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Objective: Low-density lipoprotein receptor-related protein-1 (LRP-1) and

survivin are associated with radiotherapy resistance in patients with locally

advanced rectal cancer (LARC). This study aimed to evaluate the value of a

radiomics model based on dynamic contrast-enhanced magnetic resonance

imaging (DCE-MRI) for the preoperative assessment of LRP-1 and survivin

expressions in these patients.

Methods: One hundred patients with pathologically confirmed LARC who

underwent DCE-MRI before surgery between February 2017 and September

2021 were included in this retrospective study. DCE-MRI perfusion histogram

parameters were calculated for the entire lesion using post-processing

software (Omni Kinetics, G.E. Healthcare, China), with three quantitative

parameter maps. LRP-1 and survivin expressions were assessed by

immunohistochemical methods and patients were classified into low- and

high-expression groups.

Results: Four radiomics features were selected to construct the LRP-1

discrimination model. The LRP-1 predictive model achieved excellent

diagnostic performance, with areas under the receiver operating curve

(AUCs) of 0.853 and 0.747 in the training and validation cohorts, respectively.

The other four radiomics characteristics were screened to construct the

survivin predictive model, with AUCs of 0.780 and 0.800 in the training and

validation cohorts, respectively. Decision curve analysis confirmed the clinical

usefulness of the radiomics models.

Conclusion: DCE-MRI radiomics models are particularly useful for evaluating

LRP-1 and survivin expressions in patients with LARC. Our model has significant
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potential for the preoperative identification of patients with radiotherapy

resistance and can serve as an essential reference for treatment planning.
KEYWORDS

dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), locally
advanced rectal cancer, radiomics models, LRP-1, survivin
Introduction

Rectal cancer is the third most common malignant tumor

worldwide, and approximately 70% of patients have locally

advanced rectal cancer (LARC) at the initial diagnosis (1). At

present, radiotherapy before surgical resection is the

recommended treatment for patients with LACR (2). Preoperative

radiotherapy can reduce the risk of local recurrence and ultimately

improve the quality of life of patients by downstaging tumors and

increasing the preservation rate of the sphincter (3). However, this

effect is not ideal because the response of different individuals to

preoperative radiotherapy is highly variable (4). In addition,

radiotherapy is associated with long-term treatment-related

toxicity, such as chronic pain, urinary incontinence, sexual

dysfunction, and secondary malignant tumors (5). The

identification of radioresistant LARC is a significant hurdle for

patient-specific treatment.

Although the mechanism underlying radioresistance has not

been fully clarified, the therapeutic effect of radiotherapy is known

to depend on the cell cycle of cancer cells (6). Among all cell

division phases, cells in the S, G0/G1, and G2/M phases are

resistant, relatively sensitive, and sensitive to radiotherapy,

respectively (7). Hence, several proteins that function in the cell

cycle have been considered as potential biomarkers of

radiotherapy resistance in rectal cancer. Low-density lipoprotein

receptor-related protein-1 (LRP-1) is widely expressed in a wide

variety of tissues; it exhibits functionalities in supporting tumor

cell proliferation by promoting the entry of the cell cycle into the S

phase and decreasing apoptosis (8, 9). A previous study has shown

that patients with high LRP-1 expression who were subjected to

radiotherapy had a poor prognosis, implying that LRP-1 could be

an important marker for discriminating radioresistant rectal

cancer (10). Additionally, studies have reported that survivin

can also affect the radioresistance of LARC by regulating the cell

cycle. Survivin is an inhibitor of apoptotic proteins that regulate

both cell cycle progression and cell survival (11). According to the

literature, targeted inhibition of survivin can reduce radiation-

induced G2/M arrest, which means that survivin can cause more

irradiation-damaged cells to enter mitosis, thus playing a vital role

in radiotherapy (12). Identifying LRP-1 and survivin expressions

preoperatively is helpful in making individualized treatment plans.

However, the detection of LRP-1 and survivin expressions mainly
02
depends on tissue sampling, which is limited by the invasiveness

of the operation and may not reflect the entire tumor. Thus,

identifying a noninvasive method for detecting LRP-1 and

survivin will be beneficial and provide a reference for

treatment decisions.

Radiomics analysis is an emerging field of image analysis

that reflects the biological characteristics of tumors by

transforming gray information into high-dimensional image

features (13). Accumulating evidence indicates that radiomics

can be used to quantitatively analyze tumor heterogeneity and is

closely related to pathology (14). Deng et al. (15) found that

radiomics predictive models have the potential to noninvasively

differentiate lymph node metastasis and vascular endothelial

growth factor expressions in cervical cancer. In previous studies,

radiomics features have always been extracted from computed

tomography angiography, T1-weighted imaging (T1WI), T2-

weighted imaging (T2WI), diffusion-weighted imaging (DWI),

and apparent diffusion coefficient (ADC) maps. Unlike the

abovementioned imaging techniques, dynamic contrast-

enhanced magnetic resonance imaging (DCE-MRI) is a

relatively novel imaging modality that combines tumor

morphology and changes in hemodynamics (16). DCE-MRI

parameters can also reflect tumor angiogenesis and, therefore,

provide essential information about the prognosis and effect of

treatment for LARC (17). Moreover, in various oncology fields,

several researchers have recommended using DCE-MRI to

assess response to radiotherapy (18, 19). Li et al. (20) showed

that radiomics features based on breast DCE-MRI could identify

the status of some pathological markers (HER2 and Ki-67).

Thus, radiomics analysis based on DCE-MRI might be a

noninvasive method for predicting LRP-1 and survivin

expressions in LARC.

This study aimed to construct and validate a noninvasive

model using DCE-MRI to predict LRP-1 and survivin

expressions in LARC, thus guiding clinical treatment options

and improving the level of medical care.
Materials and methods

This retrospective study was carried out in accordance with

the Declaration of Helsinki and was approved by the
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Institutional Review Board of Shaoxing People’s Hospital. The

requirement for written informed consent to review the medical

records or images of the patients was waived because of the

study’s retrospective nature.
Study participants

The data of patients with pathologically confirmed LARC by

biopsy or surgery from February 2017 to August 2021 at

Shaoxing People’s Hospital were consecutively assessed in this

study. The detailed inclusion criteria were as follows (1):

histologically confirmed primary rectal adenocarcinoma (2),

DCE-MRI within 2 weeks before biopsy or surgery (3), LARC

determined by pretreatment MRI (≥T3 and/or N+), and (4)

absence of antitumor treatment, such as neoadjuvant

chemoradiotherapy, before MRI. The exclusion criteria were as

follows (1): poor image quality (with severe artifacts) or failure to

obtain measurements (2), severe systemic disease and absolute

contraindications (3), lack of pre-surgical carcinoembryonic

antigen (CEA) and carbohydrate antigen (CA)199 data (4),

metastatic disease, and (5) a maximum tumor diameter of

<1 cm. The standard of care for patients with LARC at our

hospital was neoadjuvant chemoradiotherapy followed by total

mesorectal excision (TME). However, some patients underwent

TME plus adjuvant chemotherapy because of their age, risk of

toxic effects, possibility of tumor progression, or painfully long

treatment period. Additionally, some elderly patients chose

other treatment options for the above reasons. Finally, 100

patients were enrolled in this study; among these, 64 were

treated with TME plus adjuvant chemotherapy, 21 were

treated with neoadjuvant chemotherapy plus TME, 12 received

neoadjuvant chemoradiotherapy followed by TME, and 3

received neoadjuvant radiotherapy plus TME.
Dynamic contrast-enhanced magnetic
resonance imaging protocol

All imaging data of patients with LARC were obtained using

a 3.0-T MRI scanner (Verio, Siemens, Germany) with a 12-

channel phased-array body coil. Patients were required to fast

for at least 8 h to empty the gastrointestinal tract and inject

antispasmodic medication (Anisodamine, Minsheng, Hangzhou,

China) before the MRI examination to reduce gastrointestinal

artifacts. During the MRI scan, the patient was placed in the

supine position, and the positioning line was located on the

xiphoid process. All patients underwent a routine plain scan

(T1WI, T2WI with fat suppression, T2WI, ADC, DWI) before

the DCE-MRI scan and a multi-angle cross-sectional T1WI in

the axial plane scan (repetition time/echo time, 3.48 ms/1.3 ms;

layer thickness, 3 mm; field of view, 260 mm × 260 mm; matrix,

202 × 288; scan at multiple flip angles of 5°, 10°, and 15°). DCE-
Frontiers in Oncology 03
MRI adopts free breathing and is performed using a fast three-

dimensional T1-weighted spoiled gradient recalled echo

sequence. Multiphase dynamic enhanced scanning was

performed with the following parameters: flip angle, 10°; and

number of phases scanned, 35. The other acquisition parameters

were the same as those above. Subsequently, a gadolinium

contrast agent (Omniscan, GE Healthcare, China) was injected

intravenously during phase 3 using a power injector at 0.1

mmol/kg and 3.5 mL/s. Finally, 20-mL saline was injected for

flushing at the same flow rate. Contrast agent injection and data

acquisition were performed simultaneously.
Image data analysis and processing

All sequences acquired from the DCE-MRI of eligible patients

with LARC were imported into Omni Kinetics (GE Healthcare,

China) software for post-processing. First, multi-flip angles of 5°,

10°, and 15° and corrected dynamic enhancement sequence scans

were processed using Omni Kinetics software. Second, the

external iliac artery was selected as the input artery. Third, the

Tofts pharmacokinetic model was used to obtain three DCE-MRI

pseudo-color images (Ktrans, Kep, and Ve). Furthermore, the

region of interest (ROI) was manually delineated on each slice of

the sagittal DCE pseudo-color images for calculation, using T2-

weighted images as a guide. The ROI was placed in an area to

avoid necrosis, calcification, and blood vessels on each slice

(Figure 1). Two radiologists with 5 years (reader 1) and 8 years

(reader 2) of specific clinical experience in rectal cancer imaging

completed all image segmentations. The software automatically

generated 231 radiomics features from three perfusion maps

(Ktrans, Kep, and Ve), which included five categories: first-

order, histogram, gray level co-occurrence matrix, Haralick, and

run-length matrix.
Immunohistochemical evaluation of low-
density lipoprotein receptor-related
protein-1 and survivin

LARC pathological specimens were harvested during surgery or

by enteroscopy biopsy. In order to avoid the influence of anti-tumor

therapy on the expressions of LRP-1 and survivin, biopsy specimens

were used in patients who received any antitumor treatment before

surgery. Postoperative specimens were used only in patients treated

with TME plus adjuvant chemotherapy. Accordingly, there were 36

biopsy specimens and 64 surgical specimens, respectively. The

expressions of LRP-1 and survivin were determined in formalin-

fixed, paraffin-embedded tumor tissues using immuno

histochemistry (IHC). Serial sections were immunostained with

antibodies against LRP-1 (1:4000; Gene Tech, Shanghai, China) and

survivin (GT204821; Gene Tech, Shanghai, China).

Immunohistochemical tests for LRP-1 and survivin were
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performed strictly according to the IHC protocol. The expression

levels of LRP-1 and survivin in tumor cells were determined using

the following scoring system: 1 (≤ 10%), 2 (10% to ≤ 50%), 3 (50%

to ≤ 80%), or 4 (> 80%). Staining intensity was scored as 0 (no

staining), 1 (weak staining), 2 (moderate staining), or 3 (intense

staining). The score for the percentage of positively stained tumor

cells and the score for staining intensity were then multiplied to

obtain the immunoreactive score (IRS), which ranged from 0 to 12.

There was no uniform opinion on the evaluation of LRP-1 and

survivin expressions on IHC, considering the limited number of

patients in this study. To facilitate further statistical analyses, the

expression levels of LRP-1 and survivin were divided into two

categories: low expression (IRS ≤ 4 points) and high expression (IRS

> 4 points). An 80% agreement between the two pathologists

participating in immunostaining evaluation was set as the

standard. When the pathologists disagreed regarding an

evaluation, they made decisions based on consultation.
Interobserver variability evaluation

To assess the intraobserver and interobserver reproducibilities

of radiomics feature extraction, 30 patients were randomly selected

and intraclass correlation coefficients (ICCs) were calculated for
Frontiers in Oncology 04
tumor segmentation performed 1 week later by readers 1 and 2.

Subsequently, intragroup consistency analysis was performed on

the features of the 30 patients drawn by reader 1, and intergroup

consistency analysis was performed on the features of the same 30

patients drawn by readers 1 and 2. The reproducibility of radiomics

features extracted from DCE-MRI was considered good, with

intraobserver and interobserver ICC values both > 0.8. These

features, with good reproducibility, were collected for subsequent

radiomics analysis.
Feature selection and radiomics
signature construction

For each extracted radiomic feature, the mean value was

individually subtracted from the score, which was then divided by

the respective standard deviation (Z-score normalization).

Subsequently, two technical approaches (the maximum relevance

minimum redundancy [mRMR] method (21) combined with the

least absolute shrinkage and selection operator [LASSO] method)

were used to select the most useful predictive features from the

training data cohort. The LASSO logistic regression model was used

with penalty parameter tuning, which was conducted using tenfold

cross-validation. Lambda was selected according to the 1-standard
B

C D

A

FIGURE 1

Magnetic resonance images of a histopathologically confirmed locally advanced rectal cancer in a 56-year-old woman. (A) Manual region of
interest (ROI) placement in a contrast-enhanced sagittal T1-weighted image. (B) Color-coded Ktrans map of the ROI. (C) Color-coded Kep map
of the ROI. (D) Color-coded Vp map of the ROI.
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error of the minimum (1-SE) rule, where the coefficients are not

rapidly changing, and the model is most parsimonious with the

minimum prediction error. Multivariate logical regression was used

to construct the predictive model using the selected features. A

radiomics score (Rad-score) was calculated for each patient using a

linear combination weighted by the respective coefficients (22).

Receiver operating characteristic (ROC) curves were used to

assess the performance of the radiomics models for LRP-1 and

survivin. The specificity, sensitivity, positive predictive value

(PPV), negative predictive value (NPV), and area under the

curve (AUC) were calculated to determine model performance.

Calibration curves were used to investigate the predictive

accuracy of the model graphically. The aforementioned

operations were performed in both the training and validation

cohorts. Finally, decision curve analysis (DCA) was used to

determine the clinical usefulness of the radiomic models.
Pathological evaluation of the
therapeutic response

Tumor regression grading (TRG) was assessed in

postoperative pathological specimens according to the four-tier

American Joint Committee on Cancer system (23): TRG 0, no

residual tumor cells; TRG 1, single cell or small group of cells;

TRG 2, residual cancer with a desmoplastic response; and TRG

3, minimal evidence of tumor response. Patients were then

divided into 2 groups; patients with TRG scores of 0 and 1

classified as sensitive and those with TRG scores of 2 and 3 were

classified as resistant.
Statistical analyses

All statistical analyses and figure creation were performed

using R software (version 40.2; packages mainly included

glmnet, pROC, rms, and rmda, Foundation for Statistical

Computing, Vienna, Austria). To determine the clinical

usefulness of the LRP-1 and survivin predictive model, DCA

was performed by calculating the net benefits at different

threshold probabilities in the test cohorts. The area under the

ROC curve was calculated to measure the diagnostic efficacy of

the models. Moreover, the sensitivity, specificity, PPV, NPV, and

accuracy were assessed. All tests were two-tailed, and statistical

significance was set at p < 0.05. Continuous variables (age) are

presented as means and standard deviations, and an

independent sample t-test was used to assess differences

between high and low expression groups. Categorical variables

(sex, location, mrT stage, mrN stage, CEA level, and CA199

level) were assessed using Fisher’s exact test or chi-squared test,

as appropriate.
Frontiers in Oncology 05
Results

Characteristics of patients with locally
advanced rectal cancer

This research’s summary profile is shown in Figure 2. Of the

100 patients, 64 were male and 36 were female. The patients were

randomly divided, in a 7:3 ratio, into training (70 patients) and

validation cohorts (30 patients). According to LRP-1 and

survivin expression groups, no statistically significant

differences were observed between the training and validation

cohorts in terms of sex, age, body mass index, location, mrT

stage, mrN stage, CEA level, or CA199 level (all p > 0.05). Details

regarding the clinical characteristics of patients with LARC with

high/low expression (LRP-1 and survivin) in both cohorts are

provided in Tables 1, 2.
Expressions of LRP-1 and survivin

LRP-1 and survivin expressions were identified by IHC.

Examples of the IHC analysis of LRP-1 and survivin

expressions are shown in Figure 3. A weak correlation between

LRP-1 and survivin was observed (r = 0.201, p = 0.045).

Furthermore, some patients with high LRP expression

exhibited significantly low survivin expression.
Feature selection and radiomics model
construction

In total, 231 features were extracted from the MRI data (67

features each from Ktrans, Kep, and Ve). The details of these

selected features are provided in the Supplemental Material.

Using the mRMR method, 20 features were identified as having

high stability for predicting LRP-1 and survivin. The LASSO

method with tenfold cross-validation was then used to select

four potential predictive features each for LRP-1 and survivin,

with non-zero coefficients, to construct the final model; the

LASSO process is shown in Figure 4. The features were weighted

according to their corresponding coefficients. The resulting Rad-

score equation for the LRP-1 prediction (Rad-score1) is as

follows:

“Rad − score1

=   2:351  �   sumAverage :Ktrans   −   0:147  �   skewness :

Kep   +   2:023  �  RunLengthNonuniformity :Ve  −   0:530  

�   differenceEntropy :Ktrans   +   1:265 ”

The resulting Rad-score equation for the survivin prediction

(Rad-score2) is as follows::
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TABLE 1 Characteristics of patients with locally advanced rectal cancer in the training and validation cohorts (low-density lipoprotein receptor-
related protein-1).

Characteristic Training cohorts(n = 70) P Validation cohorts(n = 30) P

High Low High Low

Sex 0.668 0.297

Male 26(65.00%) 18(60.00%) 10(58.82%) 10(76.92%)

Female 14(35.00%) 12(40.00%) 7(41.18%) 3(23.08%)

Age(years) 0.717 0.088

mean ± SD 68.75 ± 11.29 67.83 ± 9.13 65.47 ± 11.21 71.92 ± 7.89

BMI(kg/m2) 23.45 ± 3.58 22.90 ± 3.13 0.154 23.54 ± 3.47 22.77 ± 4.06 0.088

Location 0.254 0.237

Above 8(26.67%) 10(25.00%) 5(29.41%) 4(30.77%)

Straddling 15(37.50%) 6(20.00%) 5(29.41%) 8(61.54%)

Below 15(37.50%) 16(53.33%) 7(41.18%) 1(7.69%)

mrT stage 0.571 0.785

T2 3(7.50%) 1(3.33%) 1(7.69%) 0(0.00%)

T3 35(87.50%) 26(86.67%) 15(88.24%) 11(86.62%)

T4 2(5.00%) 3(10.00%) 2(11.77%) 1(7.69%)

mrN stage 0.843 0.758

N0 3(7.50%) 1(3.33%) 0(0.00%) 1(7.69%)

N1 10(25.00%) 7(23.33%) 2(11.77%) 1(7.69%)

N2 27(67.50%) 22(73.33%) 15(88.24%) 11(84.62%)

CEA level 0.533 0.217

Normal 23(57.50%) 15(50.00%) 10(58.82%) 4(30.77%)

Abnormal 17(42.50%) 15(50.00%) 7(41.18%) 9(69.23%)

CA199 level 0.255 0.410

Normal 32(80.00%) 27(90.00%) 15(88.24%) 10(76.92%)

Abnormal 8(20.00%) 3(10.00%) 3(11.77%) 2(23.08%)
Frontiers in Oncology
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“Rad − score2  

=  −0:805  � differenceEntropy :Kep   +   1:564  �  

Correlation :Ktrans  −   0:069  �  Quantile95:Kep  −   0:236  �
  inverseDifferenceMoment :Ktrans   +   0:565
Radiomics model evaluation

We compared Rad-scores between the LRP/survivin (high)

and LRP/survivin (low) groups in the training and validation

cohorts. There was a significant difference in Rad-scores between

the LRP/survivin (high) and LRP/survivin (low) groups, as

shown in Figure 5.

The discrimination performance of the Rad-scores for LRP-1

and survivin is summarized in Table 3. ROC curves of the Rad-

score for predicting LRP-1 and survivin status are shown in

Figure 6. The LRP-1 model yielded an AUC of 0.853, with a 95%

confidence interval (CI), accuracy, sensitivity, and specificity of

0.760–0.945, 0.829, 0.900, and 0.733, respectively. This model was

applied to the validation cohort, which generated an AUC, 95% CI,

accuracy, sensitivity, and specificity of 0.747, 0.556–0.938, 0.767,
Frontiers in Oncology 07
0.882, and 0.615, respectively. Correspondingly, in the training

cohort, the survivin model yielded an AUC of 0.780 with 95% CI,

accuracy, sensitivity, and specificity of 0.670–0.890, 0.757, 0.700,

and 0.833, respectively. Analysis in the validation cohort generated

an AUC, 95% CI, accuracy, sensitivity, and specificity of 0.800,

0.635–0.967, 0.800, 0.824, and 0.769, respectively.

The calibration curves of the two models demonstrated that

the predicted probability fit well with the actual expression levels

in both the training and validation cohorts, indicating excellent

calibration of the radiomics models (Figure 7). The decision

curve of the radiomics model is shown in Figure 8, and DCA

revealed that using the radiomics models (LRP-1/survivin)

added more net benefit than the treat-all or treat-none

strategies, indicating the excellent performance of the

radiomics models in terms of clinical application.
Rad-scores in resistant and sensitive
groups

Among 15 patients who underwent radiotherapy (12

received neoadjuvant chemoradiotherapy followed by TME
TABLE 2 Characteristics of patients with locally advanced rectal cancer in the training and test groups (survivin group).

Characteristic Training cohorts(n = 70) P Validation cohorts(n = 30) P

High Low High Low

Sex 0.353 0.193

Male 27(67.50%) 17(56.67%) 13(76.47%) 7(53.85%)

Female 13(32.50%) 13(43.33%) 4(23.53%) 6(46.15%)

Age(years) 0.382 0.265

mean ± SD 66.43 ± 10.71 70.93 ± 9.43 66.41 ± 9.34 22.67 ± 3.92

BMI 23.55 ± 3.55 22.76 ± 3.14 0.339 23.61 ± 3.57 23.00 ± 3.09 0.513

Location 0.706 0.200

Above 11(27.50%) 7(23.33%) 3(17.65%) 6(46.15%)

Straddling 13(32.50%) 8(26.67%) 6(35.29%) 2(15.38%)

Below 16(40.00%) 15(50.00%) 8(47.06%) 5(38.46%)

mrT stage 0.046 0.371

T2 0(0.00%) 4(13.33%) 0(0.00%) 1(7.69%)

T3 37(92.50%) 24(80.00%) 16(94.12%) 10(76.92%)

T4 3(7.50%) 2(6.67%) 1(5.88%) 2(15.39%)

mrN stage 0.019 0.151

N0 0(0.00%) 4(13.33%) 0(0.00%) 1(7.69%)

N1 8(20.00%) 9(30.00%) 3(17.65%) 0(0.00%)

N2 32(80.00%) 17(56.67%) 14(82.35%) 12(92.31%)

CEA level 0.268 0.127

Normal 24(60.00%) 14(46.67%) 7(69.23%) 9(41.18%)

Abnormal 16(40.00%) 16(53.33%) 10(58.82%) 4(30.77%)

CA199 level 0.635 0.410

Normal 33(82.50%) 26(86.67%) 15(88.24%) 10(76.92%)

Abnormal 7(17.50%) 4(13.33%) 2(11.77%) 3(23.08%)
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and 3 received neoadjuvant radiotherapy plus TME), Rad-score2

was not significantly different between sensitive and resistant

groups (p = 0.594; Table 4). However, Rad-score1 was

significantly higher in the resistant group (4.829 ± 3.459) than

in the sensitive group (-0.210 ± 0.648, p = 0.043; Table 4).
Discussion

To the best of our knowledge, this study is the first attempt

to propose and validate noninvasive radiomics models based on

DCE-MRI for the preoperative prediction of LRP-1 and survivin

expressions in patients with LARC. The predictive model for

LRP-1 demonstrated favorable discrimination and yielded

AUCs of 0.853 and 0.747 in the training and validation

groups, respectively. In predicting survivin expression, the

radiomics model achieved AUCs of 0.780 and 0.800 in the

training and validation cohorts, respectively. The results

suggest that the clinical use of radiomics is promising in terms

of the preoperative prediction of LRP-1 and survivin. In

addition, Rad-score1 was significantly higher in the resistant

group than in the sensitive group, although Rad-score2 was not

significantly different between the two groups. Thus, the

predictive models may be helpful in guiding clinicians in

identifying patients who are radiotherapy resistant and

selecting appropriate treatment plans for patients with LARC.
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In recent years, radioresistance has mainly been responsible for

treatment failure and mortality in patients with LARC receiving

radiation therapy. Furthermore, the current standard of care for

LARC is to apply the same treatments to all patients, regardless of

their individual responses to radiotherapy. This uniform treatment

method inevitably leads to undertreatment or overtreatment for

several patients with LARC (24). Currently, approximately 30%–

50% of patients are reported to show radioresistance to ionizing

radiation (IR); however, if these patients are identified before

surgery, more intensive chemotherapy could be applied (25). In

contrast, the complete response for tumors predicted to undergo

invasive radical surgery may even be modified. Therefore, the

development of new biomarkers capable of successfully assessing

patients’ radio-responsiveness status preoperatively is urgently

needed to establish patient-specific treatment (26).

Radioresistance is a complex process involving the alteration of

several cellular mechanisms (27). Moreover, cell division phases

profoundly influence the response to radiation in cancer (28, 29).

Numerous studies have shown that LRP-1 and survivin play

essential roles in regulating the cell cycle, which is significantly

related to radiotherapy tolerance in LARC. Identifying LRP-1 and

survivin expressions before surgery may improve prognostication

and guide the selection of a clinical treatment plan. At present, a

pathological examination is the gold standard for diagnosing LRP-1

and survivin expressions. However, results are influenced by

sampling and may be inadequately comprehensive because of
B

C D

A

FIGURE 3

Representative immunohistochemical staining of markers. Low-density lipoprotein receptor-related protein-1: (A) low expression, (B) high
expression. Survivin: (C) low expression, (D) high expression (magnification: ×10 20).
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tumor heterogeneity. With the advent of the precisionmedicine era,

single-modality medical imaging is gradually evolving and cannot

meet the requirements of individualized treatment (30, 31).

Radiomics, an emerging technique in computational medical

imaging, can extract information-rich imaging functions with

high throughput and quantify imaging information that the

human eye cannot detect (32, 33). Many prior studies have

shown that radiomics can effectively predict the expression of

multiple pathological biomarkers in various tumors based on

quantitative image features derived from different MRI techniques

(34, 35). In our study, we used DCE-MRI to construct a predictive
Frontiers in Oncology 09
model. Unlike conventional MRI imaging techniques, DCE-MRI

has the advantage of estimating blood flow, blood volume, and

vascular permeability and the tumor vascular microenvironment.

DCE-MRI has been applied in several tumor studies and has yielded

satisfactory results (36). However, no study has aimed to determine

the expressions of LRP-1 and survivin. In view of this knowledge

gap, we established radiomics models based on DCE-MRI to

distinguish between LRP-1 and survivin expression levels, and

obtained promising results.

LRP-1 is a multifunctional scavenger receptor that belongs

to the low-density lipoprotein receptor family (37). Owing to its
B

C D

A

FIGURE 4

Radiomics feature selection using sthe least absolute shrinkage and selection operator (LASSO) binary logistic regression model. (A) LASSO
coefficient profile, displaying 30 texture features. A coefficient profile plot was produced against the log (lambda) sequence. Each colored line
represents the coefficient of an individual feature. (B) Tuning parameter (log lambda) selection in the LASSO model used tenfold cross
−validation via 1-SE criteria. Vertical dotted lines were drawn at the selected l values. (A, C) The error rate curve. (B, D) LASSO coefficient l
graph. Coefficient l was selected in the LASSO using a tenfold cross-validation. We selected the coefficient l according to the 1-SE rule.
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BA

FIGURE 5

(A) A comparison of radiomics scores (Rad-scores) between different low-density lipoprotein receptor-related protein-1 expression levels in the
training and validation cohorts. (B) A comparison of Rad-scores between different survivin expression levels in the training and validation
cohorts.
TABLE 3 Performance summary of radiomics scores for predicting low-density lipoprotein receptor-related protein-1 and survivin status in each
cohort.

Cohort Cut-off AUC ACC SEN SPE PPV NPV

LRP-1 Training 0.400 0.853 0.829 0.900 0.733 0.818 0.846

Validation 0.445 0.747 0.767 0.882 0.615 0.750 0.800

Survivin Training 0.557 0.780 0.757 0.700 0.833 0.848 0.676

Validation 0.511 0.800 0.800 0.824 0.769 0.824 0.769
Frontiers in Oncolo
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AUC, area under the receiver operating characteristic curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.
BA

FIGURE 6

Receiver operating characteristic curves of the biomarkers for classifying low-density lipoprotein receptor-related protein-1 (A) and survivin
(B) expression levels in the training and validation cohorts.
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capacity to control the pericellular levels of various growth

factors and proteases, LRP-1 plays a crucial role in tumor

progression. Compared to untreated cells with LRP-1

inhibition, treated cells present an increase in the proportion

of cells in the G1 phase and a decrease in the S phase cell

population (8). Clinically, high LRP-1 expression in patients

subjected to radiotherapy has a poor prognosis. Certainly, LRP-1

expression status has a crucial role in predicting radiotherapy

resistance and prognosis in patients with LARC; however, few

studies have used radiomics features extracted from

pretreatment DCE-MRI to predict LRP-1 expression. In this

study, four DCE-MRI radiomics features (Ktran. sum Average,

Ktrans. difference entropy, Kep. skewness, and Ve. run length
Frontiers in Oncology 11
nonuniformity) were selected to construct the predictive model

for LRP-1, which yielded a high AUC in both training (AUC =

0.853) and validation (AUC = 0.747) cohorts. Moreover, features

from Ktrans were most commonly used in the optimal radiomics

model (2/4). Previous studies have corroborated that Ktrans

reflects vessel blood flow and is the product of vessel

permeability and vessel surface area (38). Theoretically, the

value of Ktrans is mainly determined by blood flow or

elevated vessel permeability. Devy et al. (39) revealed that

LRP-1 also plays an essential role in the angiogenic processes

for tumor growth through its wide spectrum of interactions.

Thus, the observed association between Ktrans (sum average)

and LRP-1 expression is reasonable. Our radiomics model may
B

C D

A

FIGURE 7

Calibration curves of the radiomics model for predicting low-density lipoprotein receptor-related protein-1 (LRP-1) and survivin expression
levels in the training and validation cohorts. (A, B). Calibration curves of the model for LRP-1 in (A) the training and (B) validation cohorts. (C, D)
Calibration curves of the model for survivin in (C) the training and (D) validation cohorts. In the calibration plots, the 45° line represents marks
the location of the ideal model. The blue line represents the predicted performance of the model, and the red line represents the bias
correction in the model.
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serve as a novel quantitative tool for individually predicting the

expression of LRP-1 and selecting appropriate targeted therapies

for patients with LARC.

In addition, we constructed a radiomics model to predict the

expression of survivin and achieved excellent results, with
Frontiers in Oncology 12
sensitivities of 70.0% and 76.5%, specificities of 83.3% and

69.2%, and AUCs of 0.780 and 0.800 in the training and

validation cohorts, respectively. Notably, the performance of

the radiomics model in the test cohort was superior to that in the

validation cohort (AUC, 0.800 vs. 0.780), which demonstrates
BA

FIGURE 8

Decision curve analysis for the model for (A) low-density lipoprotein receptor-related protein-1 and (B) survivin in the test cohorts. The y-axis
measures the standardized net benefit. The red curve represents the radiomics model. The gray curve represents the assumption that all
patients were treated, and the straight black line at the bottom of the figure represents the assumption that no patient was treated.
TABLE 4 Radiomics scores between resistant and sensitive groups.

Sensitive groups(n=10) Resistant groups(n=5) F value P value

Rad-score1 -0.210 ± 0.648 4.829 ± 3.459 2.891 0.043

Rad-score2 1.771 ± 0.415 -0.083 ± 0.947 -0.547 0.594
front
BA

FIGURE 9

Differences in low-density lipoprotein receptor-related protein-1 (LRP-1) and survivin between sensitive and resistant groups. (A) The expression
of LRP-1 was higher in the resistant group than in the sensitive group (p = 0.011). (B) The expression of survivin was higher in the resistant group
than in the sensitive group (p = 0.006).
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the robustness of our model. Survivin is a unique member of the

inhibitor of apoptosis protein family that is expressed in most

cancer cells but is barely detected in most normal adult tissues

(40). Without doubt, survivin has attracted a great deal of

interest as an anti-radiotherapy factor, and its overexpression

in tumors has been shown to be associated with radioresistance,

poor prognosis, and drug resistance (41, 42). Previous studies

have shown that targeted inhibition of survivin in cancer cells

can interfere with their DNA repair ability and increase their

radiosensitivity to IR (12, 42). Two features from Ktrans were

selected in the radiomics model for predicting survivin. In

several studies, Ktrans has been considered as a robust and

clinically useful biomarker of radiation resistance in some tumor

types (43). These results demonstrate that Ktrans plays an

essential role in reflecting the expression levels of LRP-1 and

survivin. Our findings also highlighted a weak correlation

between LRP-1 expression and survival (r = 0.201, p = 0.045).

This correlation between LRP-1 and survivin suggests that they

may play a synergistic role in radiotherapy resistance in LARC to

some extent. LRP-1 or survivin may have a specific association

with radiotherapy tolerance in rectal cancer, and targeted

inhibition of LRP-1 or survivin can improve the prognosis of

patients. However, as a puzzling part of our study, we found that

some patients with high LRP-1 expression exhibited low survivin

expression. These results are entirely contrary to our initial

conjecture that the presentation of LRP-1 should be consistent

with that of survivin to a certain extent. In our view, this

inconsistency may originate from the heterogeneity of the

tumor and the complex mechanisms of IR. Radiotherapy

tolerance is a complex process involving many mechanisms.

The biological behavior of LARC radioresistance may be

reflected by multiple biomarkers rather than a single

biomarker (LRP-1 or survivin). In the future, with further

research on radiotherapy tolerance mechanisms, the inclusion

of more tolerance factors may help improve the predictive model

for radiotherapy tolerance. Further studies with larger sample

sizes are required to investigate the clinical validation and

additive values of the radiomics model for predicting the

response to radiotherapy.

Furthermore, the calibration curve of the predictive

radiomics models demonstrated good agreement between the

predicted and actual probabilities in the training and validation

cohorts, indicating that our models accurately evaluated the

true values of LRP-1 and survivin expression. DCA showed a

higher overall net benefit with the radiomics model, thus

highlighting its value as an excellent tool, based on DCE-

MRI, for assistance in clinical decision-making. Using the

radiomics model, if a patient is predicted to have high LRP-1

or survivin expression, the administration of targeted therapy

or more intensive chemotherapy should be recommended.

In the future, patients with high LRP-1 and survivin-

expressing LARC may serve as an ideal population for testing

newer therapies.
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In order to investigate the relationship between LRP-1 and

survivin expression and resistance to neoadjuvant radiotherapy

in patients with LARC, we collected additional LARC biopsy

specimens from 27 patients who received neoadjuvant

radiotherapy with/without DCE-MRI examinations from

February 2017 to August 2021 at Shaoxing People’s Hospital;

these patients were not among the 100 patients in the main

analyses. LRP-1 expression was significantly higher in the

resistant group than in the sensitive group (7.813 ± 2.297 vs

5.000 ± 2.828, p = 0.011). In addition, survivin expression was

significantly higher in the resistant group than in the sensitive

group (7.500 ± 2.318 vs 4.636 ± 2.385, p = 0.006), as shown in

Figure 9. These results further suggest that LRP-1 and survivin

may be predictive markers clinically relevant to resistance to

neoadjuvant radiotherapy in patients with LARC.

Regarding whether the effects of radiation therapy can be

predicted using radiomics models, we find that although

radiomics models based on DCE-MRI performed well, the

present study has some limitations. First, this was a

retrospective study from a single institution, which may

lead to potential selection biases; also, the predictive model

was not tested with external test data. Therefore, prospective

and multicenter studies are encouraged in the future. Second,

the number of patients was relatively small; therefore, it is

necessary to incorporate more cases in future studies to

determine the proposed model ’s rel iabi l i ty . Third,

addi t ional pa tho logica l , c l in ica l , and radio log ica l

characteristics were not considered in our study. Finally,

the present study was merely based on DCE-MRI, and

several previous studies have shown that the combined

application of more MRI sequences (e.g., T2WI, T1WI, and

DWI) may improve the predictive ability of the radiomics

model. Despite these limitations, the application of the

radiomics models may have clinical prospects in terms of

precision and personalized medicine for patients with LARC.
Conclusion

In conclusion, the present study demonstrated that

radiomics analysis of DCE-MRI features facilitates the

determination of LRP-1 and survivin expression levels in

LARC before treatment. Our models have significant potential

for the preoperative identification of patients with radiotherapy

resistance and can serve as an essential reference for

treatment planning.
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