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Ferroptosis-related molecular
patterns reveal immune escape,
inflammatory development and
lipid metabolism characteristics
of the tumor microenvironment
in acute myeloid leukemia
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Yu-Lin Yang1,2, Xue-Ru Zhang1,2, Xue-Xin Cheng1, Bo Huang1*

and Xiao-Zhong Wang1,2*

1Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The
Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China, 2School of Public
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Background: An increasing number of studies have revealed the influencing

factors of ferroptosis. The influence of immune cell infiltration, inflammation

development and lipid metabolism in the tumor microenvironment (TME) on

the ferroptosis of tumor cells requires further research and discussion.

Methods:We explored the relationship between ferroptosis-related genes and

acute myeloid leukemia (AML) from the perspective of large sample analysis

and multiomics, used multiple groups to identify and verify ferroptosis-related

molecular patterns, and analyzed the sensitivity to ferroptosis and the state of

immune escape between different molecular pattern groups. The single-

sample gene set enrichment analysis (ssGSEA) algorithm was used to

quantify the phenotypes of ferroptosis-related molecular patterns in

individual patients. HL-60 and THP-1 cells were treated with ferroptosis

inducer RSL3 to verify the therapeutic value of targeted inhibition of GPX4.

Results: Three ferroptosis-related molecular patterns and progressively

worsening phenotypes including immune activation, immune exclusion and

immunosuppression were found with the two different sequencing

approaches. The FSscore we constructed can quantify the development of

ferroptosis-related phenotypes in individual patients. The higher the FSscore is,

the worse the patient’s prognosis. The FSscore is also highly positively

correlated with pathological conditions such as inflammation development,

immune escape, lipid metabolism, immunotherapy resistance, and

chemotherapy resistance and is negatively correlated with tumor mutation
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burden. Moreover, RSL3 can induce ferroptosis of AML cells by reducing the

protein level of GPX4.

Conclusions: This study revealed the characteristics of immunity,

inflammation, and lipid metabolism in the TME of different AML patients and

differences in the sensitivity of tumor cells to ferroptosis. The FSscore can be

used as a biomarker to provide a reference for the clinical evaluation of the

pathological characteristics of AML patients and the design of personalized

treatment plans. And GPX4 is a potential target for AML treatment.
KEYWORDS

ferroptosis, tumor microenvironment, immune escape, inflammatory development,
lipid metabolism, acute myeloid leukemia
Introduction

Cell death is important for maintaining the normal growth and

development of living organisms and for maintaining homeostasis.

The classic cell death modes include apoptosis, autophagy and

necrosis (1). In 2012, Dixon et al. proposed a new type of iron-

dependent programmed cell death induced by erastin and RSL3 and

other small molecules, called ferroptosis, which is mainly

characterized by the generation of reactive oxygen species (ROS),

lipid peroxidation and iron accumulation (2). When a specific small

molecule compound interacts with a specific target in the cell, it will

cause the reduction in antioxidants such as glutathione (GSH) and

glutathione peroxidase 4 (GPX4), and the antioxidant capacity of

the cell will be weakened. In addition to a large amount of ROS

accumulation, under the synergistic effect of iron, lipid peroxidation

of the cell membrane induces ferroptosis (3, 4). Ferroptosis is

involved in many inflammatory and immune diseases and
02
cancers (5–7). It has potential clinical value to treat diseases by

using regulators that affect the occurrence of ferroptosis. Acute

myeloid leukemia (AML) is the most common hematological

malignant tumor. The pathogenesis mechanism is still unclear.

An increasing number of studies have revealed the relationship

between ferroptosis and AML. For example, ferroptosis plays an

important role in the differentiation of AML induced by ATPR (8),

dihydroartemisinin (DHA) induces ferroptosis of AML cells

through autophagy-dependent degradation of ferritin (9), and

erastin increases the sensitivity of AML cells to chemotherapy by

inducing ferroptosis (10). These studies suggest that the induction

of ferroptosis has potential therapeutic value for AML.

The sensitivity of cells to ferroptosis is closely related to lipid

metabolism, which induces ferroptosis through lethal lipid

peroxides (LPOs) accumulated by lipid peroxidation (11).

There are many types of lipids, and their biological functions

are quite different. The synthesis and metabolism of lipids are
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precisely regulated. However, in the process of ferroptosis,

polyunsaturated fatty acids (PUFAs), such as linoleic acid

(LA), linolenic acid (LNA) and arachidonic acid (AA), play an

important role (12); AA is particularly important, as it is very

prone to peroxidation and can be oxidized to LPO (11, 13). GSH,

ferroptosis suppressor protein 1 (FSP1), cystine/glutamate

antiporter (system XC-), and GPX4 play an important

regulatory role in the mechanisms that protect cells from

ferroptosis caused by oxidative stress (14–17). These

characteristics all indicate that the occurrence of ferroptosis is

related to complex metabolic regulation, and the destruction of

cellular redox homeostasis is one of the most critical factors.

How ferroptosis is regulated by immune cells and the

relationship between ferroptosis induction therapy and

antitumor immunity are worthy of in-depth research

and discussion. The immune system includes innate immunity

and adaptive immunity (18). The effect of ferroptosis on the

immune system is mainly reflected in the impact on the number

and function of immune cells, as well as the specific reaction and

inflammatory reaction produced by immune cells after the

occurrence of ferroptosis (19). In addition to tumor cells, the

tumor microenvironment (TME) is also rich in a large number of

immune cells, including T cells, B cells, monocytes, macrophages,

dendritic cells (DCs), natural killer (NK) cells, neutrophils and

myeloid-derived suppressor cells (MDSCs) (20). Many studies

have revealed the relationship between ferroptosis and immune

cells. For example, TLR2 on macrophages eliminates ferroptotic

cells by recognizing phosphatidylethanolamines on ferroptotic

cells (21), neutrophils maintain the inflammatory response that

occurs after ferroptosis in related tissues (22), and CD8+ T cells

kill cancer cells by stimulating ferroptosis (23), indicating that

ferroptosis plays an important role in antitumor immunity.

Ferroptosis is more likely than apoptosis to trigger an

inflammatory response. For example, ferroptotic cells express

more phosphatidylserine on the plasma membrane to release

“eat me” signals to induce macrophage aggregation (24). The

occurrence and development of inflammation is a double-edged

sword in antitumor immunity (25). Acute inflammation is

conducive to the protective immunity activated in anticancer

therapy, while chronic inflammation provides a favorable

environment for tumor cell proliferation and immune escape.

Studies have shown that cancer cells evade the immune system by

producing a large number of cytokines and chemokines that

inhibit immune cells. For example, in patients with melanoma,

pancreatic cancer, and colorectal cancer (26–28), the expression

levels of the immunosuppressive cytokines IL-10 and TGF-b are

significantly higher than the expression levels of the

immunostimulatory cytokines IL-2, IL-12 and IFN-g. The

predominant expression of immunosuppressive cytokines causes

the TME to adopt an immunosuppressive state, which in turn

helps cancer cells escape immunity (29). In the blood system, the

activation of inflammatory signals in hematopoietic cells and the

hematopoietic niche can significantly change the connection
Frontiers in Oncology 03
between hematopoietic cells and their microenvironment (30).

The high expression of TNF-a, IL-6, TGF-b, IL-8 and other

proinflammatory cytokines in the bone marrow can lead to

negative bone marrow hematopoietic function (31, 32). A study

showed that inflammation-related cytokines inhibit the

proliferation of normal progenitor cells, significantly promote

the growth and survival of AML cells and are not affected by

the mutation status of AML cells. The abnormal expression of

cytokines creates a favorable TME for AML (33).

In summary, the occurrence of ferroptosis is closely related to

biological behaviors such as the immune response, inflammation

development, and lipid metabolism. However, there are few

research reports on the relationship between ferroptosis and the

occurrence and development of AML. As a blood tumor, AML is

complicated by bone marrow cell proliferation, and changes in

immune and inflammatory responses occur in the peripheral blood

microenvironment at all times. Therefore, a comprehensive

understanding of the TME characteristics related to ferroptosis

will help us improve our understanding of the abnormal

hematopoietic microenvironment of AML and provide insights

for clinical diagnosis, treatment and prognostic evaluation. In this

study, we integrated the genome information of 992 AML

specimens, including expression profile chip data and high-

throughput sequencing data, and comprehensively analyzed the

characteristics of immune cell infiltration, lipid metabolism, and

inflammation development in the TME of AML patients. We

divided patient transcriptome data into a gene chip group (GEO

group) and a high-throughput sequencing group (TCGA group).

Both sets of data revealed three different ferroptosis-related

phenotypes in AML patients and deeply reflected that immune

escape and inflammation development in AML patients gradually

worsened. To better evaluate the development of ferroptosis-related

phenotypes in individual patients, we constructed a gene signature

(FSscore) to quantify these phenotypes. The FSscore not only

reflects the TME status of AML patients but also accurately

evaluates the pathological characteristics of AML patients, such as

prognosis, immunotherapy, and drug resistance. Finally, we

experimentally confirmed that GPX4 is a potential target for

AML treatment.
Methods

Data acquisition and preprocessing

The workflow of this project was shown in Figure S1. This study

included 992 AML samples containing clinical survival information

and 337 healthy control samples, including samples from six GEO

(Gene-Expression Omnibus) cohorts (GSE10358, GSE12417-

GPL96, GSE12417-GPL570, GSE37642, GSE71014, GSE146173),

The Cancer Genome Atlas-Acute Myeloid Leukemia (TCGA-

LAML) cohort, and the Genome Tissue Expression (GTEx)-

whole blood cohort. For the GEO cohorts of the affymetrix
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platform was used, after downloading the original “CEL” file of the

microarray data, we used the robust multiarray averaging (RMA)

method with the “affy” package for standardization. For the

microarray data of other platforms, we downloaded the

normalized matrix file. For high-throughput sequencing data, we

transformed the raw data into transcripts per kilobase million

(TPM) values. Then, we used the combat algorithm with the

“sva” package to perform batch correction on all microarray data.

The normalized RNA-seq data (RSEM tpm) of the TCGA-LAML

and GTEx whole blood datasets were downloaded from the UCSC

XENA database (https://xenabrowser.net/datapages/). Somatic

mutation data and gene copy number data were downloaded

from the TCGA database (https://portal.gdc.cancer.gov/), Tumor

mutation burden (TMB) calculationmethod: TMB = (total count of

variants)/(the whole length of exons). All data were analyzed using

R x64 4.1.0 and related R Bioconductor packages, and the data

information is shown in Table S1. Sixty ferroptosis-related genes

(FRGs) were retrieved from previous literature records (34) and are

summarized in Table S2.
Unsupervised clustering for FRGs

We used the consensus clustering algorithm via the

“ConsensusClusterPlus” package to perform unsupervised

cluster analysis on the mRNA expression of 60 FRGs (35) and

performed 1000 repetitions to ensure the stability of

classification, which was also verified by t-distributed

stochastic neighbor embedding (t-SNE).
Pathway enrichment analysis, functional
annotation and protein–protein
interaction (PPI) network analysis

Gene set variation analysis (GSVA) can quantify the activity of

biological processes and signal pathways in different samples

based on the expression of genes in the data set (36). We

performed GSVA analysis on the “c2.cp.kegg.v2.2.symbols” gene

set downloaded from the MSigDB database (37). An adjusted P

value < 0.05 was regarded as statistically significant to analyze the

biological behavior differences in ferroptosis-related molecular

patterns. For ferroptosis-related genes and ferroptosis-related

phenotype genes, we used the “clusterProfiler” package for

functional annotation and uploaded them to the STRING

database (https://string-db.org) to obtain their PPI network.
Evaluation of TME immune cell
infiltration level

The CIBERSORT algorithm is based on the support vector

regression method to infer the proportions of various immune
Frontiers in Oncology 04
cells from the mixed cells of the tumor sample (38). We used an

algorithm based on LM22 gene signatures to evaluate the

infiltration level of immune cells such as B cells, T cells, NK

cells and macrophages.
Identification of ferroptosis-related
phenotype genes

To better identify ferroptosis-related phenotypes, we

adopted the empirical Bayesian approach through the

“LIMMA” package to analyze the difference in gene expression

between different ferroptosis-related molecular patterns (39). An

adjusted P value <0.05 was used as the significance standard to

determine differentially expressed genes (DEGs). The genes after

the intersection of DEGs of different FRG cluster subtypes were

defined as ferroptosis-related phenotype genes.
Dimension reduction and construction
of ferroptosis-related phenotype
gene signatures

We tried to quantify ferroptosis-related phenotypes to better

assess the degree of tumor development in AML patients. First,

the ferroptosis-related phenotype genes identified by the GEO

group and TCGA group were intersected, and a total of 317

overlapping genes were screened. We considered these genes to

be ferroptosis-related phenotype signature genes. The

phenotypic genes related to the prognosis of AML patients in

the GEO group and TCGA group were further screened for

dimension reduction and defined as the ferroptosis-related

phenotype gene set. Single-sample gene set enrichment

analysis (ssGSEA) can calculate the ferroptosis-related

phenotype gene set enrichment score of individual samples,

indicating the degree to which these genes are synergistically

upregulated or downregulated in the sample, and the degree of

development of ferroptosis-related phenotypes is positively

correlated with the overall expression levels of these genes.

Therefore, we used ferroptosis-related phenotype gene set

enrichment scores, collectively named the FSscore, to quantify

ferroptosis-related phenotypes.
Correlation analysis of ferroptosis-
related molecular patterns and other
biological characteristics, such as
immune escape, lipid metabolism, and
inflammation development

To explore the sensitivity of different molecular patterns to

the occurrence of ferroptosis, we collected lipid metabolism-

related signaling pathways and other gene sets that have been
frontiersin.org
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confirmed to be related to ferroptosis through the MSigDB

database. To determine the degree of immune escape and

inflammation development of molecular patterns with different

phenotypes, we used a series of gene sets designed by

Mariathasan et al. (40), including immune checkpoint,

angiogenesis, nucleotide excision repair, DNA damage repair,

mismatch repair gene sets and gene sets related to cell adhesion,

tumor angiogenesis, and inflammatory response signaling

pathways from the MSigDB database. MDSCs are closely

related to tumor immune escape (41). From the study of

Charoentong et al., we obtained the marker genes of MDSCs

(42). Finally, we used the tumor immune dysfunction and

exclusion (TIDE) website (http://tide.dfci.harvard.edu/) to

predict the TIDE score of samples with different ferroptosis-

related phenotypes to verify the immune escape level (43).
Immune checkpoint blockade response,
drug sensitivity prediction, and small
molecule drug screening

We collected the genomic and clinical information of two

immunotherapy groups: an anti-PD-L1-treated advanced

urothelial cancer cohort (IMvigor210) (40) and an anti-PD-1-

treated metastatic melanoma cohort (GSE78220) (44). The gene

expression data of the two cohorts were transformed to TPM

values. The Genomics of Drug Sensitivity in Cancer (GDSC;

https://www.cancerrxgene.org/) database was used to predict the

sensitivity of all patients to 138 chemotherapy drugs, and the

“pRRophetic” package was used to calculate the value of half-

maximal inhibitory concentration (IC50) (45, 46). Then, we

uploaded the genes that were upregulated and downregulated in

immunosuppression phenotypes to the CMap database (47) and

used the mode-of-action (MoA) analysis function of the

website to predict the potential small molecule drugs to

regulate ferroptosis-related phenotypes and targets to induce

therapeutic effects.
In vitro assays

Human AML cell lines HL-60 and THP-1 were cultured in

RPMI1640 medium containing 10% fetal bovine serum and 1%

penicillin-streptomycin at 37°C and 5% CO2. Cell counting Kit

(CCK-8) (Bioss, BA00208, USA) was used to evaluate cell

viability. The cells were inoculated into 96 well flat bottom

microtiter plates with a density of 20000 cells per well, and then

treated with different concentrations of RSL3 or (and)

ferrostatin-1 for 48 hours. After that, 10 ml CCK-8 reagent was

added to each well and incubated at 37 °C for 2.5 h. The

absorbance of the cells at 450 nm was measured by microplate

reader. Western blot analysis was used to detect the expression

of GPX4. Antibodies used were rabbit anti-GAPDH
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(1: 1000, #5174) from Cell Signaling Technology (Danvers,

MA, USA) and anti-GPX4 (1:1000, T56959) from Abmart

(Shanghai, China).
Statistical analysis

The Wilcoxon rank-sum test and Kruskal–Wallis test were

used to determine the difference between two groups and

multiple groups, respectively. The “survminer” package was

used to determine the cutoff point of various scores and divide

patients into high and low groups. The log rank test was used to

determine the significance of Kaplan–Meier survival analysis.

Univariate Cox regression analysis was used to calculate the

hazard ratios (HRs). Multivariate Cox regression analyses

further determined independent prognostic factors. The

“forestplot” package was used for univariate and multivariate

independent prognostic analysis. The specificity and

sensitivity of the FSscore were evaluated by receiver

operating characteristic (ROC) curve analysis, and the

“pROC” package was further used to determine the area

under the curve (AUC). The “maftools” package was used to

show the characteristics of somatic mutations in TCGA-LAML

patients. The chromosomal location where the copy number

variation in FRGs occurred was described with the “RCircos”

package. A two-sided p value < 0.05 was considered to indicate

statistical significance.
Results

Variation landscape of FRGs in AML

The phenotype of organisms is mainly regulated by gene

expression, and the occurrence of ferroptosis is no exception. To

explore the relationship between ferroptosis and AML, we first

analyzed the genetic characteristics of FRGs in AML cells. Based

on the transcriptome sequencing data of tumor samples and

normal blood samples from AML patients, we observed that

most FRGs were upregulated in AML (Figure 1A). The high

expression of these genes may play an important role in the

occurrence and development of AML. We further analyzed the

copy number variation (CNV) frequency of FRGs in AML

patients, and 27 genes had copy number gain or loss. High

expression of PTGS2, TFRC, HSPB1, SQLE, RPL8, NCOA4,

FADS2, KEAP1, and SLC1A5 may be related to an increase in

CNV frequency (Figure 1B). Figure 1C shows the location of

FRGs on the chromosome where CNVs occurred. The

occurrence of leukemia is closely related to gene mutations,

and we summarized the somatic mutations of FRGs. Among 134

samples, 17 had gene mutations, and TP53 had the highest

mutation frequency (Figure 1D). To better explore the

interaction between these genes, we further analyzed the
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difference in the expression of FRGs between TP53 mutation-

type and wild-type patients, the correlations among FRG

expression levels, and the prognostic value of FRGs in AML

patients. The results showed that compared with that in the

TP53 wild-type patient group, the expression of 9 FRGs, such as

PTGS2, was upregulated in the mutant patient group, and the

expression of 10 FRGs, such as PGD, was downregulated

(Figure 1E). Correlation analysis showed that the expression

levels of most FRGs were positively correlated; for example,

TP53 expression was positively correlated with the expression of

other FRGs (Figure 1F and Table S3). Univariate Cox regression
Frontiers in Oncology 06
analysis showed that 10 FRGs such as TP53 and PHKG2, were

favorable factors in terms of the prognosis of AML (Figure 1F

and Table S4). High expression of these genes indicated a better

prognosis for AML patients. The remaining FRGs were risk

factors. The mutation of TP53 in AML often indicates a poor

prognosis, poor cytogenetic risk and immunosuppression (48,

49). In connection with the differential expression of FRGs in

AML and normal samples, we observed that PTGS2, CBS,

CHAC1, GCLM, SLC1A5, HSPB1, and ALOX12 were highly

expressed in AML samples and patients with TP53 mutations

and also showed significant positive correlations in terms of
A B

D

E F

C

FIGURE 1

Genetic characteristics of FRGs in AML patients. (A) The heatmap depicts the difference in the expression of 60 FRGs in AML samples and
normal samples. Wilcoxon test, *P < 0.05; **P < 0.01; *P < 0.001. (B) CNV frequency of FRGs in the TCGA cohort. (C) The position of FRGs on
23 chromosomes where CNV occurred in the TCGA cohort. (D) Somatic mutations of 60 FRGs in 134 TCGA-LAML patients. Each column in the
waterfall diagram represents the mutation type of each patient, the upper part shows the TMB of each patient, and the right side shows the
mutation frequency and mutation type ratio of FRGs. The ratio of different base transitions is shown below. (E) The expression of 60 FRGs in
TP53 mutation-type patients and wild-type patients, Wilcoxon test, *P < 0.05; **P < 0.01. (F) The interaction of FRGs in AML patients and its
relationship with prognosis. Spearman correlation analysis was used to calculate the correlation between FRGs; p<0.001 indicates correlation,
pink lines represent a positive correlation, and blue lines represent a negative correlation. Univariate Cox regression analysis was used to
calculate the HRs to identify the relationship between FRG expression and prognosis. HR<1: Favorable factors for prognosis, indicated by a
green semicircle. HR>1: Risk factors for prognosis, indicated by a purple semicircle. The size of the circle indicates the degree of association
between the gene and the prognosis. The larger the circle is, the stronger the association with the prognosis.
frontiersin.org

https://doi.org/10.3389/fonc.2022.888570
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhong et al. 10.3389/fonc.2022.888570
expression levels, indicating that they are also risk factors in

terms of the prognosis of AML patients.

Based on the above results, we observed that the genetic

changes in FRGs in AML samples versus normal samples,

including gene structure, number, and expression, were highly

heterogeneous, indicating that FRGs may have a profound

impact on the occurrence and development of AML.
Identification of ferroptosis-related
molecular patterns and analysis of their
biological characteristics

To further analyze the influence of FRGs on the biological

functions of AML, we first performed Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analysis and found

that these genes are involved in many signaling pathways related
Frontiers in Oncology 07
to lipid metabolism, energy metabolism and ferroptosis (Figure

S2A). The PPI network also shows that FRGs have complex

interactions at the protein level (Figure S2B). The high

correlation between FRGs at the mRNA and protein

expression levels indicates that the combined effect of these

genes may have an important impact on the biological process of

AML. Therefore, we performed unsupervised clustering based

on the expression of FRGs in the TCGA cohort. The clustering

results showed that AML patients in the TCGA cohort were

divided into three different molecular patterns, named

TCGA.FScluster A-C (Figure S2C, and Table S5), and t-SNE

verified the stability of the clustering results (Figure S2D). We

observed that most of the FRGs in FScluster B were upregulated

(Figure S2E). Survival analysis showed that TCGA.FSclusters A

and C were related to a better prognosis, while TCGA.FScluster

B was related to a worse prognosis (Figure 2A). To verify these

clustering characteristics, we expanded the number of patients
A B

D

E F

C

FIGURE 2

Survival analysis and biological characteristics analysis of ferroptosis-related molecular patterns. (A) Kaplan–Meier survival analysis of different
ferroptosis-related molecular pattern groups in the TCGA cohort, log rank test. (B) Kaplan–Meier survival analysis of different ferroptosis-related
molecular pattern groups in the GEO cohort, log rank test. (C–E) GSVA showed the activation levels of biological pathways in different
ferroptosis-related molecular pattern groups in the GEO cohort. (F) The infiltration ratio of various TME cells in three ferroptosis-related
molecular pattern groups in the GEO cohort, Kruskal–Wallis test, **P < 0.01; ***P < 0.001.
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and performed the same analysis on the microarray data of AML

patients in the GEO database. Since GSE146173 contains high-

throughput sequencing data, expression data for some of the

FRGs is missing in GSE37642-GPL96. These two sets of data

were used for verification. We merged only the remaining AML

chip data (GSE12417-GPL570, GSE10358, GSE37642,

GSE71014) for the GEO group. We clustered the GEO group

and obtained three completely different subgroups, named

GEO.FScluster A-C (Figures S2F, G and Table S6) and verified

by t-SNE (Figure S2H). Survival analysis showed that patients in

GEO.FScluster B had a worse prognosis, while patients in

GEO.FSclusters A and C had a better prognosis (Figure 2B).

We further analyzed the biological characteristics of the

molecular patterns. GSVA showed that compared with

FScluster A, FSclusters B and C were enriched a large number

of inflammatory immune and cancer-promoting signaling

pathways in both the TCGA group and the GEO group, and

the enrichment degree of FScluster B was higher than that of

FScluster C; the enriched pathways included the chemokine

signaling pathway, cytokine–cytokine receptor interaction, the

NOD-like receptor signaling pathway, the Toll-like receptor

signaling pathway, the TGFb signaling pathway, the JAK-

STAT signaling pathway, cell adhesion and the MAPK

signaling pathway (GEO group: Figures 2C–E and Table S7,

TCGA group: Figures S3A–C and Table S8). In the past,

inflammatory immune pathways were thought to be limited to

immune cells activating immune responses, but an increasing

number of studies have shown that TLRs, NLRs, chemokines

and cytokines highly expressed by tumor cells can promote

immune escape (32, 50, 51). Further analysis of TME cell

infiltration showed that FSclusters A and C in the GEO group

and TCGA group showed a large amount of innate immune cell

infiltration, including NK cells, eosinophils, mast cells, dendritic

cells and adaptive immune cells. Infiltrations included naïve B

cells, CD8+ T cells, and resting memory CD4+ T cells (GEO

group: Figure 2F and Table S9, TCGA group: Figure S3D and

Table S10). FScluster B showed increased infiltration of memory

B cells, monocytes, M2 macrophages and neutrophils. Both

FScluster A and C patients with immune activation showed a

better prognosis, while the high infiltration of inflammatory cells

in FScluster B indicated the deterioration of the tumor’s

inflammatory microenvironment and the suppression of the

patient’s immune function, which are indicators of a

poor prognosis.
Analysis of the sensitivity of different
molecular patterns to the occurrence
of ferroptosis

To explore the relationship between tumor cells and

ferroptosis in AML patients with different TMEs and prognostic

status, we further analyzed various factors that affect the
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occurrence of ferroptosis. The occurrence of ferroptosis is often

accompanied by abnormal lipid metabolism. We examined the

characteristics of lipid metabolism among different ferroptosis-

related molecular pattern groups. In the GEO and TCGA cohorts,

we observed that FScluster B had the strongest lipid metabolism,

while FScluster A had the weakest lipid metabolism (GEO group:

Figures S4A–C and Table S11, TCGA group: Figures S5A–C and

Table S12). We conducted in-depth analysis on the GEO group

with a larger number of patients and found that the fatty acid

metabolism, degradation, elongation signaling and unsaturated

fatty acid biosynthesis signaling pathways were significantly

activated in FSclusters A and B compared to FScluster C. The

occurrence of ferroptosis depends on phospholipids containing

polyunsaturated fatty acid chains (PUFA-PL). The biosynthesis of

unsaturated fatty acids creates conditions for the occurrence of

ferroptosis. Polyunsaturated fatty acids mainly include linoleic

acid, linolenic acid and arachidonic acid. We also observed that

the metabolism of linoleic acid and arachidonic acid was

enhanced in FScluster C. Based on the results of GSVA, we

further constructed four lipid metabolism scores for unsaturated

fatty acid biosynthesis, linoleic acid metabolism, a-linolenic acid
metabolism and arachidonic acid metabolism, and named them

the BUFAscore, LAMscore, ALAMscore and AAMscore,

respectively (Table S13). Kruskal–Wallis test results showed that

BUFAscore was higher in FSclusters A and B, the AAMscore and

LAMscore were higher in FScluster C, and the ALAMscore was

only slightly upregulated in FScluster B (Figures 3A–D). These

lipid metabolism characteristics indicate that FSclusters A and B

may be more sensitive to the occurrence of ferroptosis. Taken

together, the biological characteristics of each subtype indicate

that the massive infiltration of immune cells in FScluster A may

induce ferroptosis. Although FScluster B was represented by

immunosuppression, the worsening of inflammation confers a

hypoxic and ROS-enriched TME, which in turn promotes lipid

peroxidation and increases the sensitivity of tumor cells

containing high levels of unsaturated fatty acids to ferroptosis.

We constructed a hypoxia score based on the enrichment analysis

of the hypoxia signaling pathway (Table S13). The difference

analysis showed that the hypoxia score was the highest in

FScluster B (Figure 3E). This result verified our conjecture. In

the above, we observed the activation of the tumor cell

inflammatory immune pathway in FScluster C, which may

promote the immune escape of tumor cells, prevent the

occurrence of ferroptosis induced by immune cells, and a low

degree of hypoxia in the weak inflammatory environment of

FScluster C, so the tumor cells in FScluster C are more resistant

to ferroptosis.

We also analyzed the relationship between BUFAscore and

patient prognosis in each ferroptosis-related molecular pattern

group. Patients with a high BUFAscore in FSclusters A and B

had poor survival (Figures S6A, B). In FScluster C, patients with

a high BUFAscore had better survival, but there was no

significant difference (Figure S6C). Patients in FScluster B have
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poor prognostic characteristics, and we analyzed the relationship

between lipid metabolism and prognosis in this molecular

pattern. By unsupervised clustering of lipid metabolism

signaling pathway enrichment scores, we further divided

FScluster B into FSclusters B1 and B2 (Figures S6D, E).

Survival analysis showed that patients in FScluster B1 had a

worse prognosis (Figure 3F). Lipid metabolism pathway

enrichment analysis showed that fatty acid metabolism and

synthesis-related signaling pathways and unsaturated fatty acid

biosynthesis signaling pathways were activated in FScluster B1,

and unsaturated fatty acid metabolism signaling pathways,

including linoleic acid, a-linolenic acid and arachidonic acid

pathways, were significantly enriched in FScluster B (Figure 3G).

These results indicate that with the deterioration of the TME in

patients with AML, the tumor cells of patients with poor

prognosis exhibit enhanced fatty acid metabolism and

unsaturated fatty acid biosynthesis, and the enhanced

metabolism of unsaturated fatty acids suggests a better

prognosis for patients.

To better assess the propensity for the occurrence of

ferroptosis between different molecular patterns, we

summarized the genes and signaling pathways that promote

and inhibit ferroptosis through existing research (5). ACSL4,

LPCAT3, YAP1, HIF-2a, TP53, BAP1, IFNG, andHOMOX1 and
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the TCA cycle, hypoxia, reactive oxygen signaling pathway and

glutathione metabolism signaling pathways have been proven to

promote the occurrence of ferroptosis. GPX4, FSP1, GCH1,

SLC7A11, NRF2, DHODH, AMPK and the HIPPO signaling

pathway have inhibitory effects. The results of the Kruskal–

Wallis test showed that ACSL4, HMOX1, and GCH1 were highly

expressed in FScluster B, while FScluster A mainly showed high

expression of ferroptosis inhibitory genes such as GPX4 and

DHODH. FScluster C was characterized by low expression of the

ferroptosis-promoting genes YAP1,HIF-2a, and IFNG, and high
expression of the ferroptosis-suppressor genes SLC7A11, NRF2,

and AMPK (GEO group: Figure 3H, TCGA group: Figure S7A).

The ferroptosis signaling pathway was highly activated in

FScluster B, and the activity of inhibiting the ferroptosis

signaling pathway was significantly reduced; the opposite was

true for FSclusters A and C (GEO group: Figure 3I and Table

S14, TCGA group: Figure S7B and Table S15). These results

indicate that the expression of FRGs in ferroptosis-related

molecular patterns is specific, and the connection between

these genes and the relationship between these genes and

ferroptosis in AML needs further discussion and research.

However, ferroptosis-related pathways show a high degree of

consistency. In cluster B, which was associated with the worst

prognosis, the proferroptosis pathways were uniformly
A B D E

FG

IH

C

FIGURE 3

Analysis of the metabolic characteristics of unsaturated fatty acids in ferroptosis-related molecular patterns and other factors affecting
ferroptosis. (A–E) Differences in BUFAscore, AAMscore, LAMscore, ALAMscore, and hypoxia score in different ferroptosis-related molecular
pattern groups in the GEO cohort, Kruskal–Wallis test. (F) Kaplan–Meier survival analysis of different cluster subtypes in the FScluster B of the
GEO group, log rank test. (G) GSVA showed the activation levels of lipid metabolism pathways in different cluster subtypes. FScluster B of the
GEO group. (H, I) Differences in genes and signaling pathways that affect ferroptosis among different ferroptosis-related molecular patterns,
Kruskal–Wallis test, **P < 0.01; ***P < 0.001.
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activated, while the antiferroptosis pathways were inhibited.

These findings combined with the characteristics of lipid

metabolism indicate that tumors cells in FScluster B have a

higher tendency to undergo ferroptosis than those in

other clusters.
Phenotypic analysis of ferroptosis-related
molecular patterns

To better identify and verify the phenotypes of the three

ferroptosis-related molecular patterns, we first identified the

DEGs shared between the molecular patterns. A total of 1883 and

1222 shared DEGs were identified in the GEO and TCGA groups,

respectively (Figures S8A, B). In the GEO group and TCGA group,

three different genomic subtypes were further identified through

unsupervised clustering and were named GEO.geneCluster A-C

and TCGA.geneCluster A-C (Figures S8C–F and Tables S5, S6).

This indicates that there are indeed three molecular patterns in

AML patients. We analyzed the biological and clinical

characteristics of genomic subtypes. We found that the three

genomic subtypes were very similar to the previously identified

ferroptosis-related molecular patterns. In the GEO group, we

observed that FScluster A and geneCluster A had a high degree

of overlap. Some of the samples in FScluster B and in FScluster C

constituted geneCluster C, and the remaining samples in FScluster

B were classified into geneCluster B (Figure S9A). In the TCGA

group, some samples in FScluster A corresponded to geneCluster A,

some samples in FScluster C and FScluster B were in geneCluster B,

and the remaining FScluster A and C samples formed geneCluster

C (Figure S9B). These results seem to suggest that AML samples are

divided into three biological states based on the nodes of two

biological processes. Through survival analysis, it was found that in

the GEO and TCGA groups, the patients with samples in

geneCluster A had a better prognosis, and the patients with

samples in geneCluster B and C had a worse prognosis; the

patients with samples in geneCluster C were mostly derived from

FScluster C but showed a worse prognosis (Figures S9C, D). We

performed GSVA and TME cell infiltration analysis again on

genomic subtypes, and the results showed similar biological

characteristics to ferroptosis-related molecular patterns (Figures

S10A–D, S11A–D). Samples in geneClusters A and C were

characterized by a large number of infiltrating immune cells, and

those in geneCluster B presented an immunosuppressive state and

highly activated inflammation status. Samples in geneCluster C also

showed enrichment of a large number of inflammatory and

immune signaling pathways. Based on this, we reasonably

hypothesized that the changes in the inflammatory

microenvironment in geneCluster C versus geneCluster A

promote further immune escape of tumor cells and that the cells

in this cluster are different from solid tumor cells that can directly

pass through the surrounding matrix to block the attack of immune

cells. As a hematological tumor, AML creates favorable survival
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conditions by reshaping the bone marrow microenvironment.

These changes may be reflected in the promotion of tumor

angiogenesis and abnormal adhesion to the niche.

Subsequent analysis showed that AML cells in geneCluster C

exhibited high expression of immune checkpoints, stimulated

tumor angiogenesis, highly activated cell adhesion-related and

inflammation-related signals, and more MDSC infiltration than

cells characterized by other ferroptosis-related molecular patterns.

These malignant changes were more obvious in the genomic

subtypes (GEO group: Figures 4A, B and Table S16, TCGA group:

Figures S12A, B and Table S17). These results show that compared

with that in cells of geneCluster A, the AML TME in cells of

geneCluster C was further deteriorated, the immune escape of

AML cells was enhanced, and the expression level of DEGs shared

between the ferroptosis-related molecular patterns was positively

correlated with the immune and inflammatorymicroenvironment

characteristics. Further unsupervised clustering rearranged AML

patient samples and divided them into three more accurate

phenotypes, which we defined as the following ferroptosis-

related phenotypes: The immune activation phenotype,

corresponding to FScluster A and geneCluster A, was

characterized by innate immune cell and adaptive immune cell

infiltration and the best patient prognosis. The immune exclusion

phenotype, corresponding to FScluster C and geneCluster C, was

characterized by innate and adaptive immune cell infiltration and

an inflammatorymicroenvironment, and with the development of

inflammation, immune escape increased; patient prognosis for

this phenotype ranked second. The immunosuppression

phenotype, corresponding to FScluster B and geneCluster B, was

characterized by a high degree of inflammatory cell infiltration

and inflammatory microenvironment development, with the

strongest immune escape ability, and corresponded to the worst

prognosis in patients. To verify the characteristics of immune

escape of the three ferroptosis-related phenotypes, we analyzed a

TCGA dataset, which included RNA-seq data, on the TIDE

website. Through the differential analysis of the calculated TIDE

scores, we found that among the ferroptosis-related molecular

patterns and the genomic subtypes, cluster B had the highest

score, cluster C scored second, and cluster A scored the lowest

(Figures 4C, D). This result verified the immune escape

characteristics of the ferroptosis-related phenotypes. We also

calculated the difference in TIDE scores between FScluster C

and geneCluster C and found that the TIDE score of FScluster C

was higher (Figure 4E and Table S18). This is because some

samples in FScluster C and some samples in FScluster A with

better ferroptosis-related phenotypes constituted geneCluster C,

so the overall biological status of patients with sample in

geneCluster C was better than that of patients with samples in

FScluster C, while the immune escape ability was weaker.

Similarly, the immune escape ability of geneCluster A was also

weaker than that of FScluster A (Figure 4F). These results can be

explained by the distribution characteristics of AML patients with

different phenotypes in each cluster.
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Transcriptome characteristics of
ferroptosis-related phenotypes

To further explore the relationship between ferroptosis-

related phenotypes and immunity and inflammation. We

analyzed the mRNA expression of related cytokines and

chemokines in genomic subtypes. It has been reported in the

literature that PD-L1, CTLA-4, IDO1, LAG3, HAVCR2, PD-1,

PD-L2, CD80, CD86, TIGIT and TNFRSF90 are considered

immune checkpoint-related genes (40); TNF, IL6, IFNG, IL1A,

IL1B, IL3, CSF2, TGFB1, IL10, ILRN, and IL2A are considered to

be cytokines related to inflammation associated with AML (52);
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TGFB2, ITGAM, VCAM1, CDH1, CDH2, CDH5, PTPRC, SDC1,

GJA1, SLC7A5, CXCR4, PTK2, PTK2B, and ILK are considered to

be cell adhesion molecules associated with AML (53). We

observed that genes related to immune checkpoints,

inflammatory cytokines and cell adhesion molecules were highly

expressed in geneClusters B and C (GEO group: Figures 4G–I,

TCGA group: Figures S12C–E). These results once again indicate

that there are indeed ferroptosis-related phenotypes with obvious

immune and inflammatory characteristics in the occurrence and

development of AML. Promoting inflammation development and

cell adhesion-related signaling pathways and related genes are

highly activated or highly expressed in tumor cells of patients with
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FIGURE 4

Analysis of TME characteristics associated with ferroptosis-related phenotypes. (A, B) Differences in pathway signatures related to tumor
development and the infiltration level of MDSCs in the TME of ferroptosis-related molecular pattern and genomic subtype groups in the GEO
cohort. (C–F) Differences in TIDE scores of ferroptosis-related molecular pattern and genomic subtype groups in the TCGA cohort. (G–I)
Differences in gene signatures related to tumor development in the TME of ferroptosis-related molecular pattern and genomic subtype groups
in the GEO cohort, G: Immune checkpoint-related genes, H: cytokines related to inflammation associated with AML, I: cell adhesion molecules
associated with AML. Kruskal–Wallis test, *P < 0.05; **P < 0.01; ***P < 0.001.
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an immune exclusion phenotype, because patients with this

phenotype have more innate and adaptive immune cell

infiltration in the TME, and tumor cells show high activity of

these signaling pathways to avoid the attack of immune cells.

Although these pathways are also obviously activated in AML cells

of patients with an immunosuppression phenotype, their

activation degree is lower than that in AML cells of the immune

exclusion phenotype. This may be because immune cells with this

phenotype are suppressed and there is a high degree of

inflammation to promote immune escape. Therefore, there is no

need to overactivate these signaling pathways or overexpress

these genes.
Quantification of ferroptosis-related
phenotypes and analysis of associated
clinical characteristics

The ferroptosis-related phenotypes of AML patients indicate a

pathological state that gradually deteriorates from immune

activation to immune exclusion to immune suppression.

However, the phenotype can only qualitatively assess patient

stage. To better evaluate the tumor development of individual

patients with AML, we used the ssGSEA method to calculate the

enrichment score of the ferroptosis-related phenotype gene

signatures to quantify the ferroptosis-related phenotypes with a

metric named the FSscore. Gene ontology (GO) and KEGG

analyses showed that these genes were closely related to

immunity and inflammation (Figures 5A, B), and the PPI

network also showed a high degree of interaction (Figure 5C).

The Kruskal–Wallis test compared the differences in FSscore

between different ferroptosis-related molecular patterns and

between different genomic subtypes (Figures 5D–G). Patients

with an immune activation phenotype had the lowest FSscore,

followed by patients with an immune exclusion phenotype, and

patients with an immunosuppression phenotype had the highest

FSscore. Kaplan–Meier curve survival analysis was performed for

AML patients divided into high FSscore and low FSscore groups

based on the cutoff value identified by the survminer package.

Among the GEO and TCGA groups, the prognosis of patients in

the low FSscore group was significantly better than that of patients

in the high FSscore group [GEO group, HR 3.178 (1.817-5.556);

TCGA group, HR 3.533 (1.701-3.338)] (Figures 5H, I). ROC curve

analysis showed that the FSscore can accurately predict the

prognosis of AML patients (Figures 5J–K). The heatmap showed

that the low FSscore group matched FScluster A and geneCluster A,

and the high FSscore group corresponded to FScluster B-C and

geneCluster B-C (Figures 6A, B). The alluvial diagram showed the

differences in the attributes of individual patients (Figures 6C, D).

These results shows that the FSscore can quantify the ferroptosis-

related phenotypes of AML patients well.

Next, to further evaluate the ability of the FSscore to predict

the prognosis of patients, we conducted an independent
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characteristics of AML patients. Both univariate and multivariate

independent prognostic analyses confirmed that the FSscore is an

independent and reliable prognostic marker (Figures 6E, F). We

verified the prognostic value of the FSscore in all independent

cohorts of GEO group [GSE10358, HR 2.34 (0.80-6.86);

GSE12417-GPL570, HR 2.60 (0.79-8.52); GSE37642, HR 2.81

(1.17-6.77); GSE71014, HR 6.93 (1.88-25.57)] (Figures S13A–D).

We also verified the results in the other two sets of AML

transcriptome data. Both chip data (GSE12427-GPL96, HR 0.97

(0.41-2.34)) and high-throughput sequencing data (GSE146173,

HR 1.50 (0.67-3.39)) showed that patients with a high FSscore had

a poorer prognosis than patients with a low FSscore (Figures S13E,

F). Finally, we evaluated the prognostic value of the FSscore in 33

TCGA pancancer datasets including 10496 tumor samples.

Although the analysis results showed some differences, the

prognosis of patients in 12 TCGA tumor cohorts could be

accurately predicted (Figure 6G). These results all show that the

FSscore can be used as a good prognostic marker.

We also assessed the correlations among known signatures

such as immune infiltration, lipid metabolism, inflammation

and FSscore. The infiltration of monocytes, M2 macrophages,

resting dendritic cells, and neutrophils showed a significant

positive correlation with the FSscore, while the infiltration of B

cells, T cells, mast cells, NK cells, and mast cells was negatively

correlated with the FSscore (GEO group: Figure 6H, TCGA

group: Figure S13G). The activity of most lipid metabolism

pathways was positively correlated with the FSscore (GEO

group: Figure 6I, TCGA group: Figure S13H). In the high

FSscore group, pathways such as immune checkpoints, tumor

angiogenesis, adhesion, and inflammation were activated, and

MDSCs were highly infiltrated. In the low FSscore group, the

activity of DNA damage repair signaling pathways was

significantly increased (Figures 6J, K). These results clearly

show that a low FSscore is closely related to immune

activation, and a high FSscore is related to inflammatory cell

infiltration, lipid metabolism activation, deterioration of the

TME, and the enhanced immune escape ability of tumor cells

through adhesion, which suggests a harsh TME. In summary,

the FSscore can well assess the development status of ferroptosis-

related phenotypes in AML patients and has profound guiding

significance for judging the individual characteristics and clinical

treatment outcomes of AML patients.
The relationship between
clinicopathological factors, tumor
somatic mutations and ferroptosis-
related phenotypes in AML patients

The TCGA database has provided more comprehensive

clinical annotations and somatic mutation data for AML

patients. We further explored the relationship between
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ferroptosis-related phenotypes and these clinical characteristics.

Through Fisher’s exact test, we analyzed the differences in

clinicopathological factors between the high and low FSscore

groups (Figure 7A and Table S19), among which cytogenetic

risk, FAB classifications, and white blood cell (WBC) count were

significantly different. The high FSscore group had more patients

with poor cytogenetic risk, a high WBC count, and M4 and M5

classifications, while the low-risk group had a higher proportion

of M1-M3 patients (Figures 7B–D). Based on the characteristics

of ferroptosis-related phenotypes, we can understand these

results well. The immune exclusion and immunosuppression

phenotypes corresponding to a high FSscore are accompanied by

higher inflammatory cell infiltration, which indicates a higher

proportion of WBCs. For example, neutrophils, account for

approximately 50-70% of the proportion of WBCs (54), and a

high WBC count has been included as a poor prognostic factor

for AML (55), so the high FSscore group showed a higher WBC

count. Another validation cohort (GSE146173) also had
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abundant clinical information, and we observed that the high

FSscore group showed the same characteristics (Figures S14A–D

and Table S20).

Based on the poor cytogenetic risk of patients in the high

FSscore group, we further analyzed the frequency and

distribution of somatic mutations between the high and low

FSscore groups in the TCGA group using the maftools package.

As shown in Figures 7E, F, the overall gene mutation frequency

of AML patients was not high. The low FSscore group had a

lower percentage of mutated samples, and the gene mutation

frequency was similar to the average expected value. The high

FSscore group had a higher percentage of mutated samples. The

mutation rate of the top 20 mutated genes ranged from 2%- 15%,

and only a few samples in both groups showed high TMB.

Spearman correlation analysis indicated that FSscore and TMB

showed a significant negative correlation with each other

(Figure 7G). Many studies have shown that high TMB in

cancer is associated with a better prognosis (56, 57), which
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FIGURE 5

Analysis TME characteristics associated with ferroptosis-related phenotypes. (A, B) GO annotation and KEGG pathway enrichment analysis
showed the functions of the ferroptosis-related phenotype signature genes. (C) PPI network of ferroptosis-related phenotype signature genes.
(D–G) Differences in the FSscore of ferroptosis-related molecular patterns and genomic subtypes in GEO and TCGA groups, Kruskal–Wallis test.
(D–I) Differences in the survival of patients in high and low FSscore groups in the GEO and TCGA cohorts, (H): GEO group, (I): TCGA group, log
rank test. (J, K) The ROC curves showed the specificity and sensitivity of the FSscore; (J): GEO group, (K): TCGA group.
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may be because tumor cells in patients with high TMB express

more immunogens that are recognized by immune T cells and

because anti-PD-1/PD-L1 treatment has a better effect in these

patients. Therefore, we analyzed the relationship between

FSscore and immunotherapy response in the two immune

checkpoint inhibitor treatment cohorts (IMvigor210,

GSE78220), and we observed that in the two cohorts, patients

in the low FSscore group had a better prognosis and that the

proportion of patients who responded to immunotherapy was

higher (Figures 7H, I). This may indirectly prove that patients
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with a low FSscore have a high TMB and better response to

immunotherapy. Moreover, we previously confirmed that the

immune exclusion and immunosuppression phenotypes

corresponding to a high FSscore are closely related to strong

immune escape ability. We again quantitatively analyzed the

difference in TIDE score between the high and low FSscore

groups. The TIDE score was significantly higher in the high

FSscore group (Figure 7J). Correlation analysis showed that the

FSscore and TIDE score were highly positively correlated

(Figure 7K). Finally, we explored the relationship between
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FIGURE 6

Distribution characteristics and prognostic value analysis of the FSscore, correlation analysis between characteristics of the TME and FSscore.
(A, B) Differences in patient distribution, clinicopathological factors and phenotype signature gene expression of the high and low FSscore
groups in the GEO and TCGA cohorts, the blank in the annotation of FSscore group in the TCGA cohort is due to the lack of clinical information
of corresponding patients. (C, D) Alluvial diagram showing the changes in ferroptosis-related molecular patterns, genomic subtypes, FSscore
and patient status. (E, F) Univariate and multivariate independent prognostic analysis of FSscore, E: GEO group, F: TCGA group. (G) Prognostic
value of the FSscore in pancancer datasets. (H) Correlation analysis between the levels of TME cell infiltration and the FSscore in the GEO group.
(I) Correlation analysis between levels of lipid metabolism and the FSscore in the GEO group. (J, K) Differences in pathway signatures related to
tumor development and the infiltration level of MDSCs in the TME in the high and low FSscore groups. D: GEO group, E: TCGA group, Wilcoxon
test. *P < 0.05; **P < 0.01, ***P < 0.001.
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FSscore and chemotherapy resistance. In the GSE146173 cohort,

we analyzed the difference in FSscore between drug-resistant and

nonresistant patients, and the results showed that the FSscore of

drug-resistant patients was significantly higher (Figure 7L). A
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high FSscore is accompanied by the enhanced ability of AML

cells to adhere to the bone marrow niche, and it is easy to avoid

the attack of chemotherapy drugs, which may be one of the

reasons for the occurrence of drug resistance. The above results
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FIGURE 7

The relationship between clinicopathological factors, tumor somatic mutations, immunotherapy and FSscore. (A–D) Correlation analysis between
clinicopathological factors and FSscore in the TCGA group, Fisher’s exact test, *P < 0.05. (E, F) The characteristics of tumor somatic mutations in
the high and low FS score groups of the TCGA group, WBC: white blood cell, PB: peripheral blood, BM: Bone marrow, IDH: isocitrate
dehydrogenase, NPMc: nucleophosmin. (G) Correlation analysis between TMB and FSscore in the TCGA group. (H, I) Differences in survival of
patients and the proportion of patients in high and low FSscore groups of immune checkpoint inhibitor treatment cohorts (H: IMvigor210, I:
GSE78220), log rank test. (J) Differences in TIDE scores of the high and low FS score groups in the TCGA group. (K) Correlation analysis between
TIDE score and FSscore in the TCGA group. (L) The difference in FSscore between drug-resistant and nonresistant patients. ***P < 0.001.
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indicate that the FSscore is closely related to clinical laboratory

test indicators, somatic mutations, immunotherapy, immune

escape, and drug resistance, which can facilitate clinical

treatment decision making.
Sensitivity analysis of anticancer
drugs and prediction of targeted
small molecule drugs for ferroptosis-
related phenotypes

Patients with a high FSscore may be accompanied by

resistance to conventional chemotherapy drugs. Therefore,

different clinical treatments are required for patients with

different ferroptosis-related phenotypes. In the TCGA and

GEO groups, we compared the sensitivity of patients with high

and low FSscores to 138 anticancer drugs to assess potentially

valuable treatment options. By using the pRRophetic package to

predict the IC50 values of different AML patients after drug

treatment based on RNA-seq data and performing differential

analysis between high and low FSscore groups, we found that the

sensitivity of the eight anticancer drugs [A.443654 (pan-AKT

inhibitor), ABT.263 (navitoclax, Bcl-2 inhibitor), AG.014699

(rucaparib, PARP inhibitor), AKT inhibitor VIII, AP.24534

(Ponatinib, pan-BCR-ABL inhibitor), AS601245 (JNK

inhibitor), AUY922 (luminespib, HSP90 inhibitor) and axitinib

(VEGFR inhibitor)] were significantly different in the high and

low FSscore groups of the GEO cohort (Figure S15A). The

sensitivity of six anticancer drugs [ABT.263 (navitoclax, Bcl-2

inhibitor), AG.014699 (rucaparib, PARP inhibitor), AKT

inhibitor VIII, AP.24534 (ponatinib, pan-BCR-ABL inhibitor),

axitinib (VEGFR inhibitor), and AZ628 (Raf inhibitor) were

significantly different in the high and low FSscore groups of the

TCGA cohort (Figure S15B). Among them, five anticancer drugs

(ABT.263, AG.014699, AKT inhibitor VIII, AP.24534, and

axitinib) showed significant differences in treatment sensitivity

in patients with high and low FSscores in the TCGA and GEO

groups, and the IC50 values were higher in patients with high

FSscores, indicating that these drugs are more appropriate for

the treatment of patients with low FSscore; that is, patients with

low FSscores may benefit from treatment with these drugs.

We further performed targeted small molecule drug

prediction based on the gene signatures of ferroptosis-

related phenotypes, selected highly expressed gene sets in

immunosuppression phenotype as upregulated genes, and gene

sets expressed at low levels as downregulated genes and

uploaded them to the CMap database to analyze potential

therapeutic drugs. With the predicted correlation P value <

0.05 as the standard, a total of 44 small molecule drugs and 29

corresponding drug mechanisms were identified (Figure S15C).

The predicted candidate drugs and potential therapeutic effects

can provide references for basic research and clinical trials.
Frontiers in Oncology 16
GPX4 is a potential therapeutic
target for AML

We observed that GPP4 is highly expressed in AML patients

and has the highest expression level in immunosuppressive

phenotype, suggesting that GPX4 may be a potential

therapeutic target. Both in GEO group and TCGA group, the

prognosis of patients with high expression of GPX4 was

significantly worse (Figures 8A, B). We further used RSL3, a

targeted inhibitor of GPX4, in AML cell line HL-60 to explore

the biological effects of inducing ferroptosis. Cell viability assay

showed that RSL3 inhibited HL-60 cells and THP-1 cells in a

dose-dependent manner (Figure 8C), and the addition of iron

death inhibitor (ferrostatin-1) could partially save cell viability

(Figure 8D). Western blot analysis showed that RSL3 could

significantly reduce the expression of GPX4 (Figure 8E),

indicating that inhibiting GPX4 could promote the death of

HL-60 cells and THP-1 cells by inducing ferroptosis.
Discussion

AML, a hematological malignant tumor, has a high degree of

heterogeneity. The complex and dynamic clonal architecture is

the main reason for the refractoriness of AML (58–60).

According to the FAB classification, patients can be divided

into eight classifications (M0-M7) (61). AML is highly

malignant, with a five-year survival rate of less than 30%, and

is the most common leukemia among the elderly (62).

Chemotherapy and hematopoietic stem cell transplantation

(HSCT) are the most common treatments for AML (63), but

drug resistance and recurrence lead to unsatisfactory treatment

outcomes (64). Therefore, the development of new treatment

methods to improve the effects of AML treatment has important

clinical significance. As a new type of cell death mode,

ferroptosis has a profound impact on the development and

treatment of many diseases, especially cancers (65). Ferroptosis

is closely related to the biological characteristics of the TME.

Hypoxia induces the production of ROS, and the activation of

lipid metabolism and the immune response create conditions for

ferroptosis (66). These factors all show that tumor cells are prone

to ferroptosis. Therefore, strategies for inducing ferroptosis in

tumor cells and weakening the protective mechanism should

have the most direct clinical value for cancer treatment, with the

ultimate goal of promoting tumor cell death. In this study, we

explored the genomic characteristics of FRGs in AML and their

correlation with the TME and prognosis of AML patients and

found that most FRGs showed high expression of mRNA levels

and interactions at the protein level and were also were

significantly related to the prognosis of patients. FRGs

participate in many metabolic-related signaling pathways, and

high expression of these FRGs may be one of the factors
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promoting the growth of AML tumor cells and the deterioration

of the TME.

FRGs may also collaborate to induce more potent effects on

AML. We observed three ferroptosis-related phenotypes in the

ferroptosis-related molecular patterns and genomic subtypes; they

were defined as the immune activation phenotype, immune

exclusion phenotype, and immunosuppression phenotype. These

phenotypes showed significant differences in characteristics such as

immunity, inflammation, lipid metabolism, and prognosis and

represented a progressively deteriorating pathological state. The

occurrence of ferroptosis is closely related to biological factors such

as immunity, inflammation, and metabolism. For example, the

activation of immune cells, such as CD8+ T cells, through the

secretion of INF-g downregulates the expression of components of

system XC−, such as SLC3A2 and SLC7A11, to inhibit the uptake of
Frontiers in Oncology 17
cystine by tumor cells, thereby promoting ferroptosis induced by

the depletion of glutathione (67). Ferroptotic cancer cells containing

immunogens can be recognized and engulfed by macrophages (21).

Ferroptosis and inflammation are also complementary. The

occurrence of ferroptosis increases the expression of PTGS2

encoding COX2 and further promotes the metabolism of AA to

increase the secretion of inflammatory signal molecules (14);

treatment of cells with the inflammatory cytokine TNF leads to

continuous downregulation of GPX4 to induce ferroptosis (68).

Unsaturated fatty acids act as peroxidation substrates for ferroptosis

and are also important regulators of inflammatory processes along

with their metabolic enzymes (69). Samples with different

ferroptosis-related phenotypes also showed different sensitivities

to ferroptosis. For the immune activation phenotype, a large

number of immune cells can promote the ferroptosis of tumor
A B

D EC

FIGURE 8

RSL3 inhibits growth of AML cells. (A, B) Differences in the survival of patients in high and low expression of GPX4 in the GEO and TCGA groups,
A: GEO group, B: TCGA group, log rank test. (C) HL-60 cells and THP-1 cells were treated with RSL3 at the indicated doses for 48 h and cell
viability was assayed using a CCK-8 kit. (D) HL-60 cells and THP-1 cell were treated with RSL3(HL-60: 5 mM; THP-1: 10mM) with or without
ferrostatin-1 for 48 h and cell viability was assayed, ***P < 0.001. (E) Protein level of GPX4 in HL-60 cells and THP-1 cells treated with RSL3 (HL-
60: 5 mM; THP-1: 10mM) or control for 48 hours. **P < 0.01.
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cells through different induction methods; for the

immunosuppression phenotype, the hypoxia of the TME

increases the generation of ROS, and the high development of

inflammation can also increase the sensitivity of tumor cells to

ferroptosis; the immune exclusion phenotype is accompanied

by immune escape and decreased inflammation, and the

sensitivity to ferroptosis is relatively low. Moreover, the

enrichment of unsaturated fatty acids in immune activation and

immunosuppression phenotypes provides conditions for the

occurrence of ferroptosis. Therefore, these results suggest that

different methods can be used to induce ferroptosis in patients

with different ferroptosis-related phenotypes. For patients with

immune activation phenotype, we can induce ferroptosis in

leukemia cells by stimulating immune cells such as CD8+ T cells

to secrete more INF-g, and inhibit the expression of ferroptosis

inhibitors such as GPX4 and DHODH. For immunosuppression

phenotype, we can induce ferroptosis by targeting enhanced lipid

peroxidation. For patients with immune exclusion phenotype,

ferroptosis can be induced in leukemia cells by simultaneously

activating the immune system and enhancing lipid peroxidation at

the same time. These insights may provide new ideas for the

treatment of drug resistance caused by clinical chemotherapy and

targeted therapy.

In the subsequent analysis, we further analyzed the

immune escape levels of the three ferroptosis phenotypes.

Unlike solid tumors that can block the infiltration of

immune cells through stromal cells to produce immune

exclusion (70), AML, as a hematological tumor, can avoid

the attack of immune cells through adhesion to the niche (71).

The expression levels of immune checkpoints in patients with

immune activation and immune suppression phenotypes are

significantly higher, and the signaling pathways related to

immune escape are significantly activated; they also show

consistency in the transcriptome. In terms of the mechanism

of promoting immune escape, tumor cells with an immune

exclusion phenotype mainly prevent the infiltration of a large

number of immune cells by increasing adhesion and promoting

the release of inflammatory signals. On the other hand, tumor

cells of the immune exclusion phenotype mainly exploit the

worsening chronic inflammatory microenvironment to create

favorable living conditions for themselves (72), and the

immune cells of this phenotype are in a suppressed state.

These results suggest that for patients with different

ferroptosis-related phenotypes, AML patients can be treated

by drugs that induce ferroptosis or suppress immune escape

according to the corresponding phenotypic characteristics. To

judge the individual characteristics of a single patient more

accurately, we constructed the FSscore to quantify the degree of

development of ferroptosis-related phenotypes. The FSscore

can quantitatively evaluate the pathological status of patients

and also has good prognostic value. We confirmed this in two

groups and two other cohorts that used different sequencing

methods and showed certain prognostic prediction
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accuracy across cancers. In terms of various pathological

characteristics, a high FSscore is highly positively correlated

with inflammation development, immune escape, lipid

metabolism, anti-immunotherapy, chemotherapy resistance,

etc., and negatively correlated with tumor mutation burden.

These results all show the reference value of the FSscore for the

evaluation of individual characteristics and clinical treatment

of AML patients.

Finally, to explore the clinical treatment options for patients

with different ferroptosis-related phenotypes, we used drug

prediction to identify five anticancer drugs and nine small

molecule drugs that may have therapeutic benefits for patients

with low FSscores and 20 small molecule drugs that may have

therapeutic benefits for patients with high FSscores. Among

them, ABT.263 (navitoclax) has been confirmed to be effective

for the treatment of AML in cell and mouse experiments (73–

76). The combination of hyperforin and Akt inhibitor AKT

inhibitor VIII significantly promotes the apoptosis of AML U937

cells (77). Second-generation tyrosine kinase inhibitors (TKIs),

such as ponatinib (AP.24534), are also widely used in

hematological malignancies (78). Axitinib effectively inhibits

BCR-ABL1 (T315I) to treat chronic myeloid leukemia (79).

Research on these drugs suggests that they can improve the

treatment of hematological tumors and provide a reference for

further basic research and clinical trials. In addition, we used

GPX4 targeting inhibitor RSL3 to reduce the protein level of

GPX4 and promote AML cell death by inducing ferroptosis,

indicating that GPX4 is a potential target for AML treatment.

In summary, we found three ferroptosis-related phenotypes

in AML patients based on FRG analysis and revealed the TME

characteristics (such as immune escape, inflammation

development, and lipid metabolism) of samples with different

phenotypes. The FSscore can improve the assessment of the

pathological state and prognosis of AML patients and provides

reference value for the establishment of more personalized

clinical treatment plans. Moreover, compared with other

studies on ferroptosis in AML, our project also has its own

advantages and limitations. For example, compared with the

data analysis of Zhou et al. (80), our study not only used more

AML samples and multi-omics data such as transcriptome, copy

number variation, and gene mutation, but also verified the

existence of three ferroptosis-related phenotypes in both

microarray and high-throughput sequencing types, and

explored the differences in TME and clinical pathological

characteristics among them, the constructed scoring system

can also accurately predict the prognosis of AML patients and

provide some insights for the therapeutic evaluation. However,

compared with the research of Yusuf et al. (81), our exploration

of ferroptosis mainly focuses on the analysis of big data of

bioinformatics, but there are obvious deficiencies in the

exploration of regulation mechanism, which is the direction of

our follow-up study, linking more regulatory mechanisms of

ferroptosis in AML cells with bioinformatics data.
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Conclusions

This project revealed that the occurrence of ferroptosis is closely

related to the complex pathological changes in the TME. Patients

with different TME features show differences in terms of ferroptosis

sensitivity. Immune cell infiltration, inflammation development and

lipid metabolism are important regulatory factors that affect the

occurrence of ferroptosis. The comprehensive analysis of

ferroptosis-related molecular patterns in individual patients can

provide references for the clinical evaluation of patient pathological

characteristics and the design of personalized treatment plans.
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