instance-level clustering task.

2.4.3 Training Details
The model uses a batch size of one during training. The number
of patches B sampled from the in-the-class branch is different in
each magnification: 8 in the 10× magnification, 32 in the 40×
magnification, and 128 in the 100× magnification. The Adam
optimization algorithm minimizes the loss functions, and the
learning rate is 0.0002. All models have 200 trained epochs if the
early stopping criterion (the validation loss has not decreased
over 20 epochs) is not met.

2.5 Model Interpretability
For deep learning classification tasks, it is important to intuitively
explain the reasons for predicting categories. We performed this
by tiling the foreground regions of the WSI into 256 × 256
patches and calculating the attention scores for each patch.
Subsequently, they were scaled via normalization to between 0
and 1.0 (the larger the score, the higher the model attention), and
an overlap of 50% was used in tiling the patches for a more fine-
grained presentation of the results.

2.6 Computational Hardware and Software
All tasks were performed on a workstation with Nvidia RTX
3090 and Intel Xeon CPUs. All codes were implemented based
June 2022 | Volume 12 | Article 879308
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on Python 3.7, mainly using PyTorch, for deep learning model
training and OpenSlide, Pillow, OpenCV, and CLAM for
WSI analysis.
3 RESULTS

3.1 Weakly Supervised Deep Learning
Method for the Automatic Analysis of
Hematological Malignancies
Our study aims to develop a weakly supervised deep learning
framework using only slide-level label for the automated analysis
of bone marrow smears. We collected bone marrow smears from
159 patients (including 30 samples from other hospitals as an
independent test set). These sample include five common
malignant hematological diseases: AML, ALL, CML, CLL, MM.
The computational strategy is summarized in Figure 1. First, the
model reduced the dimensionality of the WSI patch image using
a pretrained feature extraction network. Then, the low-
dimensional features were fed into an attention network that
contains five parallel attention branches that together compute
unique slide-level representations of different hematological
malignancies. The representation of each category was
determined by the network’s consideration of the regions as
Frontiers in Oncology | www.frontiersin.org 4
strong positive evidence for a particular category in the
diagnostic task. We tested the performance of our method on
two publicly datasets and an independent test set. The results
showed our model obtained a high performance (area under the
curve (AUC) >0.95), indicating that it can be effectively applied
to solve hematological diagnostic using only the patients’ slide-
level labels.

3.2 Magnification-Dependent Cross-
Validated Model Performance
The 5-fold Monte Carlo cross-validation was used to evaluate
our model’s performance at different magnifications (10×, 40×,
and 100×). We used the images acquired with different objectives
for the magnification performance comparison rather than
downsampling the images at high magnification objectives. We
randomly divided each category into a training set (60% of
cases), a validation set (20% of cases), and a test set (20%) for
each cross-validation fold. A manually selected local region was
used for training, and the full WSIs were used for validation and
testing. On our in-house dataset, the model achieved a 5-fold
macro-averaged one-versus-rest mean test AUC ± s.d. of 0.979 ±
0.015 for the five-class hematological malignancy subtypes of
AML, ALL, CML, CLL, and MM at 10× magnification
(Figure 2A), with an average classification accuracy of 90%.
FIGURE 1 | Overview of the model architecture. Bone marrow WSIs were divided into image patches, and then the patches were encoded by a pretrained
ResNet50-based CNN fixed into a low-dimensional feature vectors in the training and inference. Multi-class attention branches assign an attention score to
each patch in the WSI based on its importance to the slide-level diagnosis and weigh the importance of the patches by the attention score to aggregate the
patch features into a slide level representation. Based on these slide-level representations, the model marked the final diagnostic predictions. Fc1, Fc2, fully
connected layers; AML, acute myeloid leukemia; ALL, acute lymphoid leukemia; CML, chronic myeloid leukemia; CLL, chronic lymphoid leukemia; MM,
multiple myeloma.
June 2022 | Volume 12 | Article 879308
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A high magnification means a great image resolution, which
also requires great computational resources. In particular, the
WSI of a 100× oil lens, which is commonly used for bone marrow
slide analysis, is difficult to obtain due to the focus and imaging
time. In light of these limitations, the effect of different
magnifications on the performance was investigated. The 10×
AUC ± s.d was 0.986 ± 0.009, the 40× AUC ± s.d was 0.984 ±
0.012, and the 100× AUC ± s.d was 0.978 ± 0.025. The
comparative analysis results show that 10× magnification
works better than the others with the same training, validation,
and test sets (Figures 2B–D). We also used a 512-dimensional
feature representation per slide for disease prediction visualized
after reduction to a two-dimensional space via PCA and
observed that the learned feature space was clearly separable
(Figure 2E). Our results showed that excellent performance can
be achieved using only 10× magnification, increase imaging
efficiency and save computational resources.
3.3 Adaptability to Independent
Test Cohorts
WSIs may greatly vary due to slide production and staining
caused by institutional differences. Therefore, the model should
be robust to other hospitals. The 30 slides were collected as an
independent test set to evaluate the generalization performance
of the model. The independent test set was tested on each of the
five models obtained at different magnifications using cross-
validation, and we used the average performance of all modes to
Frontiers in Oncology | www.frontiersin.org 5
avoid variances of different models. We found that the
performance remains excellent for the independent test set
(AUC >0.95), with the best performance at 10× magnification
with a macro-averaged AUC ± s.d of 0.966 ± 0.020 as compared
to AUC ± s.d of 0.962 ± 0.016 (40×) and 0.957 ± 0.031 (100×)
(Figure 3A). The independent test set and cross-validation
showed the same results, with 10× magnification performing
better than the other magnifications (Figures 3B–E). These
results indicated that the robustness of our model to bone
marrow smears from different hospitals.
3.4 Interpretability of the Results
The model interpretability can verify that the predictive
foundation of deep learning is consistent with the concerns of
pathologists and can also be used to analyze erroneous results.
We used the regional attention scores of the model prediction
categories mapped to the corresponding spatial locations via
normalization and used overlapping patches and average scores
to create fine-grained attention heatmaps to explain the model
classification results. Despite the absence of pixel-level labeling of
the ROIs, the model still observed that areas with a uniform
distribution of mature erythrocyte cells and a clear leukocyte
structure were the best areas to determine the type of disease
(Figure 4). The areas of high concern were the same as those
where hematologists determine diseases based on cell types. For
example, there was a high concern for patches with myeloblasts,
and areas with only other cells showed a low score for AML.
A B

D E

C

FIGURE 2 | Different magnification performance and comparative analysis. (A) 5-fold mean test macro-averaged AUC ± s.d. of our model using 10×, 40×, and
100× objectives. The confidence band shows ±1 s.d. for the ROC. (B) Cross-validation test AUCs. (C) Cross-validation test balanced error. (D) Average confidence
(± 1 s.d.) of correctly and incorrectly classified WSIs of the model. (E) Slide-level feature space for a single cross-validated fold using PCA in the validation and test
sets. PC, principal component.
June 2022 | Volume 12 | Article 879308
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3.5 Generalization to Public
Microscopy Images
To validate the usability and generality of the proposed model for
micrographs used in resource-limited areas, we also investigated
the performance of our model on publicly available micrograph
datasets. Three publicly available datasets, namely, ALL-IDB1,
SN-AM(ALL), and SN-AM(MM), were used, including two
hematological malignancies (ALL and MM). Magnifications
from 30× to 100×, containing micrographs of bone marrow
and peripheral blood, were used. We downsampled them to 10×
magnification and tested each model using cross-validation at
the same magnification. We found that the trained model
performed well on micrographs, with an accuracy of 100% for
SN-AM(ALL), 86.67% for SN-AM(MM), and 95.92% for ALL-
IDB1 (Figures 5A, B). Furthermore, the features of different
categories are still clearly separated after visualization by PCA
dimensionality reduction (Figure 5C). We found that despite not
using images from any publicly available dataset, our model also
demonstrated good performance on micrographs of bone
marrow smears compared to previous studies (Table 2). These
results enhance confidence in the potential broad application of
our method in the field of hematological diseases.

3.6 Comparison With the
State-of-the-Art Methods
We compared the performance of the proposed model with the
state-of-the-art weakly supervised methods CLAM (17) and MIL
(20) for WSI analysis. The CLAM and MIL were fine-tuned by
Frontiers in Oncology | www.frontiersin.org 6
changing the last output layer to 5 class to accommodate the task.
The results indicated our proposed model achieved the best
performance with a macro-averaged AUC ± s.d of 0.986 ± 0.009
(Figure 6). In addition, we found that the performance of the
attention-based model (our method and CLAM) outperforms
that of the max-pooling-based algorithm MIL, which indicated
that the model could improve performance by assigning higher
attention to regions with high diagnostic values.
4 DISCUSSION

Current hematology diagnosis still relies on the manual counting
of hundreds of cells on bone marrow slides due to the lack of a
rapid and reliable test, which is labor intensive, time consuming,
and poorly reproducible. In this study, we first developed a
weakly supervised deep learning method for analyzing bone
marrow smears for identifying hematologic malignancies. We
found that using only slide-level labeling without detailed pixel-
level or cellular annotation enables interpretable, high-
performance diagnostics, which overcomes the cost of labeling
and closely resembles clinical applications.

We collected a large collection of bone marrow smear WSIs
and used them for training, which has more information than
training a model using an expert-selected ROI (24, 26, 45) and
allows for full automation. Simultaneously, we demonstrate that
no adjustments are required and can be applied to the micrograph
analysis of bone marrow or peripheral blood, which addresses the
A B

D E

C

FIGURE 3 | Independent test set performance. (A) 5-fold mean test macro-averaged AUC ± s.d. of our model using 10×, 40×, and 100× objectives on the
independent test set. The confidence band shows ±1 s.d. for the ROC. (B) Cross-validation test AUCs. (C) Cross-validation test balanced error. (D) Average
confidence ( ± 1 s.d.) of correctly and incorrectly classified WSIs of the model. (E) Slide-level feature space for a single cross-validated fold using PCA in the
validation and test sets.
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high imaging cost in certain resource-poor regions. The most
common approach to analyzing hematological diseases using deep
learning is the morphological analysis of cells in smears (27, 29,
31), which requires accurate labeling of tens of thousands of cells.
Moreover, the number of different types of cells collected tends to
be highly variable, leading to poor results for specific categories.
We avoid the costs and inaccuracies of labeling using an attention-
based network. Our results show strong performance with only
slide-level tags and the ability to scale to independent test sets.
Frontiers in Oncology | www.frontiersin.org 7
The acquisition of WSI at high magnifications is often
time consuming, especially for oil lenses. Typically, a bone
marrow smear takes nearly an hour at 100× magnification
(approximately 22 × 45 mm2 slides). We analyzed the
performance of using different magnification objectives in the
same area and found that low magnification objectives (10× and
40×) were even better than the 100× magnification used for the
cytomorphological analysis of bone marrow smears. This
observation is attributed to the fact that at high magnifications,
FIGURE 4 | Interpretability and visualization at 10× magnification. Raw WSIs of representative slides of different kinds of malignant blood tumors (left), the generated
attention heatmap (middle). The region of strongest attention (red border) usually focuses on the region of interest (ROI) with distributed blast cell tracks, whereas the
region of low attention (blue border) includes images with dense cell distribution, no cells, and other kinds of cells (right).
June 2022 | Volume 12 | Article 879308
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A B C

FIGURE 5 | Performance on microscopy images. (A) Mean accuracy on the public dataset (SN-ALL, SN-MM, and ALL-IDB1) test on 40× magnifications with a
single cross-validated fold. (B) Confidence ( ± 1 s.d.) of the prediction made by the model. (C) Slide-level feature space for a single cross-validated fold using PCA in
the validation and test sets.
TABLE 2 | Performance on ALL-IDB, SN-AM for different backbone studies.

Dataset Study (Reference) Accuracy (%)

ALL-IDB Ahmed et al. (41) 88.25
Palczynski et al. (42) 94.80
Our method 95.92

SN-AM Duggal et al. (43) 93.20
Kumar et al. (44) 97.25
Our method 93.67
Frontiers in Oncology | www.frontiersin.org
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FIGURE 6 | Comparison with the state-of-the-art methods. 5-fold mean test macro-averaged AUC ± s.d. of our model compared with CLAM and MIL.
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patches cropped by WSIs may only have local information on
individual cells, whereas at low magnifications, there is often
more information. Hence, the needed data are easy to obtain.
Moreover, we first downscaled the images using a pretrained
CNN, which makes the WSIs with hundreds of millions of pixels
analytically efficient, leaving room for introducing other kinds of
disease analysis in the future. Our method is also interpretable,
generating heatmaps by introducing attention scores to visualize
the significance of each area of theWSI. The results show that the
regions focused on by the model are highly similar to those
judged by hematologists. Thus, it may be used as an interpretable
tool in applications.

Nonetheless, although our method performs well on
independent test sets and publicly available microscopy image
datasets, all training and test sets of WSIs were digitized by the
same scanner, and the amount of available data is still limited. The
performance and robustness of the model can be further validated
by introducing more imaging data. The weakly supervised method
we used lacks the analysis of the relationship between different
positions in the same slide; rather, it treats them as independent
regions. The performance may be further improved by learning
the relationship between the positions of different regions. In
addition, improving accuracy by introducing more information
while applying it to diseases with limited data (e.g., only a few
cases) and survival prediction tasks needs to be considered in
future studies. In conclusion, the proposed model can be
competent for the diagnosis of malignant hematological diseases,
which will help to improve the realization of the fast collection of
bone marrow smears and thus help to achieve fast diagnosis of
hematological diseases.
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