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Objective: Low-density lipoprotein receptor-related protein-1 (LRP-1) and
survivin are associated with radiotherapy resistance in patients with locally
advanced rectal cancer (LARC). This study aimed to evaluate the value of a
radiomics model based on dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI) for the preoperative assessment of LRP-1 and survivin
expressions in these patients.

Methods: One hundred patients with pathologically confirmed LARC who
underwent DCE-MRI before surgery between February 2017 and September
2021 were included in this retrospective study. DCE-MRI perfusion histogram
parameters were calculated for the entire lesion using post-processing
software (Omni Kinetics, G.E. Healthcare, China), with three quantitative
parameter maps. LRP-1 and survivin expressions were assessed by
immunohistochemical methods and patients were classified into low- and
high-expression groups.

Results: Four radiomics features were selected to construct the LRP-1
discrimination model. The LRP-1 predictive model achieved excellent
diagnostic performance, with areas under the receiver operating curve
(AUCs) of 0.853 and 0.747 in the training and validation cohorts, respectively.
The other four radiomics characteristics were screened to construct the
survivin predictive model, with AUCs of 0.780 and 0.800 in the training and
validation cohorts, respectively. Decision curve analysis confirmed the clinical
usefulness of the radiomics models.

Conclusion: DCE-MRI radiomics models are particularly useful for evaluating
LRP-1 and survivin expressions in patients with LARC. Our model has significant
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potential for the preoperative identification of patients with radiotherapy
resistance and can serve as an essential reference for treatment planning.

KEYWORDS

dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), locally
advanced rectal cancer, radiomics models, LRP-1, survivin

Introduction

Rectal cancer is the third most common malignant tumor
worldwide, and approximately 70% of patients have locally
advanced rectal cancer (LARC) at the initial diagnosis (1). At
present, radiotherapy before surgical resection is the
recommended treatment for patients with LACR (2). Preoperative
radiotherapy can reduce the risk of local recurrence and ultimately
improve the quality of life of patients by downstaging tumors and
increasing the preservation rate of the sphincter (3). However, this
effect is not ideal because the response of different individuals to
preoperative radiotherapy is highly variable (4). In addition,
radiotherapy is associated with long-term treatment-related
toxicity, such as chronic pain, urinary incontinence, sexual
dysfunction, and secondary malignant tumors (5). The
identification of radioresistant LARC is a significant hurdle for
patient-specific treatment.

Although the mechanism underlying radioresistance has not
been fully clarified, the therapeutic effect of radiotherapy is known
to depend on the cell cycle of cancer cells (6). Among all cell
division phases, cells in the S, GO/G1, and G2/M phases are
resistant, relatively sensitive, and sensitive to radiotherapy,
respectively (7). Hence, several proteins that function in the cell
cycle have been considered as potential biomarkers of
radiotherapy resistance in rectal cancer. Low-density lipoprotein
receptor-related protein-1 (LRP-1) is widely expressed in a wide
variety of tissues; it exhibits functionalities in supporting tumor
cell proliferation by promoting the entry of the cell cycle into the S
phase and decreasing apoptosis (8, 9). A previous study has shown
that patients with high LRP-1 expression who were subjected to
radiotherapy had a poor prognosis, implying that LRP-1 could be
an important marker for discriminating radioresistant rectal
cancer (10). Additionally, studies have reported that survivin
can also affect the radioresistance of LARC by regulating the cell
cycle. Survivin is an inhibitor of apoptotic proteins that regulate
both cell cycle progression and cell survival (11). According to the
literature, targeted inhibition of survivin can reduce radiation-
induced G2/M arrest, which means that survivin can cause more
irradiation-damaged cells to enter mitosis, thus playing a vital role
in radiotherapy (12). Identifying LRP-1 and survivin expressions
preoperatively is helpful in making individualized treatment plans.
However, the detection of LRP-1 and survivin expressions mainly
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depends on tissue sampling, which is limited by the invasiveness
of the operation and may not reflect the entire tumor. Thus,
identifying a noninvasive method for detecting LRP-1 and
survivin will be beneficial and provide a reference for
treatment decisions.

Radiomics analysis is an emerging field of image analysis
that reflects the biological characteristics of tumors by
transforming gray information into high-dimensional image
features (13). Accumulating evidence indicates that radiomics
can be used to quantitatively analyze tumor heterogeneity and is
closely related to pathology (14). Deng et al. (15) found that
radiomics predictive models have the potential to noninvasively
differentiate lymph node metastasis and vascular endothelial
growth factor expressions in cervical cancer. In previous studies,
radiomics features have always been extracted from computed
tomography angiography, T1-weighted imaging (T1WI), T2-
weighted imaging (T2WI), diffusion-weighted imaging (DWI),
and apparent diffusion coefficient (ADC) maps. Unlike the
abovementioned imaging techniques, dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) is a
relatively novel imaging modality that combines tumor
morphology and changes in hemodynamics (16). DCE-MRI
parameters can also reflect tumor angiogenesis and, therefore,
provide essential information about the prognosis and effect of
treatment for LARC (17). Moreover, in various oncology fields,
several researchers have recommended using DCE-MRI to
assess response to radiotherapy (18, 19). Li et al. (20) showed
that radiomics features based on breast DCE-MRI could identify
the status of some pathological markers (HER2 and Ki-67).
Thus, radiomics analysis based on DCE-MRI might be a
noninvasive method for predicting LRP-1 and survivin
expressions in LARC.

This study aimed to construct and validate a noninvasive
model using DCE-MRI to predict LRP-1 and survivin
expressions in LARC, thus guiding clinical treatment options
and improving the level of medical care.

Materials and methods

This retrospective study was carried out in accordance with
the Declaration of Helsinki and was approved by the
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Institutional Review Board of Shaoxing People’s Hospital. The
requirement for written informed consent to review the medical
records or images of the patients was waived because of the
study’s retrospective nature.

Study participants

The data of patients with pathologically confirmed LARC by
biopsy or surgery from February 2017 to August 2021 at
Shaoxing People’s Hospital were consecutively assessed in this
study. The detailed inclusion criteria were as follows (1):
histologically confirmed primary rectal adenocarcinoma (2),
DCE-MRI within 2 weeks before biopsy or surgery (3), LARC
determined by pretreatment MRI (2T3 and/or N+), and (4)
absence of antitumor treatment, such as neoadjuvant
chemoradiotherapy, before MRI. The exclusion criteria were as
follows (1): poor image quality (with severe artifacts) or failure to
obtain measurements (2), severe systemic disease and absolute
contraindications (3), lack of pre-surgical carcinoembryonic
antigen (CEA) and carbohydrate antigen (CA)199 data (4),
metastatic disease, and (5) a maximum tumor diameter of
<1 cm. The standard of care for patients with LARC at our
hospital was neoadjuvant chemoradiotherapy followed by total
mesorectal excision (TME). However, some patients underwent
TME plus adjuvant chemotherapy because of their age, risk of
toxic effects, possibility of tumor progression, or painfully long
treatment period. Additionally, some elderly patients chose
other treatment options for the above reasons. Finally, 100
patients were enrolled in this study; among these, 64 were
treated with TME plus adjuvant chemotherapy, 21 were
treated with neoadjuvant chemotherapy plus TME, 12 received
neoadjuvant chemoradiotherapy followed by TME, and 3
received neoadjuvant radiotherapy plus TME.

Dynamic contrast-enhanced magnetic
resonance imaging protocol

All imaging data of patients with LARC were obtained using
a 3.0-T MRI scanner (Verio, Siemens, Germany) with a 12-
channel phased-array body coil. Patients were required to fast
for at least 8 h to empty the gastrointestinal tract and inject
antispasmodic medication (Anisodamine, Minsheng, Hangzhou,
China) before the MRI examination to reduce gastrointestinal
artifacts. During the MRI scan, the patient was placed in the
supine position, and the positioning line was located on the
xiphoid process. All patients underwent a routine plain scan
(T1WI, T2WI with fat suppression, T2WI, ADC, DWI) before
the DCE-MRI scan and a multi-angle cross-sectional TIWT in
the axial plane scan (repetition time/echo time, 3.48 ms/1.3 ms;
layer thickness, 3 mm; field of view, 260 mm X 260 mm; matrix,
202 x 288; scan at multiple flip angles of 5°, 10°, and 15°). DCE-
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MRI adopts free breathing and is performed using a fast three-
dimensional T1-weighted spoiled gradient recalled echo
sequence. Multiphase dynamic enhanced scanning was
performed with the following parameters: flip angle, 10°% and
number of phases scanned, 35. The other acquisition parameters
were the same as those above. Subsequently, a gadolinium
contrast agent (Omniscan, GE Healthcare, China) was injected
intravenously during phase 3 using a power injector at 0.1
mmol/kg and 3.5 mL/s. Finally, 20-mL saline was injected for
flushing at the same flow rate. Contrast agent injection and data
acquisition were performed simultaneously.

Image data analysis and processing

All sequences acquired from the DCE-MRI of eligible patients
with LARC were imported into Omni Kinetics (GE Healthcare,
China) software for post-processing. First, multi-flip angles of 5°,
10°, and 15° and corrected dynamic enhancement sequence scans
were processed using Omni Kinetics software. Second, the
external iliac artery was selected as the input artery. Third, the
Tofts pharmacokinetic model was used to obtain three DCE-MRI
pseudo-color images (Ktrans, Kep, and Ve). Furthermore, the
region of interest (ROI) was manually delineated on each slice of
the sagittal DCE pseudo-color images for calculation, using T2-
weighted images as a guide. The ROI was placed in an area to
avoid necrosis, calcification, and blood vessels on each slice
(Figure 1). Two radiologists with 5 years (reader 1) and 8 years
(reader 2) of specific clinical experience in rectal cancer imaging
completed all image segmentations. The software automatically
generated 231 radiomics features from three perfusion maps
(Ktrans, Kep, and Ve), which included five categories: first-
order, histogram, gray level co-occurrence matrix, Haralick, and
run-length matrix.

Immunohistochemical evaluation of low-
density lipoprotein receptor-related
protein-1 and survivin

LARC pathological specimens were harvested during surgery or
by enteroscopy biopsy. In order to avoid the influence of anti-tumor
therapy on the expressions of LRP-1 and survivin, biopsy specimens
were used in patients who received any antitumor treatment before
surgery. Postoperative specimens were used only in patients treated
with TME plus adjuvant chemotherapy. Accordingly, there were 36
biopsy specimens and 64 surgical specimens, respectively. The
expressions of LRP-1 and survivin were determined in formalin-
fixed, paraffin-embedded tumor tissues using immuno
histochemistry (IHC). Serial sections were immunostained with
antibodies against LRP-1 (1:4000; Gene Tech, Shanghai, China) and
survivin (GT204821; Gene Tech, Shanghai, China).
Immunohistochemical tests for LRP-1 and survivin were
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Magnetic resonance images of a histopathologically confirmed locally advanced rectal cancer in a 56-year-old woman. (A) Manual region of
interest (ROI) placement in a contrast-enhanced sagittal T1-weighted image. (B) Color-coded Ktrans map of the ROI. (C) Color-coded Kep map

of the ROI. (D) Color-coded Vp map of the ROLI.

performed strictly according to the IHC protocol. The expression
levels of LRP-1 and survivin in tumor cells were determined using
the following scoring system: 1 (< 10%), 2 (10% to < 50%), 3 (50%
to < 80%), or 4 (> 80%). Staining intensity was scored as 0 (no
staining), 1 (weak staining), 2 (moderate staining), or 3 (intense
staining). The score for the percentage of positively stained tumor
cells and the score for staining intensity were then multiplied to
obtain the immunoreactive score (IRS), which ranged from 0 to 12.
There was no uniform opinion on the evaluation of LRP-1 and
survivin expressions on IHC, considering the limited number of
patients in this study. To facilitate further statistical analyses, the
expression levels of LRP-1 and survivin were divided into two
categories: low expression (IRS < 4 points) and high expression (IRS
> 4 points). An 80% agreement between the two pathologists
participating in immunostaining evaluation was set as the
standard. When the pathologists disagreed regarding an
evaluation, they made decisions based on consultation.

Interobserver variability evaluation

To assess the intraobserver and interobserver reproducibilities
of radiomics feature extraction, 30 patients were randomly selected
and intraclass correlation coefficients (ICCs) were calculated for
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tumor segmentation performed 1 week later by readers 1 and 2.
Subsequently, intragroup consistency analysis was performed on
the features of the 30 patients drawn by reader 1, and intergroup
consistency analysis was performed on the features of the same 30
patients drawn by readers 1 and 2. The reproducibility of radiomics
features extracted from DCE-MRI was considered good, with
intraobserver and interobserver ICC values both > 0.8. These
features, with good reproducibility, were collected for subsequent
radiomics analysis.

Feature selection and radiomics
signature construction

For each extracted radiomic feature, the mean value was
individually subtracted from the score, which was then divided by
the respective standard deviation (Z-score normalization).
Subsequently, two technical approaches (the maximum relevance
minimum redundancy [mRMR] method (21) combined with the
least absolute shrinkage and selection operator [LASSO] method)
were used to select the most useful predictive features from the
training data cohort. The LASSO logistic regression model was used
with penalty parameter tuning, which was conducted using tenfold
cross-validation. Lambda was selected according to the 1-standard
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error of the minimum (1-SE) rule, where the coefficients are not
rapidly changing, and the model is most parsimonious with the
minimum prediction error. Multivariate logical regression was used
to construct the predictive model using the selected features. A
radiomics score (Rad-score) was calculated for each patient using a
linear combination weighted by the respective coefficients (22).
Receiver operating characteristic (ROC) curves were used to
assess the performance of the radiomics models for LRP-1 and
survivin. The specificity, sensitivity, positive predictive value
(PPV), negative predictive value (NPV), and area under the
curve (AUC) were calculated to determine model performance.
Calibration curves were used to investigate the predictive
accuracy of the model graphically. The aforementioned
operations were performed in both the training and validation
cohorts. Finally, decision curve analysis (DCA) was used to
determine the clinical usefulness of the radiomic models.

Pathological evaluation of the
therapeutic response

Tumor regression grading (TRG) was assessed in
postoperative pathological specimens according to the four-tier
American Joint Committee on Cancer system (23): TRG 0, no
residual tumor cells; TRG 1, single cell or small group of cells;
TRG 2, residual cancer with a desmoplastic response; and TRG
3, minimal evidence of tumor response. Patients were then
divided into 2 groups; patients with TRG scores of 0 and 1
classified as sensitive and those with TRG scores of 2 and 3 were
classified as resistant.

Statistical analyses

All statistical analyses and figure creation were performed
using R software (version 40.2; packages mainly included
glmnet, pROC, rms, and rmda, Foundation for Statistical
Computing, Vienna, Austria). To determine the clinical
usefulness of the LRP-1 and survivin predictive model, DCA
was performed by calculating the net benefits at different
threshold probabilities in the test cohorts. The area under the
ROC curve was calculated to measure the diagnostic efficacy of
the models. Moreover, the sensitivity, specificity, PPV, NPV, and
accuracy were assessed. All tests were two-tailed, and statistical
significance was set at p < 0.05. Continuous variables (age) are
presented as means and standard deviations, and an
independent sample t-test was used to assess differences
between high and low expression groups. Categorical variables
(sex, location, mrT stage, mrN stage, CEA level, and CA199
level) were assessed using Fisher’s exact test or chi-squared test,
as appropriate.
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Results

Characteristics of patients with locally
advanced rectal cancer

This research’s summary profile is shown in Figure 2. Of the
100 patients, 64 were male and 36 were female. The patients were
randomly divided, in a 7:3 ratio, into training (70 patients) and
validation cohorts (30 patients). According to LRP-1 and
survivin expression groups, no statistically significant
differences were observed between the training and validation
cohorts in terms of sex, age, body mass index, location, mrT
stage, mrN stage, CEA level, or CA199 level (all p > 0.05). Details
regarding the clinical characteristics of patients with LARC with
high/low expression (LRP-1 and survivin) in both cohorts are
provided in Tables 1, 2.

Expressions of LRP-1 and survivin

LRP-1 and survivin expressions were identified by ITHC.
Examples of the IHC analysis of LRP-1 and survivin
expressions are shown in Figure 3. A weak correlation between
LRP-1 and survivin was observed (r = 0.201, p = 0.045).
Furthermore, some patients with high LRP expression
exhibited significantly low survivin expression.

Feature selection and radiomics model
construction

In total, 231 features were extracted from the MRI data (67
features each from Ktrans, Kep, and Ve). The details of these
selected features are provided in the Supplemental Material.
Using the mRMR method, 20 features were identified as having
high stability for predicting LRP-1 and survivin. The LASSO
method with tenfold cross-validation was then used to select
four potential predictive features each for LRP-1 and survivin,
with non-zero coefficients, to construct the final model; the
LASSO process is shown in Figure 4. The features were weighted
according to their corresponding coefficients. The resulting Rad-
score equation for the LRP-1 prediction (Rad-scorel) is as
follows:

“Rad - scorel

= 2.351 x sumAverage.Ktrans — 0.147 x skewness.
Kep + 2.023 x RunLengthNonuniformity. Ve — 0.530
x differenceEntropy . Ktrans + 1.265”

The resulting Rad-score equation for the survivin prediction
(Rad-score2) is as follows::
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FIGURE 2

1.Patients with biopsy-proven LARC from February 2017 to August 2021
2.DCE-MRI examination within two weeks before biopsy or surgery

3.Absence of antitumor treatment before DCE-MRI
[
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4. Metastatic disease
5. A maximum tumor diameter of <1 cm

1. poor image quality (with severe artifacts) or failure to

.| 2.Severe systemic disease and absolute contraindications
3.Lack of pre-surgical carcinoembryonic antigen(CEA) and
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]
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1.Random grouping at 7:3
l 2.Evaluation of LRP-1 and survivin
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‘ Validation cohorts(n=30)

'

Performance evaluation
of radiomics models

Patient inclusion and exclusion details and the patient recruitment flowchart.
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TABLE 1 Characteristics of patients with locally advanced rectal cancer in the training and validation cohorts (low-density lipoprotein receptor-

related protein-1).

Characteristic

Sex
Male
Female
Age(years)
mean + SD
BMI(kg/m?)
Location
Above
Straddling
Below
mrT stage
T2
T3
T4
mrN stage
NO
N1
N2
CEA level
Normal
Abnormal
CA199 level
Normal

Abnormal

Frontiers in Oncology

Training cohorts(n = 70) P
High Low High
0.668
26(65.00%) 18(60.00%) 10(58.82%)
14(35.00%) 12(40.00%) 7(41.18%)
0.717
68.75 + 11.29 67.83 +9.13 65.47 + 11.21
23.45 + 3.58 22.90 + 3.13 0.154 23.54 + 347
0.254
8(26.67%) 10(25.00%) 5(29.41%)
15(37.50%) 6(20.00%) 5(29.41%)
15(37.50%) 16(53.33%) 7(41.18%)
0.571
3(7.50%) 1(3.33%) 1(7.69%)
35(87.50%) 26(86.67%) 15(88.24%)
2(5.00%) 3(10.00%) 2(11.77%)
0.843
3(7.50%) 1(3.33%) 0(0.00%)
10(25.00%) 7(23.33%) 2(11.77%)
27(67.50%) 22(73.33%) 15(88.24%)
0.533
23(57.50%) 15(50.00%) 10(58.82%)
17(42.50%) 15(50.00%) 7(41.18%)
0.255
32(80.00%) 27(90.00%) 15(88.24%)
8(20.00%) 3(10.00%) 3(11.77%)
06

Validation cohorts(n = 30)

Low

10(76.92%)
3(23.08%)

71.92 +7.89
22.77 + 4.06

4(30.77%)
8(61.54%)
1(7.69%)

0(0.00%)
11(86.62%)
1(7.69%)

1(7.69%)
1(7.69%)
11(84.62%)

4(30.77%)
9(69.23%)

10(76.92%)
2(23.08%)

0.297

0.088

0.088
0.237

0.785

0.758

0.217

0.410
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TABLE 2 Characteristics of patients with locally advanced rectal cancer in the training and test groups (survivin group).

Characteristic Training cohorts(n = 70) P
High Low
Sex 0.353
Male 27(67.50%) 17(56.67%)
Female 13(32.50%) 13(43.33%)
Age(years) 0.382
mean + SD 6643 £ 10.71 70.93 + 9.43
BMI 23.55 + 3.55 2276 + 3.14 0339
Location 0.706
Above 11(27.50%) 7(23.33%)
Straddling 13(32.50%) 8(26.67%)
Below 16(40.00%) 15(50.00%)
mrT stage 0.046
T2 0(0.00%) 4(13.33%)
T3 37(92.50%) 24(80.00%)
T4 3(7.50%) 2(6.67%)
mrN stage 0.019
NO 0(0.00%) 4(13.33%)
N1 8(20.00%) 9(30.00%)
N2 32(80.00%) 17(56.67%)
CEA level 0.268
Normal 24(60.00%) 14(46.67%)
Abnormal 16(40.00%) 16(53.33%)
CA199 level 0.635
Normal 33(82.50%) 26(86.67%)
Abnormal 7(17.50%) 4(13.33%)
“Rad — score2
= —0.805 x differenceEntropy . Kep + 1.564 x
Correlation . Ktrans — 0.069 x Quantile95.Kep — 0.236 x
inverseDifferenceMoment . Ktrans + 0.565
Radiomics model evaluation

We compared Rad-scores between the LRP/survivin (high)
and LRP/survivin (low) groups in the training and validation
cohorts. There was a significant difference in Rad-scores between
the LRP/survivin (high) and LRP/survivin (low) groups, as
shown in Figure 5.

The discrimination performance of the Rad-scores for LRP-1
and survivin is summarized in Table 3. ROC curves of the Rad-
score for predicting LRP-1 and survivin status are shown in
Figure 6. The LRP-1 model yielded an AUC of 0.853, with a 95%
confidence interval (CI), accuracy, sensitivity, and specificity of
0.760-0.945, 0.829, 0.900, and 0.733, respectively. This model was
applied to the validation cohort, which generated an AUC, 95% CI,
accuracy, sensitivity, and specificity of 0.747, 0.556-0.938, 0.767,
Frontiers in Oncology 07

Validation cohorts(n = 30) P
High Low
0.193
13(76.47%) 7(53.85%)

4(23.53%) 6(46.15%)

0.265
66.41 + 9.34 2267 +3.92
2361 + 3.57 23.00 + 3.09 0513
0.200
3(17.65%) 6(46.15%)
6(35.29%) 2(15.38%)
8(47.06%) 5(38.46%)
0371
0(0.00%) 1(7.69%)
16(94.12%) 10(76.92%)
1(5.88%) 2(15.39%)
0.151
0(0.00%) 1(7.69%)
3(17.65%) 0(0.00%)
14(82.35%) 12(92.31%)
0.127
7(69.23%) 9(41.18%)
10(58.82%) 4(30.77%)
0410
15(88.24%) 10(76.92%)
2(11.77%) 3(23.08%)

0.882, and 0.615, respectively. Correspondingly, in the training
cohort, the survivin model yielded an AUC of 0.780 with 95% CI,
accuracy, sensitivity, and specificity of 0.670-0.890, 0.757, 0.700,
and 0.833, respectively. Analysis in the validation cohort generated
an AUC, 95% CI, accuracy, sensitivity, and specificity of 0.800,
0.635-0.967, 0.800, 0.824, and 0.769, respectively.

The calibration curves of the two models demonstrated that
the predicted probability fit well with the actual expression levels
in both the training and validation cohorts, indicating excellent
calibration of the radiomics models (Figure 7). The decision
curve of the radiomics model is shown in Figure 8, and DCA
revealed that using the radiomics models (LRP-1/survivin)
added more net benefit than the treat-all or treat-none
strategies, indicating the excellent performance of the
radiomics models in terms of clinical application.

Rad-scores in resistant and sensitive
groups

Among 15 patients who underwent radiotherapy (12
received neoadjuvant chemoradiotherapy followed by TME
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FIGURE 3

Representative immunohistochemical staining of markers. Low-density lipoprotein receptor-related protein-1: (A) low expression, (B) high
expression. Survivin: (C) low expression, (D) high expression (magnification: x10 20).

and 3 received neoadjuvant radiotherapy plus TME), Rad-score2
was not significantly different between sensitive and resistant
groups (p = 0.594; Table 4). However, Rad-scorel was
significantly higher in the resistant group (4.829 + 3.459) than
in the sensitive group (-0.210 + 0.648, p = 0.043; Table 4).

Discussion

To the best of our knowledge, this study is the first attempt
to propose and validate noninvasive radiomics models based on
DCE-MRI for the preoperative prediction of LRP-1 and survivin
expressions in patients with LARC. The predictive model for
LRP-1 demonstrated favorable discrimination and yielded
AUCs of 0.853 and 0.747 in the training and validation
groups, respectively. In predicting survivin expression, the
radiomics model achieved AUCs of 0.780 and 0.800 in the
training and validation cohorts, respectively. The results
suggest that the clinical use of radiomics is promising in terms
of the preoperative prediction of LRP-1 and survivin. In
addition, Rad-scorel was significantly higher in the resistant
group than in the sensitive group, although Rad-score2 was not
significantly different between the two groups. Thus, the
predictive models may be helpful in guiding clinicians in
identifying patients who are radiotherapy resistant and
selecting appropriate treatment plans for patients with LARC.
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In recent years, radioresistance has mainly been responsible for
treatment failure and mortality in patients with LARC receiving
radiation therapy. Furthermore, the current standard of care for
LARC is to apply the same treatments to all patients, regardless of
their individual responses to radiotherapy. This uniform treatment
method inevitably leads to undertreatment or overtreatment for
several patients with LARC (24). Currently, approximately 30%-
50% of patients are reported to show radioresistance to ionizing
radiation (IR); however, if these patients are identified before
surgery, more intensive chemotherapy could be applied (25). In
contrast, the complete response for tumors predicted to undergo
invasive radical surgery may even be modified. Therefore, the
development of new biomarkers capable of successfully assessing
patients’ radio-responsiveness status preoperatively is urgently
needed to establish patient-specific treatment (26).
Radioresistance is a complex process involving the alteration of
several cellular mechanisms (27). Moreover, cell division phases
profoundly influence the response to radiation in cancer (28, 29).
Numerous studies have shown that LRP-1 and survivin play
essential roles in regulating the cell cycle, which is significantly
related to radiotherapy tolerance in LARC. Identifying LRP-1 and
survivin expressions before surgery may improve prognostication
and guide the selection of a clinical treatment plan. At present, a
pathological examination is the gold standard for diagnosing LRP-1
and survivin expressions. However, results are influenced by
sampling and may be inadequately comprehensive because of
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FIGURE 4

Radiomics feature selection using sthe least absolute shrinkage and selection operator (LASSO) binary logistic regression model. (A) LASSO
coefficient profile, displaying 30 texture features. A coefficient profile plot was produced against the log (lambda) sequence. Each colored line
represents the coefficient of an individual feature. (B) Tuning parameter (log lambda) selection in the LASSO model used tenfold cross
—validation via 1-SE criteria. Vertical dotted lines were drawn at the selected A values. (A, C) The error rate curve. (B, D) LASSO coefficient A
graph. Coefficient A was selected in the LASSO using a tenfold cross-validation. We selected the coefficient A according to the 1-SE rule.

tumor heterogeneity. With the advent of the precision medicine era,
single-modality medical imaging is gradually evolving and cannot
meet the requirements of individualized treatment (30, 31).
Radiomics, an emerging technique in computational medical
imaging, can extract information-rich imaging functions with
high throughput and quantify imaging information that the
human eye cannot detect (32, 33). Many prior studies have
shown that radiomics can effectively predict the expression of
multiple pathological biomarkers in various tumors based on
quantitative image features derived from different MRI techniques
(34, 35). In our study, we used DCE-MRI to construct a predictive

Frontiers in Oncology

09

model. Unlike conventional MRI imaging techniques, DCE-MRI
has the advantage of estimating blood flow, blood volume, and
vascular permeability and the tumor vascular microenvironment.
DCE-MRI has been applied in several tumor studies and has yielded
satisfactory results (36). However, no study has aimed to determine
the expressions of LRP-1 and survivin. In view of this knowledge
gap, we established radiomics models based on DCE-MRI to
distinguish between LRP-1 and survivin expression levels, and
obtained promising results.

LRP-1 is a multifunctional scavenger receptor that belongs
to the low-density lipoprotein receptor family (37). Owing to its
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(A) A comparison of radiomics scores (Rad-scores) between different low-density lipoprotein receptor-related protein-1 expression levels in the
training and validation cohorts. (B) A comparison of Rad-scores between different survivin expression levels in the training and validation

cohorts.

TABLE 3 Performance summary of radiomics scores for predicting low-density lipoprotein receptor-related protein-1 and survivin status in each

cohort.
Cohort Cut-off AUC ACC SEN SPE PPV NPV
LRP-1 Training 0.400 0.853 0.829 0.900 0.733 0.818 0.846
Validation 0.445 0.747 0.767 0.882 0.615 0.750 0.800
Survivin Training 0.557 0.780 0.757 0.700 0.833 0.848 0.676
Validation 0.511 0.800 0.800 0.824 0.769 0.824 0.769

AUG, area under the receiver operating characteristic curve; ACC, accuracy; SEN, sensitivity; SPE, speciﬁcity; PPV, positive predictive value; NPV, negative predictive value.
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Receiver operating characteristic curves of the biomarkers for classifying low-density lipoprotein receptor-related protein-1 (A) and survivin
(B) expression levels in the training and validation cohorts.
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correction in the model.

capacity to control the pericellular levels of various growth
factors and proteases, LRP-1 plays a crucial role in tumor
progression. Compared to untreated cells with LRP-1
inhibition, treated cells present an increase in the proportion
of cells in the Gl phase and a decrease in the S phase cell
population (8). Clinically, high LRP-1 expression in patients
subjected to radiotherapy has a poor prognosis. Certainly, LRP-1
expression status has a crucial role in predicting radiotherapy
resistance and prognosis in patients with LARC; however, few
studies have used radiomics features extracted from
pretreatment DCE-MRI to predict LRP-1 expression. In this
study, four DCE-MRI radiomics features (Ktran. sum Average,
Ktrans. difference entropy, Kep. skewness, and Ve. run length

Frontiers in Oncology

nonuniformity) were selected to construct the predictive model
for LRP-1, which yielded a high AUC in both training (AUC =
0.853) and validation (AUC = 0.747) cohorts. Moreover, features
from Ktrans were most commonly used in the optimal radiomics
model (2/4). Previous studies have corroborated that Ktrans
reflects vessel blood flow and is the product of vessel
permeability and vessel surface area (38). Theoretically, the
value of Ktrans is mainly determined by blood flow or
elevated vessel permeability. Devy et al. (39) revealed that
LRP-1 also plays an essential role in the angiogenic processes
for tumor growth through its wide spectrum of interactions.
Thus, the observed association between Ktrans (sum average)
and LRP-1 expression is reasonable. Our radiomics model may

frontiersin.org


https://doi.org/10.3389/fonc.2022.881341
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Li et al.

10.3389/fonc.2022.881341

‘Standardized Net Benefit

- features
— None

‘Standardized Net Benefit

adiomics features
I
— None

r T T T

High Risk Threshold

r T T T T

12 910
Cost:Benefit Ratio

FIGURE 8

High Risk Threshold
r T T T T 1

12 910
CostBenefit Ratio

Decision curve analysis for the model for (A) low-density lipoprotein receptor-related protein-1 and (B) survivin in the test cohorts. The y-axis
measures the standardized net benefit. The red curve represents the radiomics model. The gray curve represents the assumption that all
patients were treated, and the straight black line at the bottom of the figure represents the assumption that no patient was treated.

TABLE 4 Radiomics scores between resistant and sensitive groups.

Sensitive groups(n=10) Resistant groups(n=>5) F value P value
Rad-scorel -0.210 + 0.648 4.829 + 3.459 2.891 0.043
Rad-score2 1.771 + 0415 -0.083 + 0.947 -0.547 0.594
A B
P=0.011 P=0.006
1 1
10 101
s
= =
o =
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FIGURE 9

Differences in low-density lipoprotein receptor-related protein-1 (LRP-1) and survivin between sensitive and resistant groups. (A) The expression
of LRP-1 was higher in the resistant group than in the sensitive group (p = 0.011). (B) The expression of survivin was higher in the resistant group

than in the sensitive group (p = 0.006).

serve as a novel quantitative tool for individually predicting the
expression of LRP-1 and selecting appropriate targeted therapies
for patients with LARC.

In addition, we constructed a radiomics model to predict the
expression of survivin and achieved excellent results, with
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sensitivities of 70.0% and 76.5%, specificities of 83.3% and
69.2%, and AUCs of 0.780 and 0.800 in the training and
validation cohorts, respectively. Notably, the performance of
the radiomics model in the test cohort was superior to that in the
validation cohort (AUC, 0.800 vs. 0.780), which demonstrates
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the robustness of our model. Survivin is a unique member of the
inhibitor of apoptosis protein family that is expressed in most
cancer cells but is barely detected in most normal adult tissues
(40). Without doubt, survivin has attracted a great deal of
interest as an anti-radiotherapy factor, and its overexpression
in tumors has been shown to be associated with radioresistance,
poor prognosis, and drug resistance (41, 42). Previous studies
have shown that targeted inhibition of survivin in cancer cells
can interfere with their DNA repair ability and increase their
radiosensitivity to IR (12, 42). Two features from Ktrans were
selected in the radiomics model for predicting survivin. In
several studies, Ktrans has been considered as a robust and
clinically useful biomarker of radiation resistance in some tumor
types (43). These results demonstrate that Ktrans plays an
essential role in reflecting the expression levels of LRP-1 and
survivin. Our findings also highlighted a weak correlation
between LRP-1 expression and survival (r = 0.201, p = 0.045).
This correlation between LRP-1 and survivin suggests that they
may play a synergistic role in radiotherapy resistance in LARC to
some extent. LRP-1 or survivin may have a specific association
with radiotherapy tolerance in rectal cancer, and targeted
inhibition of LRP-1 or survivin can improve the prognosis of
patients. However, as a puzzling part of our study, we found that
some patients with high LRP-1 expression exhibited low survivin
expression. These results are entirely contrary to our initial
conjecture that the presentation of LRP-1 should be consistent
with that of survivin to a certain extent. In our view, this
inconsistency may originate from the heterogeneity of the
tumor and the complex mechanisms of IR. Radiotherapy
tolerance is a complex process involving many mechanisms.
The biological behavior of LARC radioresistance may be
reflected by multiple biomarkers rather than a single
biomarker (LRP-1 or survivin). In the future, with further
research on radiotherapy tolerance mechanisms, the inclusion
of more tolerance factors may help improve the predictive model
for radiotherapy tolerance. Further studies with larger sample
sizes are required to investigate the clinical validation and
additive values of the radiomics model for predicting the
response to radiotherapy.

Furthermore, the calibration curve of the predictive
radiomics models demonstrated good agreement between the
predicted and actual probabilities in the training and validation
cohorts, indicating that our models accurately evaluated the
true values of LRP-1 and survivin expression. DCA showed a
higher overall net benefit with the radiomics model, thus
highlighting its value as an excellent tool, based on DCE-
MRI, for assistance in clinical decision-making. Using the
radiomics model, if a patient is predicted to have high LRP-1
or survivin expression, the administration of targeted therapy
or more intensive chemotherapy should be recommended.
In the future, patients with high LRP-1 and survivin-
expressing LARC may serve as an ideal population for testing
newer therapies.
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In order to investigate the relationship between LRP-1 and
survivin expression and resistance to neoadjuvant radiotherapy
in patients with LARC, we collected additional LARC biopsy
specimens from 27 patients who received neoadjuvant
radiotherapy with/without DCE-MRI examinations from
February 2017 to August 2021 at Shaoxing People’s Hospital;
these patients were not among the 100 patients in the main
analyses. LRP-1 expression was significantly higher in the
resistant group than in the sensitive group (7.813 + 2.297 vs
5.000 + 2.828, p = 0.011). In addition, survivin expression was
significantly higher in the resistant group than in the sensitive
group (7.500 + 2.318 vs 4.636 + 2.385, p = 0.006), as shown in
Figure 9. These results further suggest that LRP-1 and survivin
may be predictive markers clinically relevant to resistance to
neoadjuvant radiotherapy in patients with LARC.

Regarding whether the effects of radiation therapy can be
predicted using radiomics models, we find that although
radiomics models based on DCE-MRI performed well, the
present study has some limitations. First, this was a
retrospective study from a single institution, which may
lead to potential selection biases; also, the predictive model
was not tested with external test data. Therefore, prospective
and multicenter studies are encouraged in the future. Second,
the number of patients was relatively small; therefore, it is
necessary to incorporate more cases in future studies to
determine the proposed model’s reliability. Third,
additional pathological, clinical, and radiological
characteristics were not considered in our study. Finally,
the present study was merely based on DCE-MRI, and
several previous studies have shown that the combined
application of more MRI sequences (e.g., T2WI, TIWI, and
DWI) may improve the predictive ability of the radiomics
model. Despite these limitations, the application of the
radiomics models may have clinical prospects in terms of
precision and personalized medicine for patients with LARC.

Conclusion

In conclusion, the present study demonstrated that
radiomics analysis of DCE-MRI features facilitates the
determination of LRP-1 and survivin expression levels in
LARC before treatment. Our models have significant potential
for the preoperative identification of patients with radiotherapy
resistance and can serve as an essential reference for
treatment planning.
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