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Deep learning is a subfield of state-of-the-art artificial intelligence (AI) technology, and
multiple deep learning-based AI models have been applied to musculoskeletal diseases.
Deep learning has shown the capability to assist clinical diagnosis and prognosis
prediction in a spectrum of musculoskeletal disorders, including fracture detection,
cartilage and spinal lesions identification, and osteoarthritis severity assessment.
Meanwhile, deep learning has also been extensively explored in diverse tumors such as
prostate, breast, and lung cancers. Recently, the application of deep learning emerges in
bone tumors. A growing number of deep learning models have demonstrated good
performance in detection, segmentation, classification, volume calculation, grading, and
assessment of tumor necrosis rate in primary and metastatic bone tumors based on both
radiological (such as X-ray, CT, MRI, SPECT) and pathological images, implicating a
potential for diagnosis assistance and prognosis prediction of deep learning in bone
tumors. In this review, we first summarized the workflows of deep learning methods in
medical images and the current applications of deep learning-based AI for diagnosis and
prognosis prediction in bone tumors. Moreover, the current challenges in the
implementation of the deep learning method and future perspectives in this field were
extensively discussed.

Keywords: bone tumor, sarcoma, deep learning, artificial intelligence, cnn, convolutional neural network
1 INTRODUCTION

Bone tumors occur in the musculoskeletal system and can be divided into primary and metastatic
bone tumors. It is reported that the incidence of primary bone tumors is 2–3 per 100,000 people,
accounting for about 6.2% of all tumors (1–4). Primary bone tumors can also be subdivided into
benign, intermediate, and malignant tumors. Among them, osteosarcoma is the most prevalent
primary malignant bone tumor and contributes to the second cause of death in adolescents and
children (1, 5–8). Notably, without timely diagnosis and treatment, patients with a malignant bone
tumor may suffer the risk of a worse prognosis, such as amputation or metastasis (2, 9, 10).
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Therefore, early detection and treatment are pivotal for limb
salvage and reducing morbidity and mortality. Currently, the
conventional diagnosis procedure for a bone tumor is a
combination of clinical characteristics, imaging, and
pathological examinations since bone tumors are rare.
However, it is not easy for clinicians to achieve accurate and
timely diagnoses since the available diagnostic process can be
laborious, high cost, time consuming, and could be biased by
clinicians’ expertise and experience (11, 12). Accordingly, there is
an urgent need for a more rapid, reliable, and accurate diagnosis
of bone tumors in clinical practice.

In the field of healthcare, artificial intelligence (AI) has a wide
range of applications, including imaging and diagnostics, lifestyle
management and supervision, nursing, emergency and hospital
management, drug mining, virtual assistants, wearables, and
more (13, 14). AI in the healthcare industry can tremendously
improve the efficiency of clinical work and reduce the shortage of
medical resources. Since deep learning technology began to be
applied to image recognition tasks in 2012, their recognition
performance has reached a high point in recent years. The
research methods have been widely used in medical image
analysis and processing tasks. Also, the applications of the
deep learning method in medical images provide assistance for
disease diagnosis automatically with shortened time, enhanced
efficacy, and favorable accuracy (15).

Due to the advancement in AI, techniques based on deep
learning such as segmentation, detection, classification, and
enhancement have been successfully applied to the field of
medical imaging (15–26), bringing new opportunities for
building computer-aided medical imaging diagnosis system. In
recent years, deep learning methods have been successfully used
in musculoskeletal imaging for lesion identification and severity
assessment, such as a fracture (27–36), knee lesion (37–42),
osteoarthritis (43–47), and spinal degenerative lesion (48, 49).
In addition, some models based on deep learning are adopted to
assess bone age (50–55) and determine sex (56) on radiographs.
Therefore, it is plausible to use deep learning methods to
establish diagnostic models for bone tumors as well, which
may greatly reduce the misdiagnosis and missed diagnosis
rates of bone tumors. Recently, a growing number of studies
have reported that deep learning-based AI models in bone tumor
identification, classification, segmentation, and visual
interpretation could improve diagnostic, prognostic, and
predictive accuracy, demonstrating its great potential
application in bone tumors. Moreover, often compared with
deep learning, radiomics is also an advanced technology that is
often cooperated with artificial intelligence, designed to extract,
and analyze numerical radiological patterns based on
quantitative image features, including geometry, size, texture,
and intensity. It is well known that radiomics could be applied in
disease prediction, prognosis, and monitoring (57, 58). The
purpose of this review is to briefly describe the concepts and
workflows of deep learning-based AI, extensively summarizing
its up-to-date applications in bone tumors, as well as discuss the
barriers to deep learning implementation and future directions
in this field.
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2 ARTIFICIAL INTELLIGENCE BASED ON
DEEP LEARNING

AI can refer to a branch of computer science that can simulate
human intelligence. AI is implemented in machines to perform
tasks that require human knowledge in an automated manner
(59). On the other hand, machine learning (ML) is a subset of AI
and is defined as mathematical algorithms that enable a machine
to make choices independently without any external human
influence (60). Furthermore, deep learning, as a novel
approach, is a subset of ML, but there are differences between
ML and deep learning in data dependencies, hardware
dependencies, feature engineering, problem-solving approach,
execution time, and interpretability (61). Deep learning can learn
to perform much more complex classification tasks from input
such as images, text, or sounds, achieving superior performance
to traditional machine learning (62). Accordingly, deep learning
models contain many layers to build neural network
architectures and need to be trained by a large set of labeled data.

In 1980, Fukushima (63) developed the neocognitron
architecture to automatically identify the best features of an
image, which is thought to be the prototype of a convolutional
neural network (CNN). Convolution filters contained in CNNs
can automatically extract features, while models with simple
convolution layers can extract low-level visual information such
as color, texture, and shape, and deeper convolution layers can
extract abstract semantic information. Until 2012, a deep
convolution network called AlexNet, proposed by Krizhevsky,
had excellent performance in the ImageNet competition,
providing a powerful method far surpassing the traditional
method of manually designing features (64). Since then, the
deep learning method has gradually become a hot topic in AI
research. In 2017, Mishra et al. first introduced deep learning
models (AlexNet, LeNet, and VGGNet) to improve the efficiency
and accuracy of differentiating osteosarcoma tumor tissues and
their counterparts (65). Since then, a substantial number of
studies focused on deep learning in bone tumors have emerged
in recent years. The relationships, development, and comparison
of AI, ML, deep learning, radiomic, and deep learning in bone
tumors are presented in detail in Figures 1, 2.
3 WORKFLOW FOR BUILDING A DEEP
LEARNING MODEL

Deep learning technology enables the process of automatic
feature extraction by learning deep features and relationship
patterns of images directly from the architecture of multiple
network layers on the original data (or preprocessed slightly)
instead of manual extraction in the conventional ML method. In
this way, the efficiency of image analysis is greatly improved
without time-consuming manual feature extraction, and the
system based on deep learning technology provides assistance
for those without professional experience.
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Building a typical deep learning model for medical image
analysis consists of three sections (Figure 3): (1) preprocessing
images for sufficient quantity and suitable quality annotated data
and splitting the dataset with an appropriate proportion (often
70%:20%:10% for training, validation and test dataset); (2)
training the deep learning model on the training dataset and
refining parameters; and (3) evaluating the performance of the
model under the test dataset.

3.1 Image Preprocessing
Image preprocessing is a significant process to obtain a training
dataset for building a deep learning model with high-quality and
uniform format images. Since images may are collected from
different instruments and through distinct acquisition settings,
standardization of images can maintain data consistency and
comparability for the same format as input. The detection
network is utilized to show the area of interest on the image
with a bounding box for segmentation, facilitating image mining
and analysis. If there are not enough training images, image
augmentation methods like digitally reconstructed radiographs
(66–68) and generative adversarial networks (GANs) (69, 70)
can be used to enlarge the image dataset. Remarkably, image
labeling is the most time-consuming work because it requires
Frontiers in Oncology | www.frontiersin.org 3
researchers to manually annotate input–output pairs based on
their clinical experience, but it is also the most critical step since
these annotations are considered as “Gold Standard” for training
and evaluation. The images obtained by the abovementioned
methods are more suitable for model training than the original
images and can significantly improve the performance of
the model.

3.2 Model Training
CNNs are the most prevalently used multilayer neural network
structures in image-based deep learning, and various CNN
architectures like VGG, ResNet, and DenseNet have been used
in medical image-based models. A typical CNNmodel consists of
convolution layers, pooling layers, activation functions, and full-
connected layers. In addition to batch standardization, dropout
is also applied to optimize the performance of the model.
Typically, in deep learning models based on CNN, there are
three steps in data processing by the convolution layer. First, the
convolution layer obtains a set of linear transformation outputs
by multiple convolution calculations, and then each linear output
is processed by a nonlinear activation function as a probe, and
finally, the pooling function is used to further adjust the output
of the convolution layer. It is important to note that the CNN
FIGURE 1 | Timeline of the development of artificial intelligence, machine learning, radiomics, deep learning, and application of deep learning in field of bone tumor.
FIGURE 2 | Brief comparison of the pipeline of radiomics, conventional machine learning, and deep learning.
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model needs to be trained on a large amount of dataset for
refining parameters. If the number of data is not enough, the
model will overfit on the trained dataset and cannot be
generalized in real data and will have poor performance.

3.3 Model Performance Evaluation
It is important to prepare a test dataset that has the same
distribution as the training dataset. Running the trained model
on the test dataset can provide an objective evaluation of model
performance. There are many common evaluation metrics,
including accuracy, precision, recall, sensitivity, specificity, the
area under the curve (AUC) of the receiver operating
characteristic (ROC) curve, and F1-score. Sometimes, we use
single-number evaluation metrics like accuracy to simply
compare different models, but most of the time, we utilize
various metrics to evaluate models for a wide variety of uses. If
we have to take both accuracy and running time into account, we
can first define an “acceptable” running time, typically less than
100ms, and then maximize the classifier’s accuracy as much as
possible within a limited running time frame. At this point, the
running time represents the “satisfaction indicator,” and
accuracy means the “optimization indicator.”
4 DEEP LEARNING APPLICATIONS IN
MEDICAL IMAGES FOR BONE TUMORS

In the published studies of deep learning, multiple models were
developed for analyzing radiological and pathological images,
showing excellent performances that can be comparable to those
of experienced physicians (including orthopedic surgeons,
radiologists, and pathologists). Among them, the most
Frontiers in Oncology | www.frontiersin.org 4
analyzed radiological images for deep learning are generated
from X-ray, CT, and MRI (71–80). These radiological images are
used in deep learning for tumor detection and classification;
differentiation of benign, intermediate, and malignant tumors;
segmentation of the region of tumors; and tumor grading
prediction. In addition, bone scintigraphy, PET, and spectral
CT are also good tools to detect bone metastasis (81–93), as
evidenced by their ability to identify the primary lesion of the
tumor and calculate the volume of the metastatic sites, and
applying deep learning to these radiological images can improve
our diagnosis of bone metastasis. With regard to the pathological
images, it is demonstrated that these features from resected
tissues can reveal tumor histopathology after hematoxylin and
eosin (H&E) staining and can also be used for tumor
classification, prognosis prediction, and treatment guidance.
Various models have been proposed to help clinicians diagnose
and identify tumor regions on digital H&E-stained tissue images
(65, 94–97). The details of the application of deep learning in
primary and metastatic bone tumors are depicted in Figure 4
and presented as follows.

4.1 Deep Learning in Primary Bone
Tumors Based on Radiological Images
4.1.1 Lesion Detection and Classification
X-ray, CT, and MR images are mainly used in deep learning for
lesion detection and classification. Generated by X-ray, plain
radiographs contain image parameters of tumor location, tumor
size, and the margin of tumor for describing tumor
FIGURE 4 | A scheme showing the process of incorporating deep learning
models to assist bone tumor diagnosis and thereby facilitate decision making
in clinical practice.
FIGURE 3 | Workflow of building a deep learning model for bone tumor
classification based on radiological and pathological images, including
preprocessing, training, and evaluation.
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characteristics. In 2020, He et al. (73) first developed a deep
learning model based on CNN that could automatically classify
primary bone tumors based on 2,899 plain radiographs from
1,356 patients using a multi-institutional dataset. The model had
a high performance with an AUC reaching up to 0.877 and 0.916
for classifying benign and malignant, respectively, and with an
accuracy of 72.1% for three-way classification (benign vs.
intermediate vs. malignant), which was closed to 2
subspecialists, and outperformed junior radiologists. Similarly,
combining global context and local patch for analysis, Do et al.
(76) built a Multi-Level Seg-Unet model for the detection and
classification of knee bone tumors on plain radiographs using
1,576 radiographs consisting of 1195 tumor images and 381
normal images with a superb accuracy of 99.05%.

Compared with plain radiographs, CT and MRI can provide
further radiological information and improve lesion detection.
Multiple deep learning methods have also been published for
detecting and classifying bone tumors on CT and MRI (75, 77).
For instance, a deep learning-based radiomics model (75) was
described for discriminating between benign and malignant
sacral tumors using 3D CT and clinical characteristics based
on 1,316 manual-cropped radiomics features from 459 patients
and achieved a high AUC of 0.83 in identifying benign and
malignant sacral tumors. MRI is highly sensitive for the detection
of bone abnormalities due to its ability to evaluate bone marrow
involvement, soft tissue invasion, and fluid content of lesions (98,
99). A deep learning model (77) based on routine MRI and
patient demographics using the EfficientNet-B0 architecture and
a logistic regression model has also been described for identifying
benign and malignant bone lesions, with an expert-level
performance of accuracy, sensitivity, specificity, and AUC of
0.76, 0.79, 0.75, and 0.82, respectively.

4.1.2 Segmentation and Volume Calculation
Another potential application of deep learning and radiological
image analysis is the automatic segmentation and volume
calculation of tumors (71, 72). Due to the large spatial and
structural variabilities of tumors, osteosarcoma tumor
segmentation on CT has been a challenging difficulty in AI. In
2017, Huang et al. (71) developed a multiple supervised fully
convolutional networks (MSFCN) method to segment the region
of tumors automatically. The deep end-to-end model used
multiple feature channels to capture more context information
and achieved an average DSC of 87.80%, an average sensitivity of
86.88%, an average HM of 19.81%, and an F1-measure of
0.908. A similar multiple supervised residual network (MSRN)
model (72) based on ResNet cooperated with FCN and also has a
high performance for osteosarcoma segmentation trained and
tested on 1,900 CT images from 15 osteosarcoma patients.
Furthermore, using a multiview fusion network to extract
pseudo-3D information, a deep learning model (80) had the
ability to perform the segmentation and volume calculation
of pelvic bone tumors in MRI and reduce the average
segmentation time by 100 times compared to other methods,
which has a significant impact on the clinical practice of
musculoskeletal oncology.
Frontiers in Oncology | www.frontiersin.org 5
4.1.3 Tumor Grading
Tumor grading is crucial for treatment plan making and
prognosis prediction (100). A deep learning-based tumor
grading model on T1-weighted or T2-weighted MRI sequences
was proposed by Navarro et al. (79) in soft-tissue sarcoma
patients. Grading the sample into low grade (G1) and high
grade (G2/G3), the deep learning method achieved an F1-score
of 0.90 and an AUC of 0.76. It provides insight for surgeons to
make treatment plans while reducing invasive biopsies. Although
there is currently no similar research in primary bone tumors, it
may be a potential research direction in the near future.

4.1.4 Tumor Necrosis Rate Assessment
Evaluation of tumor necrosis rate after neoadjuvant
chemotherapy in patients with malignant bone tumors is
critical since it can show the treatment response of patients
and thus offer guidance for the subsequent chemotherapy after
surgery (101). Currently, this process is assessed by multiple
pathological slices, and it is so complex and time consuming that
it limits its clinical practicality. Thus, it is necessary to convey
other convenient and noninvasive methods to identify the tumor
necrosis caused by neoadjuvant chemotherapy. To a great extent,
it may facilitate our clinical evaluation of tumor chemotherapy
sensitivity and help us classify patients into responders (≥90%
tumor) and nonresponders (<90% necrosis) (102).

In 2020, a preliminary study conducted by Huang et al.
applied ML to predict tumor necrosis rate on multiparametric
MRI before and after chemotherapy in patients with
osteosarcoma (103). This study is of great significance since it
first explored the potential correlation between contrast-
enhanced MRI and postoperative pathological features. More
recently, other research performed by Kim et al. (104) first
demonstrated that texture features of ML of positron emission
tomography/computed tomography (PET/CT) images could
reflect the fluorine-18fluorodeoxyglucose (18F-FDG) uptake
heterogeneity features in osteosarcoma and therefore predict
the treatment response to neoadjuvant chemotherapy.
Although these studies used a supervised ML method instead
of deep learning due to the small sample size, it is plausible and
meaningful to expand the sample size and apply deep learning to
predict histologic response by adopting other radiological
imaging modalities (MRI, PET/CT), which may help clinicians
to decide whether to continue the prior chemotherapy regimen
to treat patients after surgery (104).

4.1.5 Prognosis Prediction
The recurrent risk of bone tumors after surgery is a matter of
great concern to orthopedic surgeons (105). Treatment for a
bone tumor like curettage may be less invasive than en bloc wide
resection. Meanwhile, the rates of recurrence and metastases are
increased (2, 106). Thus, it is crucial to predict postsurgery
regional recurrence of tumors based on presurgery medical
images, which is not easy for physicians. Based on 56 patients
with confirmed giant cell bone tumors (GCTB) in histopathology
after curettage, a CNN model was reported by He et al. (107) to
predict the local recurrence of GCTB on presurgery MRI.
July 2022 | Volume 12 | Article 908873
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Without integrating any clinical characteristics, the pure image-
based CNN model achieved an accuracy of 75.5% and a
sensitivity of 85.7%. Using logistic regression, the fusion model
was built by integrating tumor location, patient age, and CNN
prediction, and the accuracy and sensitivity for prediction were
improved to 78.6% and 87.5%, respectively, much higher than
that of the radiologists (64.3% and 58.3%) (107). It is obvious
that the regression deep learning model combined with clinical
characteristics has a great potential to predict tumor recurrence
and thereby guide clinical decision making.

4.2 Deep Learning in Bone Metastasis
Based on Radiological Images
In recent years, various technologies have been used in the
diagnosis of bone metastasis from different primary tumors,
including bone scintigraphy, CT, MRI, and PET/CT (108, 109).
The deep learning method is utilized in these modalities to detect
the presence of bone metastasis, segment and calculate the
volume of the metastatic lesions, differentiate the source of the
primary tumors, and denoise scintigraphy to improve the quality
of images.

Bone scintigraphy with 99mTc-MDP is widely applied in the
detection and localization of bone metastasis in cancer patients
since it has the merit of whole-body detection and high
sensitivity for the diagnosis of bone metastasis (110–112).
Several studies (86–90, 92, 93, 113–115) have explored
applications of deep learning models in interpreting images of
bone scintigraphy, and these models aid in diagnosing lesions
and reducing the workload for clinical physicians. Papandrianos
et al., (88, 89) proposed two deep learning models based on RGB-
CNN architecture that can be trained efficiently on a small
dataset and consume less running time to identify the bone
metastasis and differentiate between a bone metastatic and a
degenerative lesion in prostate cancer patients. Despite the
models using small datasets (778 patients for model 1 and 507
patients for model 2) without any clinical information as input,
the classification accuracy for two classes (bone metastasis or
healthy) and three classes (normal, malignant, and degenerative)
reached up to 97.38% and 91.42%, respectively, outperforming
than other well-known CNN approaches. Cheng et al., (93)
Cheng et al., (113) proposed CNN models to detect bone
metastasis in the pelvis and identify metastasis spots on the
ribs or spine in the chest from prostate cancer patients’ bone
scintigraphy, with a sensitivity of 0.87 by using a hard positive
mining (HPM) approach as an effective augmentation method
and faster R-CNN and YOLO v3 to identify hotspots. Compared
with analyzing only one image at a time, Pi et al. (90) developed a
novel CNN approach to analyze both the anterior and posterior
views of WBS examination for the presence of bone metastasis in
various cancer patients and use a spatial attention feature
aggregation operator for better spatial location information.
Trained on 15,474 examinations from 13,811 patients, the
model had excellent performance with an F1, accuracy,
sensitivity, and specificity of 0.933, 95.00%, 93.17%, and
96.60%, respectively. Similarly, a multi-input CNN model (92)
was designed for identifying bone metastasis in breast, prostate,
Frontiers in Oncology | www.frontiersin.org 6
lung, and other cancer patients based on a large number of bone
scans (12,222 cases of bone scintigraphy). Using multiple images
as input, the machine performed well, with the AUC of 0.98,
0.955, 0.957, and 0.971 for breast cancer, prostate cancer, lung
cancer, and other cancers, respectively. It is noted that
integrating local and global information would improve the
performance of the model, Han et al. (114) proposed a 2D
whole body-based and “global-local unified emphasis” (GLUE)
CNN model for detecting bone metastasis on bone scans with a
high accuracy of 0.900 and 0.889. In addition, some studies (86)
utilized deep learning to denoise scintillation camera images,
significantly promoting the ability of the model to detect bone
metastasis in whole body bone scans by a Monte Carlo
simulation approach.

Moreover, multiple deep learning methods have been used to
identify bone metastasis on CT and MRI as well. In 2018,
Chmelik et al. (82) reported a CNN-based method to classify
and segment spine metastasis of lytic and sclerotic lesions in
whole-spine CT scans with 1,046 lytic lesions and 1,135 sclerotic
lesions from 31 cases. Trained on voxel-wise labeled images by
two independent radiologists, the machine had 92% sensitivity in
classifying and localizing small metastatic lesions greater than
1.4 mm3 under object-wise evaluation. Similarly, a deep learning-
based DC-U-Net model (116) was also built to identify and
segment spinal metastasis in lung cancer on spectral CT (dual-
energy) images and have expert-level performance. Fan et al.
(117) proposed a deep approach that employed the AdaBoost
algorithm to classify images and the Chan-Vese (CV) algorithm
to segment the lesion for the diagnosis of spinal bone metastasis
in lung cancer patients on MRI images, achieving a high
classification accuracy of 96.55%. Also, a deep learning model
(115) using 2,880 annotated CT scans of 114 patients with
prostate cancer was able to detect and classify bone lesions as
benign and malignant, with a high accuracy of 92.2%. Volume
calculation of metastatic lesions is important for clinical decision
making. Lindgren Belal et al. (84) trained a CNN approach on
100 CT scans that was capable of segmenting and calculating the
volume of the metastatic lesions authomatically with
performance comparable to that of an experienced radiologist.

In addition to detecting bone metastasis, a deep learning
model can also be applied to identify the origin of metastatic
lesions. A DCE-MRI analysis method (83) based on deep
learning was developed by Lang et al. (83) to detect bone
metastasis in the spine and distinguish the tumor originating
from primary lung cancer or other cancers. Compared with the
methods based on hotspots or radiomics, the deep learning
model had better performance for differentiating the origin of
the metastatic lesions with an accuracy of 0.81, which would
assist in predicting the primary cancer source when expansive
PET/CT is not available.

4.3 Deep Learning in Bone Tumors Based
on Pathological Images
Pathological images based on formalin-fixed paraffin-embedded
(FFPE) tissues are often used as the gold standard for routine
diagnosis of bone tumors. Tumor histopathology revealed by
July 2022 | Volume 12 | Article 908873
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HE-stained tissue images and immunohistochemistry (IHC) for
specific biomarkers can provide crucial information for the
prediction of their clinical prognosis and sensitivity to therapy.
In recent years, deep learning methods have been used to
diagnose and identify tumor regions on digital H&E-stained
tissue images as the reference standard.

To classify the region of viable and necrotic tumor in whole
slide images (WSIs) of osteosarcoma, trained on 536 nontumor
tiles, 263 necrotic tumor tiles, and 345 viable tumor tiles
annotated by two pathologists, a CNN model was proposed as
a classifier for differentiating osteosarcoma WSIs into a viable
tumor, necrotic tumor, and nontumor in H&E-stained images
with an accuracy of 91.2% (94). Tumor-prediction maps were
utilized to visualize the tumor region and type classified by the
CNN model, while they can also be used for calculating the
percentage of the necrotic region and showing the area of the
tumor over the WSIs. A similar CNN model was demonstrated
by Mishra et al. with an accuracy of 92.4%, a precision of 97%,
and an F1-score of 95%. By using the Siamese network and a new
residual block called DRB, a DS-Net classifier composed of ASN
and CN can utilize paired data as the input and refine the
architecture through input pairs labeled by experts (95), and
the model reached up to an average accuracy of 95.1% for the
classification of viable and necrotic tumor regions in
osteosarcoma. Moreover, a CNN classifier utilized by Foersch
et al. (97) can also distinguish subtypes of soft tissue sarcoma
from histopathological slides as well, and the accuracy of the
pathologists was markedly improved from 46.3% to 87.1%.

In addition to tumor diagnosis assistance, the deep learning
model cooperated with the application of a statistical approach
for survival analysis and can also provide prognosis prediction of
sarcoma (97). In leiomyosarcoma, CNN classifiers with the use of
H&E-stained tissue images were shown to be useful for survival
analysis with a mean AUC of 0.91 and an accuracy of 88.9%. In
addition, class activation maps were used to visualize image
regions and features that the model detected, showing that the
prediction regions of “dead” were associated with fewer
lymphoid infiltrates, more prominent intercellular matrix,
presence of intratumoral hemorrhage, and more tumor-
associated vessels, which are known as valuable prognostic
factors for tumors (97).
5 REMAINING LIMITATIONS AND FUTURE
PERSPECTIVES

Despite the application of various successful deep learning
algorithms (details in Table 1), several limitations and
potential perspectives need to be addressed as well.

Firstly, training a deep learning model needs substantial
labeled data. While image collection and annotation are the
most time-consuming tasks, they need an experienced physician
for image annotation since this labeling would be the gold
standard for later training and testing. The quality of training
datasets determines the model’s performance. However, it is
pretty difficult to achieve in a bone tumor, which may be
Frontiers in Oncology | www.frontiersin.org 7
attributed to the following reasons: (1) the incidence and
prevalence of bone tumors, such as osteosarcoma, are pretty
low, thus the number of cases is comparatively small, and most of
the data are concentrated in large teaching hospitals; (2) it is
expensive and sometimes unrealistic to require experienced
physicians to spend much time in labeling images with high
quality; (3) medical images involve patient privacy, and in the
ethically demanding medical field, it is difficult to obtain the
permission to use of large-scale data.

Secondly, there has been significant progress in data
collection and sharing in recent years. A number of public
datasets like TCGA (119), CCC-EMN, and Cancer Genome
Atlas Research Network (120) for cancers have been published,
and several methods using public datasets achieved good
performances. Unfortunately, data concerning bone tumors are
absent in most available public databases, creating obstacles to
conducting deep learning in this field. However, transfer learning
refers to training models on other abundant medical images and
transferring them to target images, which may be a good tool
since the amount of data and required time will be greatly
minimized when learning new tasks (121, 122).

Thirdly, most published models were designed to deal with a
single task. However, in clinical practice, physicians do not rely
on a single medical file for a final diagnosis. For instance,
physicians need to incorporate the clinical parameters and
radiological and pathological images to achieve the diagnosis of
osteosarcoma. Furthermore, in pathological diagnosis, the
pathologists also need to take into account the results of other
IHC biomarkers, such as Ki-67, SATB2, and MDM2, or even
next-generation sequencing (NGS), to reach a confirmed
diagnosis in addition to H&E staining (123–126). If the models
are built based on a single parameter, their clinical value may be
greatly jeopardized. Therefore, more comprehensive models
combining various characteristics should be designed and
emphasized in the future.

Fourthly, primary bone tumors and tumor bone metastases
were mentioned above, while studies regarding lung metastasis of
malignant bone tumors, the main cause of death in sarcoma
patients, have not been explored yet. Early identification of lung
metastasis is critical for alleviating prognosis and treatment of
patients (127). Recently, deep learning approaches have been
applied to detect and classify lung metastasis and build deep
learning-based image reconstruction techniques (128, 129) that
can significantly reduce the radiation dose of CT (103). Due to
the crucial role of lung metastasis detection for prognosis in
malignant bone tumors, more efficient models are expected to
be developed.

Fifthly, the genetic information of tumors can be used to
predict tumor subtypes and the prognosis of patients, but the
related profiling remains costly. In recent years, gene expression
prediction based on deep learning models has become a research
hotspot with the development of high-throughput sequencing as
well as the application of deep learning in genomics and
transcriptomics. Several models based on deep learning in gene
expression prediction have shown good performance in several
tumors (125), such as lung cancer (130–132) and breast cancer
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TABLE 1 | Summary of applications of deep learning-based artificial intelligence in bone tumors.

Authors
(year)

Input feature Applications Deep learning
methods

Size of dataset Performance

Dataset Training Validation Testing

He et al. (118) X-ray Classify primary bone
tumors

CNN 2,899 images/
1,356 patients

70% 10% 20% Accuracy: 0.734
AUC: 0.877 (benign); 0.916
(malignant)

Do et al. (76) X-ray Detect, classify, and
segment knee bone
tumors

Multilevel Seg-Unet
model

1,576 images 80% 20% NA Accuracy: 0.99
Average mean IoU: 0.848

Liu et al. (78) X-ray; clinical
characteristics

Classify benign,
intermediate, and
malignant tumors

CNN (Inception_v3) 982 images 784
images

97 images 101
images

AUC: 0.898 (benign); 0.894
(malignant); 0.865
(intermediate)
Macroaverage AUC: 0.872

Huang et al.
(71)

CT Segment osteosarcoma CNN (VGG-16);
multiple supervised
side output layers
(MFSCN)

2,305 images/23
patients

1,900
images

NA 405
images

Sensitivity: 86.88%
F1: 0.908
DSC: 87.80%
Average HM: 19.81%

Yin et al. (75) CT; clinical
characteristics

Classify benign or
malignant sacral tumors

DNN 1,316 images/459
patients

321
patients

138
patients

NA Accuracy: 0.81
AUC: 0.84

Eweje et al.
(77)

MRI; clinical
characteristics

Classify benign and
malignant bone lesions

CNN (EfficientNet) 1,060 images 70% 20% 10% Accuracy: 0.76
Sensitivity: 0.79
Specificity: 0.75
AUC: 0.82

Papandrianos
et al. (89)

Bone
scintigraphy
images

Identify the presence of
bone metastasis in
prostate cancer

CNN 778 patients 505
patients

156
patients

117
patients

Accuracy: 0.9142

Zhao et al.
(92)

Bone
scintigraphy
images

Identify bone
metastasis

CNN 12,222 patients 9,776
patients

1,223
patients

1,223
patients

AUC: 0.988 (breast
cancer);.955 (prostate
cancer);.957 (lung
cancer);.971 (other
cancers)

Papandrianos
et al. (88)

Bone
scintigraphy
imaging

Classify malignant
(bone metastasis) or
healthy in prostate
cancer

CNN 586 images 68% 17% 15% Accuracy: 0.9738
Sensitivity: 0.965
Specificity: 0.968
Precision: 0.969
Recall: 0.974
F1: 0.97

Cheng et al.
(93, 113)

Bone
scintigraphy
images

Identify bone
metastases in the
pelvis, ribs, or spinal
cord

R-CNN; CNN
(YOLO v3)

576 WBBS
images: 205
prostate cancer/
371 breast cancer

NA NA NA Sensitivity: 0.82 for chest;
0.87 for pelvis
Specificity: 0.81 for the
pelvis
Precision: 0.7 for the chest

Han et al.
(114)

Bone
scintigraphy
images

Detect bone metastasis
in prostate cancer

CNN 9,133 bone
scans/5,342
patients

Abundant:
72%
Limited:
10%

Abundant:
8%
Limited:
40%

Abundant:
20%
Limited:
50%

Accuracy: GLUE: 0.900;
WB: 0.889
AUC: GLUE vs. WB:
0.894–0.908 vs. 0.870–
0.877

Pi et al. (90) Bone
scintigraphy
images

Identify bone
metastasis

CNN; SDNN 15,474 images/
13,811 patients

12,274
images

1,600
images

1,600
images

Accuracy: 0.95
Sensitivity: 0.9317
Specificity: 0.961
MSE: 0.933

Lang et al.
(83)

DCE-MRI Differentiate spinal
metastases originating
from lung and other
cancers

Convolutional long
short-term memory
(CLSTM) network

61 patients NA NA NA Accuracy: 0.810

Masoudi et al.
(115)

CT Classify benign or
malignant bone lesions
in prostate cancer

CNN (2D ResNet-
50; 3D ResNet-18)

2,880 CT scans/
114 patients

75% 12% 13% Accuracy: 92.2%
F1: 92.3%

Fu et al. (95) H&E slides Classify viable and
necrotic tumor regions
in osteosarcoma

CNN (DS-Net) 1,144 images 60% (654) 20% (218) 20% (219) Accuracy: 0.951
Sensitivity: 0.920
Specificity: 0.961
Precision: 0.929
F1: 0.922

(Continued)
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(73, 133). However, the relevant studies have not been performed
on a bone tumor, and it has gained a promising expectation to
apply deep learning for the prediction of gene expression in the
bone tumor.

Lastly, spectroscopy, such as Raman spectroscopy, can
provide quantifiable and label-free information for molecular
patterns of diseases and can be combined with deep learning to
identify and diagnose tumors, which is a novel and promising
field. Currently, there are several models using spectroscopy to
predict several types of tumors, such as pancreatic cancer (134),
nasopharyngeal cancer (135), breast cancer (118, 136), lung
cancer (137), and tongue cancer (138). However, the
combination of spectroscopy and deep learning is scarce. Only
one CNN model (91) based on 1,281 serum Raman spectra from
427 patients was reported to identify prostate cancer bone
metastases with high performance, and there is no related
study in primary bone tumors. Therefore, it is promising to
develop deep learning approaches based on spectroscopy with or
without radiological/pathological images to pave a new avenue
for the identification of bone tumors.
6 CONCLUSION

In conclusion, there have been various studies using deep
learning methods in bone tumor diagnosis on radiological and
pathological images. Many of them have shown excellent
performances in detection, classification, segmentation, and
volume calculation of the primary tumor and bone metastasis.
In addition, some models taking other clinical characteristics
into consideration were proposed to predict the prognosis of
cancers with even higher accuracy, and the prediction of the deep
learning model was demonstrated as an independent prognosis
Frontiers in Oncology | www.frontiersin.org 9
factor. However, there are few models that have been really
applied in clinical workflow, which may be attributed to their
poor generalization capability to clinical practice. Currently, the
suitable training data are insufficient and most models can only
process a single data, opposing barriers to its implementation.
Future research may deal with these limitations and focus on a
more diverse way to implement deep learning models into
clinical practice. Generally, deep learning methods could
provide powerful assistance for clinicians and reduce time
consumption and economic burden while optimizing clinical
treatment strategies in bone tumors.
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