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Introduction: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive

malignancy with a poor prognosis. Surgical resection remains the only

potential curative treatment option for early-stage resectable PDAC. Patients

with locally advanced or micrometastatic disease should ideally undergo

neoadjuvant therapy prior to surgical resection for an optimal treatment

outcome. Computerized tomography (CT) scan is the most common

imaging modality obtained prior to surgery. However, the ability of CT scans

to assess the nodal status and resectability remains suboptimal and depends

heavily on physician experience. Improved preoperative radiographic tumor

staging with the prediction of postoperative margin and the lymph node status

could have important implications in treatment sequencing. This paper

proposes a novel machine learning predictive model, utilizing a three-

dimensional convoluted neural network (3D-CNN), to reliably predict the

presence of lymph node metastasis and the postoperative positive margin

status based on preoperative CT scans.

Methods: A total of 881 CT scans were obtained from 110 patients with PDAC.

Patients and images were separated into training and validation groups for both

lymph node and margin prediction studies. Per-scan analysis and per-patient

analysis (utilizing majority voting method) were performed.

Results: For a lymph node prediction 3D-CNN model, accuracy was 90% for

per-patient analysis and 75% for per-scan analysis. For a postoperative margin

prediction 3D-CNN model, accuracy was 81% for per-patient analysis and 76%

for per-scan analysis.
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Discussion: This paper provides a proof of concept that utilizing radiomics and

the 3D-CNN deep learning framework may be used preoperatively to improve

the prediction of positive resection margins as well as the presence of lymph

node metastatic disease. Further investigations should be performed with

larger cohorts to increase the generalizability of this model; however, there is

a great promise in the use of convoluted neural networks to assist clinicians

with treatment selection for patients with PDAC.
KEYWORDS

machine learning, neural network, pancreatectomy, pancreatic cancer, surgical
outcome, radiomics
Introduction
Pancreatic cancer is currently the third leading cause of

cancer-related death in Western societies with an average annual

incidence rate of 12.9 cases per 100,000 but a disproportionately

high mortality rate of 10.9 deaths per 100,000 (1). Pancreatic

ductal adenocarcinoma (PDAC) is the most common type of

pancreatic cancer. At the time of diagnosis, only ~10% of PDAC

are localized since small early cancers are often asymptomatic

and left undiagnosed (2). Although surgery is the only curative

treatment for PDAC, only 15%–20% of patients are candidates

for surgical resection due to late presentation (2). The decision

for upfront surgical resection followed by adjuvant

chemotherapy vs. neoadjuvant treatment followed by surgical

resection is based on both the anatomy of the tumor (i.e.,

vascular involvement) and risk stratification/prognostic

features including the health condition, blood tumor markers,

and lymph node involvement on imaging studies (3). Currently,

computerized tomography (CT) scan is the most utilized

modality for the evaluation of PDAC with a specificity and

sensitivity of ~89% and ~90% (2). The nodal status is a well-

established prognostic indicator for both overall survival and

disease recurrence (4–6). Although CT image resolution has

increased dramatically over the last two decades, the ability of a

CT scan to assess both vascular invasion (sensitivity and

specificity of 60% and 94%) and the nodal status remains

suboptimal (positive predictive value and negative predictive

value are 68% and 43.1%, respectively), as it may heavily depend

on physician experience (1, 7). An automated prediction model

for the presence of lymph node metastatic disease may

preoperatively aid in clinical decision-making.

The choice to undergo the upfront surgical treatment of

PDAC is determined by the preoperative CT stratification of

resectability that is dependent on tumor proximity to the

surrounding vessels (portal vein, superior mesenteric vein,

superior mesenteric artery, and celiac artery) (8). The impact
02
of the R1 resection status (i.e., presence of microscopic disease),

defined as the distance of a tumor from the resection margin of

less than or equal to 1 mm, on overall survival and recurrence-

free survival is controversial (9–11). However, recent studies

have suggested that the presence of microscopic disease within

1 mm is associated with decreased overall survival and decreased

disease-free survival in PDAC in comparison to R0 resection

(i.e., free of cancer cells at the resection margin) (12). Hong et al.

demonstrated that of patients with the designation of a

“resectable” tumor based on preoperative CT imaging, only

73% of patients had postoperative R0 resection on pathology

(13). Preoperative CT appeared to overpredict resectability in

tumors with any level of portomesenteric vein abutment and for

larger tumors greater than 4 cm (12). An enhanced preoperative

prediction of the surgical margin status would allow for

improved patient selection for upfront curative intent surgery

and importantly direct patients with tumors more likely to have

postoperative R1 or R2 resection to neoadjuvant chemotherapy.

Radiomics is a novel approach to medical imaging that

abstracts vast amounts of qualitative imaging features using

data-characterizing algorithms, converting medical images into

big data (14). The basis of the application of radiomics is that

distinct imaging features between disease forms may be used to

predict a prognosis and a therapeutic response (15). With

radiomics exponentially increasing the data obtained from

medical imaging, there has been growing interest with utilizing

artificial intelligence or machines learning models to provide

techniques to analyze these image data (16). One such model

demonstrating great utility is the convoluted neural network

(CNN). CNNs contain multiple interconnected layers of

artificial neurons whereby each neuron can take an input,

perform a computation, and produce output, while learning

increases its higher-level functions (17). CNNs have been

utilized to investigate a number of medical imaging questions

including segmentation (i.e., tumor vs. normal tissue (18)),

disease classification (19), detection and localization (i.e.,

identification of cerebral microbleeds in MRI (20)), and
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registration (i.e., integrating multiple scans of same patient (21)).

Some examples include the following: Huang et al. have

described that specific radiomic signatures differed between

normal lymph nodes and lymph nodes with metastatic disease

and that these differences allowed the creation of a nomogram

for the prediction of the lymph node status in colorectal cancer

(22). Chen et al. created hybrid many-objective radiomics and a

three-dimensional CNN (3D-CNN) model to evaluate lymph

node metastasis in head and neck cancers (23).

This paper proposes a novel machine learning predictive

model, utilizing a 3D-CNN, to reliably predict the presence of

lymph node metastasis and the postoperative positive margin

status based on preoperative CT scans. This is the first deep

learning predictive model for both lymph node disease in

pancreatic cancer and the margin status based on preoperative

imaging. Manual image segmentation was not performed allowing

for an unbiased approach and a potential generalizability of the

model to other abdominal/gastrointestinal cancers.
Materials and methods

Study population

The Biospecimen Procurement and Molecular Epidemiology

Core (BioMER) is a shared core resource at the University of Iowa

Holden Comprehensive Cancer Center that prospectively enrolls

cancer patients into disease-specific MER patient cohorts annotated

with clinicopathological, treatment, and outcome data. Within the

gastrointestinal cancer cohort of the BioMER (GIMER), 462 patients

were enrolled from 2015 to 2021. Study inclusion criteria included 1)

having a diagnosis of pancreatic ductal adenocarcinoma by

pathology, 2) receiving curative intent surgery, 3) available CT
Frontiers in Oncology 03
images prior to surgical intervention, and 4) available surgical

pathologic data regarding the tumor margin status and lymph

nodes. Positive margin was defined by the presence of cancer cells

found within 1 mm from the inked resection margin. CT images and

clinical and pathologic data were obtained from 110 patients

(Table 1). A total of 881 CT scans were obtained. A patient’s CT

scan from a particular date may contain the images of arterial,

venous, and delayed phases with different resolutions. For the

purposes of subgrouping, the images from each individual phase

are classified as “one” scan. Due to small patient numbers, each scan

was treated independently. The patient cohort was divided into two

groups, one for training and one for validation for each study

algorithm, margin study, and lymph node study. The training vs.

validation split was 59 patients (340 scans) vs. 20 patients (140 scans)

for the lymph node study and 83 patients (629 scans) vs. 27 patients

(252 scans) for the margin study. For the margin study, additional

PDAC patients with surgeon-determined unresectable locally

advanced disease on preoperative CT were included to provide

additional control cases with positivemargin to improve study power.
Development of machine
learning algorithm

In collaboration with the Iowa Initiative for Artificial

intelligence (IIAI), a 3D-CNN was developed for the purpose of

image classification based on the lymph node disease or the margin

status. In a basic sense, the CNN involves creating a scaffolding of

computational “layers” stacked on one another whereby the outputs

of terminal layers are built upon the inputs of the previous. The

specific structuring of the number of layers and the type of layer

(i.e., convolutional, pooling, and fully connected) based on the

research question is where nuance arises. The goal was to learn a
TABLE 1 Study population characteristics.

Lymph node study Margin study

Training group (n=59) Validation group (n=20) Training group (n=83)* Validation group (n=27)§

Age 66.1 [63.6–68.7] 62.5 [58.6–66.3] 65.8 [63.6–68.0] 64.2 [60.5–67.8]

Gender

Male 27 (45.8%) 10 (50%) 44 (53%) 13 (48.1%)

Female 32 (54.2%) 10 (50%) 39 (47%) 14 (51.9%)

Pathological Stage

Stage 0 0 1 (5%) 0 1 (3.7%)

Stage I 5 (8.5%) 2 (10%) 5 (6.0%) 2 (7.4%)

Stage II 54 (91.5%) 17 (85%) 55 (66.3%) 16 (59.3%)

Stage III 0 0 16 (19.3%) 6 (22.2%)

Stage IV 0 0 7 (8.4%) 2 (7.4%)

Positive Margin 12 (20.3%) 4 (20%) 36 (44.4%) 11 (40.7%)

Number of Images 340 140 629 252
*Includes 23 unresectable cases (these cases would yield a positive resection margin if they have undergone surgery).
§Includes 8 unresectable cases.
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discriminative function, f ∈ {0, 1}, where 1 indicates lymph node

metastasis or a positive margin and 0 otherwise.

The 3D-CNN utilized was modeled after that described by

Zunair et al. (24). Like Zunair et al, this study utilized a 17-layer 3D-

CNN. Four 3D convolutional layers are used with each

convolutional layer followed by a max-pooling layer and a

subsequent batch normalization layer creating a CON-

MAXPOOL-BN module (24). The subsequent output runs

through a global average pooling layer and then a dense layer. An

effective dropout rate of 60% was utilized. A second dense layer was

used to produce output consistent with the binary classification

problem (Figure 1). The binary cross-entropy loss function was

utilized within model learning to optimize the performance of the

classification model. A total of 1,351,813 learnable parameters were

present in this study. All codes were written and run utilizing

Python (Python Software Foundation, Delaware, USA).
Data preparation

To decrease computational time, slice selection was performed.

Each axial CT scan was analyzed, and the slices between an

anatomical boundary of superior to the celiac artery takeoff to

inferior to the renal vein were identified. Subsequently, each image

was resized to a resolution of 128 × 128 × 64 pixels. Image intensity

and parameters were normalized to a scale of (0, 1). The initial input

for the first layer of the 3D-CNN model was resized CT scan.
Statistical analysis

The sensitivity, specificity, positive and negative predictive

values, and accuracy of the model were evaluated on training and

validation datasets. With the use of the Wilson–Brown Method

with GraphPad Prism8 software, 95% confidence intervals (17)

were determined. Receiver operating characteristic (25) curves

were plotted for the per-patient analysis using the different cutoff

values of percent-positive scan from per-scan analysis for each
Frontiers in Oncology 04
patient, and area-under-the-curve (26) analysis was performed

using GraphPad Prism8 software. Algorithm prediction

accuracy was displayed in the confusion matrix as appropriate.
Results

The clinical characteristics of study population are

summarized in Table 1.
Lymph node metastasis predictive model

The training group consisted of 37 patients with lymph node

metastasis and 22 patients without (total of 340 scans), and the

validation group consisted of 15 patients with lymph node

metastasis and 5 patients without (total of 140 scans). In per-scan

analysis, the 3D-CNN model achieved a sensitivity of 93% (95%CI:

86%–97%) and a specificity of 42% (95%CI: 29%–56%) with an

accuracy of prediction at 75% and a positive and negative predictive

value of 74% (95%CI: 66%–82%) and 78% (95%CI: 59%–89%),

respectively (Table 2). Using majority voting strategy in per-patient

analysis, the 3D-CNNmodel achieved a sensitivity of 100% (95%CI:

80%–100%) with a specificity of 60% (95%CI: 23%–93%) with an

accuracy of 90% and a positive and negative value of 88% (95%CI:

66%–98%) and 100% (95%CI: 44%–100%), respectively (Table 2).

Using various cutoff values in per-patient analysis, an ROC curve

was constructed with an AUC of 0.786 (95%CI: 0.510–1.000)

(Figure 2A) and the best cutoff value was indeed the same as the

major voting strategy (i.e., >50% of scans predicted to be positive).
Postoperative positive-margin
predictive model

The training group consisted of 83 patients (total of 629

scans) with 36 patients having a positive margin. The validation
FIGURE 1

Framework for 3D convolutional neural network. CONV, convolutional layer; MAXPOOL, max pooling; LN, Lymph node.
frontiersin.org

https://doi.org/10.3389/fonc.2022.895515
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chang et al. 10.3389/fonc.2022.895515
group for the margin model consisted of 27 patients (total of 252

scans), 11 of whom had a positive margin. In per-scan analysis,

the 3D-CNN model achieved a sensitivity of 67% (95%CI: 59%–

74%) and a specificity of 89% (95%CI: 81%–93%) with an

accuracy of 76% and a positive and negative predictive value

of 89% (95%CI: 82%–94%) and 65% (95%CI: 57%–73%),

respectively (Table 3). Using majority voting strategy in per-

patient analysis, the 3D-CNN model achieved a sensitivity of

73% (95%CI: 43%–90%) and a specificity of 88% (95%CI: 64%–

98%) with accuracy of 81% and a positive and negative

predictive value of 80% (95%CI: 49%–96%) and 82% (95%CI:

59%–94%), respectively (Table 3). Using various cutoff values in

per-patient analysis, an ROC curve was constructed with an

AUC of 0.852 (95%CI: 0.670–1.000) (Figure 2B) and the best

cutoff values were between 40% and 60%.
Discussion

The purpose of this study is to provide a proof of concept

that 3D CNN-based algorithms can predict lymph node

metastasis and the postoperative margin status with clinically

relevant levels of accuracy. The CT scans of 110 patients from a
Frontiers in Oncology 05
single tertiary care institution were utilized without

segmentation. The lymph node prediction model achieved an

accuracy of 75% in per-scan analysis and 90% in per-patient

analysis using majority voting, while the postoperative margin

prediction model achieved an accuracy of 76% in per-scan

analysis and 81% in per-patient analysis using majority voting.

This is the first study to utilize a 3D-CNN for the prediction of

postoperative margins and the first study to utilize a 3D-CNN to

predict the lymph node status in pancreatic cancer.

The most promising type of machine learning model for

radiomic analysis has been the CNN (16). CNNs were developed

in the late 1970s and saw their first application intomedical imaging

analysis in the 1990s (27). CNNs became more widely recognized

after the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) in 2012, whereby algorithms were tasked with

classifying over 1.2 million high-resolution images from 22,000

categories into 1,000 classes (28). AlexNet, the winning model, was

highly efficient and accurate and provided a framework for the

future iterations of CNNs (29). CNNs are a more popular option in

comparison to other types of machine learning algorithms, such as

the random forest model or decision trees for radiomic data. They

are superior in modeling non-linear relationships in seemingly

unrelated data to achieve a result (30). In contrast to random
A B

FIGURE 2

ROC curves of per-patient analysis. (A) Lymph node study. AUC: 0.79. (B) Margin study. AUC: 0.85.
TABLE 2 Confusion matrix for lymph node study.

Type of analysis True positive True negative

Per-patient analysis (n=20)
Predicted Positive 15 2

Predicted Negative 0 3

Per-scan analysis (n=140)
Predicted Positive 84 29

Predicted Negative 6 21
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forest models, CNNs lack the interpretability of individual features

and focus on solving a specific problem (16, 31). CNNs have been

applied to a wide range of medical problems with over 300 papers

published in the last few years (17). All kinds of medical imaging

including X-ray, CT, MRI, and ultrasound have been utilized with

CNNs (17). For example, in pancreas imaging, studies have been

performed looking to use 3D-CNNs for the diagnosis of pancreatic

cystic neoplasms, neuroendocrine tumors, and additional

segmentation of the pancreas. Recently in 2020, a 3D-CNN

model was described for the classification of pancreatic cancer

from initial diagnostic CT scans that demonstrated a sensitivity of

99% and an accuracy of 99%. Another study used CNNs tomeasure

pancreas volumes in patients with type 1 diabetes (32). The

pancreas is an inherently more difficult organ to evaluate than

the liver or kidney due to its variable shape, size, and proximity to

numerous structures. Studies utilizing pre-analysis segmentation to

isolate the pancreas from neighboring structures have yielded

improved accuracy in comparison to non-segmentation

studies (33).

Lymph node metastasis is a significant prognostic factor in

pancreatic cancer survival; however, preoperative lymph node

identification remains a challenge in the diagnostic radiology of

pancreatic and other abdominal cancers with sensitivities

ranging from 40% to 87% and specificities ranging from 64%

to 100% for CT and MRI (26, 34). Radiologists are limited to

looking at the size, shape, and contour of lymph nodes on CT

scans. Specifically, CT and MRI techniques are limited in the

ability to detect metastatic disease in normal-sized or minimally

enlarged lymph nodes. Based on tumor morphology, the

incidence of metastatic disease within normal-sized nodes may

occur anywhere from 10% to 90% of cases (35). In pancreatic

cancer, the size of ≥1cm was only 44.2% sensitive to the

identification of lymph node metastasis (34). While there have

been attempts to utilize CNNs in CT segmentation to identify

metastatic lymph nodes, the first use of CNNs to evaluate for

potentially metastatic lymph nodes was performed in head and

neck cancers by Chen et al. (36). Utilizing many-objective

radiomics in conjunction with the 3D-CNN framework, the

group created a model to predict three classes of lymph nodes:

normal, suspicious, or involved. Segmentation was used to

identify specific nodes for analysis. The accuracy of the model
Frontiers in Oncology 06
was 0.88. Additional machine learning models have been created

for the identification of lymph node metastasis in cervical cancer

(37) and the prediction of lymph node metastasis in gastric

cancer (38) and prostate cancer (39). This is the first study

investigating the pancreas. The 3D-CNN proposed by this paper

offers a different approach as this model does not utilize

segmentation and imaging studies were at a different

anatomical location likely involving different radiomic

parameters. An acceptable accuracy of 90% was achieved in

per-patient analysis.

The accuracy of CT imaging for predicting resectability is

approximately 70% and is prone to overestimation (40). The

ability to improve preoperative patient selection for such a

substantial surgical procedure could be vital in improving overall

clinical outcomes. Patients who are deemed to be high risk for R1

resection even though their tumors are classified as technically

resectable based on current clinical and radiological guidelines may

warrant a consideration for neoadjuvant therapy. It remains

controversial whether the postoperative positive microscopic

margin (R1 resection) has an impact on survival postoperatively

since the probability of the recurrence-free survival and overall

survival of these patients depends on multiple factors including

underlying medical conditions, the postoperative course, the choice

of systemic treatment, the treatment response, pathological and

molecular subtypes, and the stage of disease. The rates of R1

resection in the literature may range widely from as low as 16%

to >75% with some studies also noting an association with poorer

clinical outcomes in comparison to R0 resection but not others (41).

This discrepancy was due to a lack of standardization with the

pathologic evaluation of resection specimens and definitions (9).

The Royal College of Pathologists define R1 resection as a

“microscopic evidence of tumor within 1 mm of a resection

margin” (42, 43). The adoption of the standardized definitions of

R1 resection as well as the circumferential resection margin has led

to increase in the literature-reported incidence rates of R1 resection

(44). Recent meta-analysis data have shown that R1 resection is

associated with decreased overall survival and disease-free survival

in PDAC patients after pancreaticoduodenectomy (Whipple

procedure) (9, 12). One thinking is that R1 resection following

curative intent surgery may indicate the presence of

micrometastatic disease unable to be identified preoperatively. A
TABLE 3 Confusion matrix for margin study.

Type of analysis True positive True negative

Per-patient analysis (n=27)
Predicted Positive 8 2

Predicted Negative 3 14

Per-scan analysis (n=252)
Predicted Positive 98 12

Predicted Negative 49 93
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developing paradigm shift in themanagement of PDAC is the usage

of neoadjuvant therapy in the cases of resectable or borderline

resectable cancer (45). The Preoperative radiochemotherapy versus

immediate surgery for resectable and borderline resectable

pancreatic cancer (PREOPANC-1) randomized phase III trial,

comparing neoadjuvant with gemcitabine and chemoradiation vs.

adjuvant gemcitabine in resectable or borderline resectable tumors

did not identify any difference in overall survival; however, there

was improvement in the secondary endpoints of disease-free

survival and the R0 resection rate (45). In subgroup analysis,

borderline resectable but not resectable tumors demonstrated an

improvement in overall survival (46). In this study population,

survival analysis supports the notion that a positive resection

margin is associated with worse overall survival and recurrence-

free survival, as well as worse local and distant recurrence-free

survival in Kaplan–Meier and univariate Cox hazard ratio analyses

(Supplemental Figure 1 and Supplemental Tables 1, 2). The lymph

node status was only associated with overall survival (Supplemental

Figure 2 and Supplemental Tables 1, 2). In multivariate Cox hazard

ratio analysis, a positive margin remains associated with recurrence-

free survival (Supplemental Table 2). This suggests that the margin

status may act as a surrogate marker of recurrence. It is important to

note that in this study population, only 16 out of 110 patients

received neoadjuvant therapy, with the majority of borderline

resectable tumors receiving upfront surgery. The purpose of

performing preoperative margin prediction is to potentially assist

in clinical decision-making for these types of tumors, where patients

predicted to have positive margin should probably consider

neoadjuvant treatment instead of upfront surgery.

Margin studies are difficult to accomplish specifically in the

pancreas due to the need for the CNN to understand and

evaluate proximity to a “weighted” group of vital structures.

There have been no machine-learning models trained to identify

the postoperative margin status from preoperative images. A

study performed by Halicek et al. described the use of CNNs in

patients with squamous cell carcinoma in their oral cavity to

identify residual disease on postresection imaging studies (47).

The model proposed in this paper utilized a simplistic approach

to provide a proof of concept with subsequent fine-tuning

available in future iterations. Without the segmentation of

images, the model learns the pancreas, auto-segments the

tumor from the normal pancreas, and attempts to classify the

characteristics of surrounding pixels to trained binary outcomes.

A future iteration of the model should look to identify specific

radiomic parameters investigated in order to compare the

radiomic differences between high- and low-risk tumors for a

postoperative positive margin.

A major limitation of this study is the small sample size for

respective training and validation groups. In our algorithm, this

was attempted to be mediated by additional per-scan analysis to

increase sample size as well as well as limiting the number of

trainable parameters, which demonstrated worse accuracy in

comparison to majority voting in per-patient analysis. The
Frontiers in Oncology 07
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is specifically learning features that would ideally distinguish

from the testing criteria or just overfitting for some features in

the given dataset. Additionally, the design of this study is such

that the outcome is a binary yes or no to the question posed.

There is no distinction to which the lymph node station or

margin is the one predicted to be positive nor if the features of

the true-positive lymph node or margin are sampled. A

consideration for future modification to this 3D-CNN model

would be to use postoperative lymph node pathology with

preoperative image segmentation for individual lymph node

stations and tumor boundaries in the training group.

Additionally, future CNN models on larger datasets should

seek to perform iterations with the optimization of overall

survival and recurrence-free survival with propensity- matched

cases to alleviate confounding characteristics. Lastly, a small

dataset of 110 patients, majority (98%) Caucasian, could mean

that training CT images may not be representative of the

generalizable population of PDAC tumors (48). Additional

diversity should be included in additional training groups

for CNNs.

Medical outcome modeling for treatment planning is a novel

application of convolutional neural networks that warrants

additional investigation.
Conclusion

In conclusion, this study provides a proof of concept that

utilizing radiomics, the 3D-CNN deep learning framework may

be used to improve the preoperative prediction of positive

resection margins as well as the presence of lymph node

metastatic disease. Further investigations should be performed

with larger cohorts to increase the generalizability of this model;

however, there is great promise in the use of CNNs to assist

clinicians with treatment selection for patients with PDAC.
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