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Epithelial to mesenchymal transition (EMT) is a well-studied hallmark of epithelial-

like cancers that is characterized by loss of epithelial markers and gain of

mesenchymal markers. Melanoma, which is derived from melanocytes of the

skin, also undergo phenotypic plasticity toward mesenchymal-like phenotypes

under the influence of various micro-environmental cues. Our study connects

EMT to the phenomenon of de-differentiation (i.e., transition from proliferative to

more invasive phenotypes) observed in melanoma cells during drug treatment. By

analyzing 78 publicly available transcriptomic melanoma datasets, we found that

de-differentiation in melanoma is accompanied by upregulation of mesenchymal

genes, but not necessarily a concomitant loss of an epithelial program, suggesting

a more “one-dimensional” EMT that leads to a hybrid epithelial/mesenchymal

phenotype. Samples lying in the hybrid epithelial/mesenchymal phenotype also

correspond to the intermediate phenotypes in melanoma along the proliferative-

invasive axis - neural crest and transitory ones. As melanoma cells progress along

the invasive axis, the mesenchymal signature does not increase monotonically.

Instead, we observe a peak in mesenchymal scores followed by a decline, as cells

further de-differentiate. This biphasic response recapitulates the dynamics of

melanocyte development, suggesting close interactions among genes

controlling differentiation and mesenchymal programs in melanocytes. Similar

trendswere noted formetabolic changes often associatedwith EMT in carcinomas

in which progression along mesenchymal axis correlates with the downregulation

of oxidative phosphorylation, while largely maintaining glycolytic capacity. Overall,

these results provide an explanation for how EMT and de-differentiation axes

overlap with respect to their transcriptional andmetabolic programs inmelanoma.
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Introduction

Epithelial to mesenchymal transition (EMT) is a well-

characterized phenomenon involved in multiple axes of cancer

progression, such as metastasis and drug resistance. EMT is

commonly associated with morphological changes, functional

changes (increased migration, invasion, and immune invasion)

(1–3) and molecular changes, including upregulation of EMT

markers and transcription factors (TFs), such as VIM, ZEB1,

SNAI1 and TWIST1. While the phenomenon of EMT has largely

been characterized for epithelial cancers (such as breast cancer

and lung adenocarcinoma), similar molecular, functional and

morphological changes have also been observed in non-

epithelial cancers, such as sarcomas (4, 5), glioblastoma (6),

myeloma (7), lymphoma (8, 9), leukemia (10, 11) and melanoma

(12) in preclinical and clinical settings.

Treatment of melanoma tumors harboring BRAFV600E

mutation often involves targeted therapy strategies that inhibit

BRAF or MEK signaling. While these targeted agents provide

clinical benefit to melanoma patients, resistance to these

therapies is common. Therapy-resistant melanomas often

undergo de-differentiation, which is characterized by loss of

melanocytic markers such as MLANA, TRPM1 and TYR and

gain of invasive molecular markers such as c-JUN, NGFR and

ZEB1 (13–16). The de-differentiation trajectory of melanoma

cells is characterized by a transition along the proliferation-

invasion axis, from a melanocytic phenotype to an

undifferentiated phenotype while passing through the

intermediate transitory and neural crest stem cell-like (NCSC)

phenotypes (Figure 1A). This trajectory is the reverse of the

differentiation that occurs during melanocyte development,

where undifferentiated tissue in the embryonic neural plate

give rise to highly migratory and mesenchymal neural crest

cells, some of which differentiate into melanocytes upon

reaching the epidermis (17). Therapy resistant melanoma is

also commonly associated with a mesenchymal-like phenotype

with more invasive and aggressive features (13, 16, 18–20). These

relationships between de-differentiation, invasion, and EMT

pathways in response to therapy suggest EMT and de-

differentiation programs in melanoma may be linked.

The similarity between EMT and de-differentiation

programs extends beyond cell-intrinsic alterations and impacts

cell-extrinsic changes as well. EMT often leads to varied

extracellular matrix (ECM) stiffness and density (21–23) and

altered cell-matrix and cell-cell interactions (24, 25). In

melanoma, acquisition of de-differentiated and invasive

phenotypes is often accompanied with changes in composition

and physical properties of ECM, and modified cell-matrix

interactions and cell morphology (26–28). Increased

expression of matrix metalloproteases (MMPs), immune

evasion (characterized by both signal ing-mediated

immune suppression (e.g. by TGF-ß release) and prevention of
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immune cell entry into tumors by dense collagen matrix/low a-
SMA expression), increased inflammatory markers (such as

TNF-a, NF-kB and AP-1) and cytoskeleton remodeling have

been closely linked to the acquisition of an invasive phenotype

and loss of melanocytic differentiation regulator MITF (29–34).

All of these changes are reported with EMT progression as well

in multiple epithelial cancers (35–37). Such extensive similarity

between EMT and de-differentiation programs in cancer-

microenvironment cross-talk and niche construction

underscore the potential of common regulatory pathways

involved in both EMT and de-differentiation.

Another common feature that links EMT in epithelial

cancers to de-differentiation in melanoma is the presence of

intermediate or hybrid phenotypes. Hybrid epithelial/

mesenchymal (E/M) cells express molecular and functional

characteristics of both epithelial (high proliferation and cell-

cell adhesion, low invasion) and mesenchymal (low proliferation

and cell-cell adhesion, high invasion) cells (38). On the other

hand, melanoma intermediate phenotypes, which comprise

transitory and neural crest-like stem cell-like (NCSC)

phenotypes, exhibit combined features of proliferative and

invasive phenotypes (39, 40) (Figure 1A). Gene regulatory

networks for EMT and melanoma provide a mechanistic basis

for explaining the existence of these hybrid/intermediate states

(41, 42). An overlap in key regulators and stabilizers for hybrid

E/M phenotypes and melanoma phenotypes (such as ZEB1,

NFATC2, CDH1, SNAI2, NRF2) suggest common regulatory

links (13, 43–49). For instance, SNAI2, a stabilizer of the hybrid

E/M phenotype, is a key regulator of the NCSC phenotype and

metastasis in melanoma, suggesting its involvement in

regulating the intermediate phenotypes in melanoma as well

(45, 49). However, certain regulators show opposite trends in

melanoma and EMT. For instance, ZEB2 is considered an

inducer of EMT in epithelial cancers, but in the context of

melanoma, it inhibits the mesenchymal phenotype (19, 50).

Other molecules that show opposite effects include KLF4 (51,

52) and TFAP2A (53, 54). Thus, understanding the mechanistic

underpinning of how the de-differentiation and EMT programs

are linked can help decipher reasons for the similarities and

differences between these pathways across cancers.

In this study, we map the de-differentiation axis in melanoma

(also called proliferative-invasive/P-I axis) to the EMT axis using

previously defined scoring metrics (3, 55–57). We compare the

extent to which a gain in a mesenchymal signature corresponds to a

loss in the epithelial signature during de-differentiation of

melanoma. By deciphering the interdependencies between de-

differentiation and mesenchymal programs, the differences in

molecular regulation between EMT and de-differentiation can be

better understood. We have identified that the mesenchymal

program, but not the epithelial program, is closely linked to de-

differentiation. Although the mesenchymal signature enrichment

shows a strong negative correlation with a differentiated/
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melanocytic transcriptional program, it does not increase

monotonically during de-differentiation. This non-monotonic

trend is also captured by metabolic programs associated with

EMT, such as glycolysis and HIF1a, but not with metabolic

programs associated with differentiation/melanocytic genes, such

as the MITF-regulated OXPHOS pathway. Our results indicate that

phenotypic heterogeneity in melanoma occurs along a proliferative-
Frontiers in Oncology 03
invasive axis that correlates with a “one-dimensional EMT” in

which cells transition along a mesenchymal axis without an

alteration in epithelial phenotype. Deciphering such inter-

connections among multiple axes of plasticity in a cancer cell

population may guide potent combinatorial therapeutic strategies

aimed at controlling transitions to a more hybrid cell type with

combined features of both proliferation and invasion.
B C D

E F G

A

FIGURE 1

Mapping phenotypic heterogeneity in melanoma onto the EMT axis. (A) A schematic representation. Volcano plots depicting Spearman’s
correlation coefficients and -log10(p-value) of 78 datasets for the Verfaillie proliferative and invasive gene set with (B) 76GS EMT scoring metric,
and with (C) KS EMT scoring metric (D) Boxplot depicting range of correlation coefficients for KS and 76GS with Verfaillie invasive and
proliferative gene sets. Volcano plots depicting the Spearman’s correlation coefficient and -log10(p-value) of 78 datasets for Verfaillie
proliferative and invasive gene set with (E) Epithelial gene set (E scores) and (F) Mesenchymal gene set (M scores). (G) Boxplot depicting range of
correlation coefficients for E and M scores with Verfaillie invasive and proliferative gene sets. Inset labelled “Significant” is calculated as the
fraction of datasets (out of 78) which show a significant correlation trend (r < - 0.36 or r > 0.36, p < 0.05). The absolute number of significant
points (datasets) for the specified cut-off is indicated in brackets. “Proliferative” and “Invasive” labels represent the percentage of significant
correlations that are between the EMT score and proliferative score or invasive score, respectively.
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Materials and methods

Software and datasets

Publicly available datasets from Gene Expression Omnibus

(GEO), The Cancer Genome Atlas (TCGA), Cancer Cell Line

Encyclopedia (CCLE- Broad Institute) (58), and National Cancer

Institute-60 (NCI-60) databases were analyzed. Microarray data

were downloaded from GEO using GEOquery Bioconductor R

package. All analyses done on R version 4.1.0. ggplot2, and ggpubr

R packages were used to create and customize plots.
Pre-processing of datasets

Microarray datasets, with un-mapped probe IDs, were pre-

processed by mapping the probe IDs onto their gene symbols

using the relevant platform annotation table. In the case of

multiple probes mapping to the same gene, the mean
Frontiers in Oncology 04
expression of all the probes was considered for that gene.

For non-normalized RNA-Seq datasets TPM normalization

followed by log2 transformation with an offset value of 1

was used.
ssGSEA

Single-sample Gene Set Enrichment Analysis, an

extension of Gene Set Enrichment Analysis (GSEA) (56,

59), calculates separate enrichment scores for each sample

and a gene set. Each score represents the degree to which

genes in a gene set are up or down-regulated in a sample. We

calculated ssGSEA scores for the Verfaillie proliferative and

Verfaillie invasive gene sets (60), Hoek proliferative and Hoek

invasive gene sets (39), the epithelial (E) and mesenchymal

(M) gene sets of the EM tumor gene signature genes and cell

lines gene signatures in the KS scoring metric (57), and the
TABLE 1 List of scores used for quantifying various axes of heterogeneity.

Score Description Significance Reference

76 Gene Signature
(76GS)

Metric for how epithelial a sample is. Calculated by using a weighted sum
of gene expression for 76 genes.

Shows weak correlation with de-differentiation scores 55

Kolmogorov
-Smirnov test (KS)

Metric for how mesenchymal a sample is. Ranges from -1 to +1.
Calculated by
subtracting expression-level based scores for epithelial genes from that for
mesenchymal genes,

Shows weak correlation with de-differentiation scores 57

E score ssGSEA score for only epithelial genes used in KS score. No mesenchymal
genes are used for quantification.

Shows no correlation with de-differentiation scores 3

M Score ssGSEA score for mesenchymal genes used in KS score. Na epithelial
genes are used for quantification.

Shows strong overall correlation with de-
differentiation scores, non-monotonic

3

OXPHOS ssGSEA score for oxidative phosphorylation geneset Shows strong overall correlation with de-
differentiation scores, monotonic

61

Glyco ssGSEA score for glycolysis geneset Shows strong overall correlation with de-
differentiation scores, non-monotonic

61

HIF-1 Singscore calculation for 59 downstream targets of HIF-1 Shows strong overall correlation with de-
differentiation scores, non-monotonic

62

FAO Average Z-scores for 14 FAO enzyme genes Shows strong overall correlation with de-
differentiation scores, monotonic

63

Verfaillie proliferative
score

ssGSEA score for proliferative geneset NA 60

Verfaillie invasive
score

ssGSEA score for invasive geneset NA 60

Hook proliferative
score

ssGSEA score for proliferative geneset NA 39

Hook invasive score ssGSEA score for invasive geneset NA 39

Tsoi Melanocytic
score

ssGSEA score for melanocytic geneset NA 40

Tsoi Transitory score ssGSEA score for Transitory geneset NA 40

Tsoi NCSC score ssGSEA score for NCSC geneset NA 40

Tsoi Undifferentiated
score

ssGSEA score for undifferentiated geneset NA 40
fro
Not Applicable.
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Tsoi melanocytic, transitory, NCSC, and undifferentiated

gene set (40) (Table 1).
Calculation of EMT scores

We calculated EMT scores of datasets using four metrics- 76

Gene Signature (76GS), Kolmogorov -Smirnov test (KS), E score

and M score (Table 1). 76GS and KS were calculated as defined

earlier (1, 55, 57). 76GS score is a metric for how epithelial a

sample is, i.e., higher scores reflect greater association with an

epithelial phenotype. The KS score is a metric for how

mesenchymal a sample is. The higher the KS score of a

sample, the greater is its association with a mesenchymal

phenotype. While 76GS scores do not have a pre-defined

range of scores, KS scores lie within a +1 to -1 range. The E

and M scores are ssGSEA scores for epithelial and mesenchymal

gene lists, respectively, for the KS scoring metric (3). For

calculating KS, E and M scores, datasets were classified based

on whether the samples were derived from cell-lines or tumors

and the appropriate gene sets were used.
Correlations

All correlation values were calculated using Spearman’s

correlation coefficient, unless mentioned otherwise. Spearman’s

correlation coefficient method generates a coefficient ranging

between –1 to +1, where +1 indicates a strong positive

correlation, and –1 indicates a strong negative correlation

between two variables. It determines the correlation between

any monotonically related variables- linear or non-linear.

Correlations with R >0.36 and p<0.05 are considered significant.
Moving window average

A moving window average is used to quantify the gradient for

a variable along a given axis. A window covering 60% of the entire

range of the axis is created and the average value of the variable for

all samples in the window is calculated. Then the window is then

shifted by 1% and the average is re-calculated. This is iteratively

repeated to cover the entire range. The slope of the averages

determines the magnitude and direction of the gradient.
Conditional probabilities

Once the cell lines were sorted into their respective

phenotypes and the conditional probabilities were obtained,

the statistical significance and p-values for the conditional

probabilities were calculated using the one-proportion Z test.
Frontiers in Oncology 05
The z-score was calculated using the equation

z =
p̂ − p0ffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 1−p0ð Þ

n

q

where p̂ is the observed proportion, p0 is the null probability,

and n is the sample size. The obtained value of z was then

converted into the corresponding p-value using the standard

normal distribution. If the obtained p-value < 0.05, it was

considered significant.
Assigning phenotypes to samples

In order to identify samples belonging to the 4 phenotypes

(melanocytic, transitory, NCSC and undifferentiated), we

calculated ssGSEA scores based on gene sets for each of these

phenotypes (40). Samples lying in the top 10% scores were

assigned that particular phenotype. Taking a cut-off value of less

than 10% would can enable only one point being selected for

each phenotypes in datasets having less than 20 samples (e.g. int

in Figure 4D, GSE101434) while increasing this threshold might

lead to non-specific phenotype cells being selected in larger

datasets. Thus, 10% was chosen as an optimal cut-off.
Metabolic scores

The oxidative phosphorylation (OXPHOS) and glycolysis

(Glyco) scores in our study were calculated using ssGSEA

carried out with the corresponding hallmark gene sets for these

pathways [obtained from Molecular Signature Database

(MSigDB) (61)]. The HIF-1 signature - which is a surrogate for

glycolysis - was quantified based on a method previously reported

(64). This method uses expression levels of their downstream

target genes to capture the respective enzyme activities. A total of

59 downstream genes for HIF-1 were used and the scores were

obtained using the Singscore method performed on these gene sets

(62, 65). The fatty acid oxidation (FAO) scores were calculated

based on the equation previously reported (63) which uses

expression levels of 14 FAO enzyme genes.
Results

Enrichment of mesenchymal genes can
capture the extent of de-differentiation
in melanoma

To test whether EMT and de-differentiation in melanoma

programs are correlated with one another, we used previously-

defined EMT scores – KS and 76GS (55, 57) – and ssGSEA

scores for Verfaillie proliferative and invasive (60) and Hoek
frontiersin.org
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proliferative and invasive melanoma gene sets (39) and

investigated their correlation coefficients across 78 datasets.

Additionally, to dissect the contributions of epithelial and

mesenchymal gene set separately, we calculated the ssGSEA

scores (56, 59) for corresponding gene sets individually too (57),

referred here as E andM scores, respectively (3). A sample with a

higher 76GS or E score is more epithelial while a higher KS or M

score refers to more mesenchymal phenotype. Thus, given the

overlap between mesenchymal and invasive programs, we

expected invasive scores to correlate positively with KS and M

scores and negatively with 76GS and E scores. We also expected

opposite trends for proliferation scores: negative correlations

with KS and M scores and positive correlation with 76GS and E

scores. We visualized the relationships between these pathways

as volcano plots in which each dot corresponds to a dataset

analysed. For positively-correlated metrics, we expect the

majority of data sets to lie in the top right rectangle, while

those displaying a significant negative correlation are expected to

lie in the top left rectangle.

A total of 34 out of 78 datasets (43.59%) showed a significant

negative correlation (r < - 0.36, p < 0.05) between 76GS and one

of the two Verfaillie (proliferative, invasive) scores (66). In 30

out of those 34 datasets (88.23%), 76GS scores correlated

negatively with invasive scores, while in remaining 4 datasets

(11.76%), 76GS scores correlated negatively with proliferative

scores (Figure 1B, left). Similarly, among 45 datasets that showed

a positive correlation (r > 0.36, p < 0.05) between 76GS scores

and one of Verfaillie scores, 38 (84.4%) cases had a positive

correlation between 76GS and proliferative scores, and in the

remaining seven datasets, 76GS scores correlated positively with

invasive scores (Figure 1B, right). Overall, both the scoring

metrics (76GS and KS) displayed correlations with Verfaillie

and Hoek proliferative and invasive scores across the 78 datasets

to support a relationship between E/M plasticity and the

proliferative/invasive axis (Figures 1B–D, S1A–C).

Because gain of mesenchymal features is reported more

commonly in melanoma as compared to loss of epithelial

features, we decoupled the epithelial and mesenchymal

components of the scoring metrics (E and M scores,

respectively). The KS method provides separate information

on genes that are associated with an epithelial phenotype and

those with a mesenchymal state. Using the genes from the KS

scoring method we segregated the genes and calculated

individual ssGSEA scores for epithelial and mesenchymal gene

lists and re-evaluated their correlation with proliferative and

invasive scores in melanoma. While epithelial genes continued

to show random distributions of samples throughout the plot,

mesenchymal genes showed clear segregation of proliferative

and invasive scores based on Spearman’s correlation coefficients,

i.e., invasive scores were positively correlated with M score while

proliferative scores were negatively correlated with the M scores

(Figures 1E-G, S1D–F). This observation suggests that
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mesenchymal genes, but not epithelial genes, can capture the

phenotypic heterogeneity displayed by melanoma along the

proliferative-invasive axis.

To provide further support for these observations, we

focused only on Verfaillie gene sets, since they have levels of

overlap with gene sets for the intermediate phenotypes that were

previously identified (40) (Figure S1G). Thus, a continuous

scoring metric defined for the Verfaillie gene set is expected to

be more sensitive for capturing intermediate phenotypes as

compared to the Hoek gene set.

Because correlation coefficients only provide an overall trend

in data, we wished to determine how proliferative and invasive

scores vary along the E and the M axis. For this purpose, we

generated two dimensional EMT plots of the data sets in which E

and M scores are represented along each of the two axes. These

plots display the relative position of a sample along an epithelial

or mesenchymal axis (3, 56, 59). We then overlay information on

the proliferative and invasive scores for each sample. As

expected, across various datasets, proliferative and invasive

scores for samples had a stronger visible gradient along the M

axis as compared to the E axis (Figures 2A–B). To quantify this

gradient, we used a rolling window to estimate the increase of

average proliferative and invasive scores across the E and M axis.

For this, we start with a rolling window covering 60% of the

entire range along a given axis and calculate the average

proliferative (P) or invasive (I) score within that window.

Then the window is shifted by 1% and the average is re-

calculated. This process is repeated until the entire range is

covered, and the change in averages is plotted. For an axis that

strongly correlates with the change in scores, we expect a steeper

slope. The nature of a slope (positive or negative) is determined

by the correlation between the axis and the score. Both axes

trend in the expected direction, with a positive slope for invasive

scores and negative slope for proliferative scores along the M

axis and vice versa for the E axis (Figure 2C). This analysis also

reveals that the M axis has a steeper curve than the E axis for

both P and I scores. These results suggest that proliferative-

invasive heterogeneity in melanoma can be considered as a “one-

dimensional form” of EMT where the mesenchymal program

enrichment increases as cells become more invasive, but the

epithelial program need not be suppressed concomitantly

(Figures 2, S2), as often tacitly assumed for the case of EMT.

Other non-epithelial cancers, such as glioblastoma (GBM) and

sarcoma, also display larger variation along the M-score axis as

compared to the E-score axis, suggesting that “one-dimensional

EMT”might not be specific to melanoma alone (Figures S3A–B).

Moreover, we also observe that more de-differentiated

phenotypes in sarcoma display higher M scores, while in GBM

a switch from proneural to mesenchymal phenotypes is clearly

visualised along the M-score axis. Thus, phenotypic plasticity

along a mesenchymal axis in non-epithelial cancers can take

various trajectories.
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The mesenchymal axis follows a non-
monotonic relationship with
de-differentiation

Because the M score axis was able to capture the

phenomenon of de-differentiation quantified by continuous
Frontiers in Oncology 07
scoring metrics, such as the proliferative and invasive scores,

we next tested if the discretized phenotypes also arrange

themselves in order of appearance along the two dimensional

EMT plane. The classification of samples into four categories -

melanocytic, transitory, NCSC and undifferentiated (in order of

increasing de-differentiation) - for GSE80829, GSE10916,
B CA

FIGURE 2

Scoring metrics based on mesenchymal genes capture de-differentiation better than metrics based on epithelial genes. Two dimensional EMT
plots of different types of datasets- (i) GSE7127 (63 melanoma cell lines - microarray), ii. CCLE (59 cell lines - microarray), iii.GSE4843 (45 tumor
samples - microarray), iv.GSE65904 (214 tumor samples - microarray),v. GSE72056 (1257 single-cell tumor samples), vi.GSE81383 (307 single-
cell tumor sample) depicting the variation of (A) Proliferative scores along the E and M score axes. (B) Invasive scores along the E and M score
axes. (C) Quantifying the proliferative and invasive score gradient along the E-M axes using a rolling window.
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GSE4843, GSE7127 and GSE116237 was done as previously

defined (15, 42). Along the proliferative-invasive plane, samples

displayed a strong negative relationship between the two scores,

i.e., proliferative scores of samples decreased as their invasive

score increased. The four phenotypes also appeared in the

expected order (18, 40), with the melanocytic samples having

the highest proliferative scores and lowest invasive scores, and

the undifferentiated samples displaying the lowest invasive

scores and highest proliferative scores (Figure 3A). However,
Frontiers in Oncology 08
the two dimensional EMT plane failed to resolve the four

phenotypes in terms of these four phenotypes showing non-

overlapping scores. Since the E score axis performed poorly

previously (Figures 1E, G) in these metrics, we quantified the

ability of M score axis alone to resolve the four phenotypes by

quantifying the conditional probability of a sample to belong to

the intermediate phenotypes (transitory and NCSC), given that

they lie in an intermediate M score range. Interestingly, samples

with intermediate M scores were significantly likely to belong to
B

A

FIGURE 3

Variation of the four molecular phenotype scores along the epithelial, mesenchymal, proliferative, and invasive axes. (A) Plotting samples
classified into four phenotypes onto the E-M, proliferative-invasive score axes. (B) Venn diagram depicting the intersection of the four
phenotype scores of samples and intermediate M scores. p represents p-value for the conditional probability that a sample belongs to the
phenotype given that they lie in the intermediate M score range.
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the transitory phenotype (Figures 3B, S3C, Table 2). However,

the probability of these samples to belong to the NCSC

phenotype was negligible. In some datasets (GSE7127,

GSE116237), the melanocytic phenotype was also significantly

enriched in the intermediate M score populations. However, the

melanocytic phenotype cells were enriched in the bottom M

score population as well, and were not uniquely present in the

intermediate score range like the transitory phenotype cells

(Figures S3D–F).

To further dissect the relationship between the four

phenotypes and the M score axis, we quantified the change in

M score with respect to the invasive scores for the four

phenotypes. To identify the four phenotypes, we used ssGSEA

scores for gene sets defined for each of the four phenotypes (40).

The top 10% of samples that had the highest scores for a

particular gene set, were assigned the label of that particular

phenotype. We observed that in these samples there was a non-

monotonic increase in M scores as invasive score/de-

differentiation increased. As samples progressed from NCSC to

undifferentiated, M scores either decreased (Figures 4C–E) or

remained the same (Figures 4A–B, F). In the context of

melanocyte development, neural crest cells are precursors for

melanocytes with high migratory potential and high levels of

EMT markers (17, 67, 68). Thus, the non-monotonic increase in

the mesenchymal program seen here is reminiscent of the

differentiation of melanocytes.
Metabolic reprogramming along the
proliferative-invasive axis in melanoma

The EMT status of epithelial cancer cells is often associated

with distinct metabolic programs. Generally speaking, EMT is

negatively correlated with the enrichment of oxidative

phosphorylation (OXPHOS) and fatty acid oxidation (FAO),

but positively correlated with glycolysis (62). In melanoma, the

proliferative state is associated with high levels of OXPHOS and

the invasive phenotype is associated with high levels of glycolysis

(69–72), reinforcing the commonalities between these two

different instances of phenotypic plasticity. Computational

analysis has suggested the existence of four metabolic sub-

populations (63): 1) OXPHOS-high/glycolysis-low, 2)

OXPHOS-low/glycolysis-high, 3) OXPHOS- low/glycolysis-

low, and 4) OXPHOS high/glycolysis-high.
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To assess whether the OXPHOS-glycolysis metabolism axis

can be mapped onto the proliferation-invasion axis, we calculated

Spearman’s correlation coefficients between the metabolic scores

(OXPHOS and glycolysis) and the de-differentiation scores

(proliferative and invasive scores) (Figures 5A–C) across the 78

datasets. In 38 out of 78 datasets where the OXPHOS scores

correlate significantly with proliferative scores, 34 datasets show a

positive correlation. Similarly, among 43 datasets showing a

significant correlation of OXPHOS scores with invasive scores,

all of them showed negative correlation. Thus, overall, OXHOS

scores corelated positively with proliferative scores and negatively

with invasive scores (Figure 5A). Glycolysis scores, on the other

hand, did not show a clear relationship with EMT status, with a

subset of datasets showing trends in both the directions (positive

and negative correlation) both for proliferative and invasive scores

(Figure 5B). This difference is reminiscent of prior observations

for the association of EMT with OXPHOS and glycolysis in which

glycolysis is only moderately correlated with EMT status, but

OXPHOS is consistently negatively correlated with EMT (62).

This trend is substantiated by observations that in cases where

OXPHOS is positively correlated with proliferative scores or

negatively correlated with invasive scores, glycolysis scores do

not show any particular direction of enrichment with either

proliferative or invasive axes (Figure 5C).

We next sought to dissect whether intermediate melanoma

phenotypes might be enriched for a specific metabolic profile. To

investigate this trend, we calculated the Spearman’s correlation

coefficients for metabolic scores and ssGSEA scores for gene

signatures corresponding to each of the four molecular

phenotypes of melanoma (Figure 5D–F). OXPHOS showed a

clear shift from datasets with a significant positive correlation

with a melanocytic phenotype to a significant negative correlation

for the undifferentiated phenotype (Figure 5D). On the contrary,

glycolysis scores do not show a clear shift from negative to positive

correlations with de-differentiation (Figure 5E). Similar to the non-

monotonic trend observed for M-scores, the glycolysis scores show

the strongest positive correlation trends for the NCSC phenotype.

Undifferentiated phenotype scores have a mixture of positively

correlated and negatively correlated datasets with respect to

glycolysis scores. Put together, these observations suggest that the

regulatory modules controlling the switch to glycolysis are likely

linked to the mesenchymal program rather than the de-

differentiation one. On the other hand, regulatory modules for

OXPHOS are likely to be closely linked to the melanocytic
TABLE 2 Conditional probabilities for a sample belonging to a particular phenotype given that it lies in the intermediate M score range.

Dataset P (Melanocytic|
Intermediate M

Score)

p-value P (Transitory|
Intermediate M

Score)

p-value P (NCSC|
Intermediate
M Score)

p-value P (Undifferentiated|
Intermediate M Score)

p-value

GSE80829 0.17 0.8 0.43 0.02 0 1 0.39 0.06

GSEE7127 0.48 0.01 0.43 0.02 0 1 0.09 0.96

GSE116237 0.36 0 0.49 0 0.09 1 0.06 1
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differentiation program. This trend is in accordance with

experimental evidence that suggests that OXPHOS in melanoma

cells is regulated by PGC1a, a downstream target of MITF, a key

regulator of melanocyte differentiation (73, 74). Interestingly, fatty

acid oxidation, which is also directly controlled by MITF via SCD

(75), also displays trends similar to OXPHOS (Figure S4A) while a

HIF1a signature, that is commonly associated with the invasive

phenotype follows a non-linear trend similar to glycolysis
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(Figure S4B), suggesting that it is linked to the mesenchymal

program rather than the de-differentiation program.
Discussion

De-differentiation in melanoma occurs in response to

targeted therapy. This process may be mediated by transitions
B

C D

E F

A

FIGURE 4

The mesenchymal axis follows a non-monotonic relationship with de-differentiation. Plotting M scores against invasive scores for different
phenotypes along the P-I axis in many datasets: (A) GSE7127 (B) GSE158607 (C) GSE80829 (D) GSE101434 (E) GSE65904 (F) GSE19234.
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B C

D E F

A

FIGURE 5

Mapping metabolic programs associated with EMT onto the de-differentiation program axes. Volcano plots depicting Spearman’s correlation
coefficient and -log10(p-value) of 78 datasets for (A) Hallmark OXPHOS and Verfaillie gene set. (B) Hallmark glycolysis and Verfaillie gene set.
(C) Spearman’s correlation coefficient between OXPHOS and Glycolysis and Verfaillie scores. (D) Hallmark OXPHOS and Tsoi gene set. (E)
Hallmark glycolysis and Tsoi gene set. (F). Spearman’s correlation coefficient between OXPHOS and Glycolysis and Tsoi scores. N represents
number of samples present in a given quadrant.
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across a spectrum of phenotypes in which melanocytic cells

treated with BRAF/MEK inhibitors pass through a transitory

phenotype, followed by the NCSC phenotype, before becoming

completely un-differentiated (15, 18, 40). This trajectory is

accompanied by loss of a proliferative signature and gain of

invasive characteristics. Here, we decipher the relationship

between de-differentiation and EMT in melanoma. These

processes are often considered to co-occur during drug

treatment (14, 16, 34); however, comparison of EMT and de-

differentiation scores reveal that the two processes may be more

closely related to the mesenchymal program rather than the loss

of an epithelial-like state or an EMT program per se. This

observation is reminiscent of previous results in breast cancer

and melanoma in which regulatory genes for the mesenchymal

and de-differentiated phenotypes overlapped while those

corresponding to epithelial and differentiated (melanocytic)

phenotypes did not overlap and were tissue-specific (76).

Previous pan-cancer studies have also highlighted that

downregulation of epithelial components and upregulation of

mesenchymal features need not always be as strongly coupled as

often assumed (77, 78). Moreover, differences along these two

axes need not be necessarily reflected at a transcriptional level

(79). Together, these observations highlight the need to analyze

epithelial and mesenchymal axes independently, rather than as a

conventional single metric for EMT.

Our results also indicate that metabolic programs can be

linked either with the de-differentiation program or the

mesenchymal program. OXPHOS and fatty acid oxidation are

both indirectly regulated by MITF. In the case of OXPHOS, MITF

regulates PGC-1a (74); in the fatty acid oxidation pathway, MITF

regulates SCD (75). MITF, which controls both metabolic

pathways, decreases with increasing de-differentiation. This

trend is explained by the decline in MITF associated with de-

differentiation, in accordance with the MITF rheostat model (80).

On the other hand, glycolysis and HIF-1a signatures seem to be

co-regulated with the mesenchymal program. Previous studies in

epithelial cancers have shown how well-established EMT

transcription factors (EMT-TFs) regulate the metabolic profile

of a cell and cause a switch to glycolysis (also called Warburg

effect) (81). Consistently, neural crest cells also display decay of

glycolytic capabilities as they differentiate into melanocytes (82).

Our analysis suggests that the metabolic state of a cell is closely

linked to the transcriptional program governing it at a given time

point. Thus, de-differentiation captures the transcriptional and

metabolic states observed during melanocyte development.

Although our study focuses on melanoma, EMT-like

phenotypic switching is also characteristic of other non-

epithelial cancers and de-differentiation of melanocytes

independent of malignant transformation. De-differentiation of

melanocytes into pluripotent stem cells demonstrated a reduction

in expression levels of E-Cadherin, an epithelial marker, and

similarities to mesenchymal stem cells (83). Molecular subtypes
Frontiers in Oncology 12
of glioblastoma multiforme (GBM), a non-epithelial cancer,

include the pro-neural, classical, and mesenchymal phenotypes,

which exist along a spectrum of worsening prognosis (84). Single-

cell analysis reveals that these molecular subtypes recapitulate

neurodevelopmental trajectories, with proneural cells forming a

major composition of proliferative glial progenitor-like cells (85,

86). A proneural-to-mesenchymal transition (PMT) is

characterized by an increase in mesenchymal markers, such as

SNAI1 and ZEB1. Similarly, glioma stem cells (GSCs) exist as

proneural GSCs and mesenchymal GSCs, which can give rise to

the complete spectrum of intra-tumor heterogeneity, including

the classical phenotype (87), reminiscent of epithelial and

mesenchymal CSCs reported in breast cancer (88). Moreover,

samples belonging to the classical subtype are depleted of pro-

neural GSCs and enriched for mesenchymal GSCs, possibly

suggesting that mesenchymal GSCs are more likely to give rise

to the classical subtype. This trend strengthens the semi-

independent nature of EMT and stemness as seen in epithelial

cancers (78). Another study in GBM cell lines reports that loss of

N-cadherin (a well-established mesenchymal marker) increases

invasiveness (89), reinforcing the trends that increased migration

and invasion is not always an inevitable consequence of

carcinoma-associated EMT (90). These scenarios of non-

overlapping behaviors in terms of invasiveness, stemness and

EMT, seen both for epithelial and non-epithelial cancers, advocate

for improving existing therapeutic strategies by targeting multiple

axes of cellular plasticity simultaneously rather than individually.

Our study focuses on the overlap between the de-

differentiation and the EMT axis during drug treatment in

melanoma samples. However, de-differentiation is not the only

trajectory altered by drug treatment. Cells can follow multiple

paths to therapy resistance, one of which is by attaining a hyper-

pigmented phenotype (15, 91, 92). The mapping of these

trajectories and states to the E-M axis remains to be studied. In

addition, another axis of cellular plasticity commonly associated

with EMT is immune suppression and immune evasion. Previous

studies have shown that the expression levels of programmed

death-ligand 1 transmembrane protein (PD-L1) – a driver of

immune evasion - does not increase monotonically with EMT (3).

Consistently, in melanoma, the expected trend of worse response

to anti-PD-1 therapy with increasing de-differentiation is not

observed; rather, results from the CheckMate 038 clinical trial

indicate that the NCSC phenotype is associated with a better

outcome to immune checkpoint blockade therapy as compared to

the melanocytic phenotype (93). The extent of overlap between

the axes of EMT, immune evasion, and de-differentiation require

further study to design temporally-sequenced effective

combination therapies that can shift the differentiation and

EMT status of melanoma toward a less invasive and more

immune activated state. Recent in vitro investigations in

melanoma have shown proof-of-principle evidence of

phenotypic plasticity driven drug resensitization as a
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mechanism underlying the beneficial impact of intermittent

therapy (94).

Despite providing the abovementioned insights, our study

suffers from various limitations. First, no mechanism-based

models have been developed to gain insights into the emergent

dynamics for the observed trends. A better understanding of the

dynamics can help identify more effective therapeutic strategies by

fine-tuning the interval, sequence, and dosage for combinatorial

and/or sequential therapeutic strategies (95). Second, our analysis

only characterizes phenotypes at a transcriptomic level, although

preliminary investigation supports consistent trends at a proteomic

level too (Figure S5). Third, due to limited availability of longitudinal

transcriptomic data for varying treatment durations, our analysis is

not restricted to time-resolved data exclusively. Preclinical data

shows that short duration of drug treatment can induce a NCSC

phenotype that is highly mesenchymal (14, 16), while prolonged

treatment (8-12 weeks) can drive an undifferentiated phenotype.

Our study indicates that a prolonged treatment can induce further

de-differentiation but not always a concomitant increase in

mesenchymal status, a prediction that needs detailed experimental

validation. However, this observation of the NCSC phenotype being

the most mesenchymal is in accordance with melanocyte

development. Neural crest cells are progenitors of melanocytes

that undergo EMT during development to delaminate and

migrate from the neural tube to the epidermis, where they lose

their EMT signature and differentiate into melanocytes (17, 67, 68).

Thus, the non-monotonic variation in EMT during development

(the initial increase during migration followed by decrease during

differentiation) can be possibly recapitulated during treatment-

induced de-differentiation. We propose that the often-presumed

overlap between the mesenchymal and invasive axes may arise from

the lack of information for longer time scales (since most in vitro

drug treatment studies are performed in under three weeks), and

often held assumptions about linearly increasing trends. However,

increasing evidence suggests that maximum stemness is

associated with hybrid E/M phenotypes rather than ‘extreme’

mesenchymal or epithelial phenotypes, suggesting that many such

associations among axes of plasticity can be non-monotonic in

nature (96–98).

Overall, our transcriptomic data-based analysis highlights

the partially overlapping nature of EMT with molecular

attributes of de-differentiation and metabolism during drug

treatment in melanoma. We provide a framework for studying

multiple intertwined axes of plasticity and heterogeneity (EMT,

metabolic reprogramming, proliferative-invasive status) and

identifying the degree to which these axes overlap.
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61. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P.
The molecular signatures database hallmark gene set collection. Cell Syst (2015) 1
(6):417–25. doi: 10.1016/j.cels.2015.12.004

62. Muralidharan S, Sahoo S, Saha A, Chandran S, Majumdar SS, Mandal S,
et al. Quantifying the patterns of metabolic plasticity and heterogeneity along the
epithelial–Hybrid–Mesenchymal spectrum in cancer. Biomolecules (2022) 12
(2):297. doi: 10.3390/biom12020297

63. Jia D, Paudel BB, Hayford CE, Hardeman KN, Levine H, Onuchic JN, et al.
Drug-tolerant idling melanoma cells exhibit theory-predicted metabolic low-low
phenotype. Front Oncol (2020) 10:1426. doi: 10.3389/fonc.2020.01426

64. Yu L, Lu M, Jia D, Ma J, Ben-Jacob E, Levine H, et al. Modeling the genetic
regulation of cancer metabolism: Interplay between glycolysis and oxidative
phosphorylation. Cancer Res (2017) 77(7):1564–74. doi: 10.1158/0008-5472.can-
16-2074/652665/am/modeling-the-genetic-regulation-of-cancer

65. Foroutan M, Bhuva DD, Lyu R, Horan K, Cursons J, Davis MJ. Single
sample scoring of molecular phenotypes. BMC Bioinf (2018) 19(1):1–10.
doi: 10.1186/s12859-018-2435-4/figures/2

66. Taylor R. Interpretation of the correlation coefficient: A basic review. J
Diagn Med Sonogr (1990) 6(1):35–9. doi: 10.1177/875647939000600106

67. Tang Y, Durand S, Dalle S, Caramel J. EMT-inducing transcription factors,
drivers of melanoma phenotype switching, and resistance to treatment. Cancers
(2020) 12(8):2154. doi: 10.3390/cancers12082154

68. Wessely A, Steeb T, Berking C, Heppt MV. How neural crest transcription
factors contribute to melanoma heterogeneity, cellular plasticity, and treatment
resistance. Int J Mol Sci (2021) 22(11):5761. doi: 10.3390/ijms22115761

69. Abildgaard C, Guldberg P. Molecular drivers of cellular metabolic
reprogramming in melanoma. Trends Mol Med (2015) 21(3):164–71.
doi: 10.1016/j.molmed.2014.12.007

70. Bettum IJ, Gorad SS, Barkovskaya A, Pettersen S, Moestue SA,
Vasiliauskaite K, et al. Metabolic reprogramming supports the invasive
phenotype in malignant melanoma. Cancer Lett (2015) 366(1):71–83.
doi: 10.1016/j.canlet.2015.06.006

71. Gelato KA, Schöckel L, Klingbeil O, Rückert T, Lesche R, Toedling J, et al.
Super-enhancers define a proliferative PGC-1a-expressing melanoma subgroup
sensitive to BET inhibition. Oncogene 2018 37:4 (2017) 37(4):512–21. doi: 10.1038/
onc.2017.325

72. Laurenzana A, Chillà A, Luciani C, Peppicelli S, Biagioni A, Bianchini F,
et al. uPA/uPAR system activation drives a glycolytic phenotype in melanoma cells.
Int J Cancer (2017) 141(6):1190–200. doi: 10.1002/ijc.30817

73. Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC, et al.
Oncogenic BRAF regulates oxidative metabolism via PGC1a and MITF. Cancer
Cell (2013) 23(3):302–15. doi: 10.1016/j.ccr.2013.02.003

74. Vazquez F, Lim JH, Chim H, Bhalla K, Girnun G, Pierce K, et al. PGC1a
expression defines a subset of human melanoma tumors with increased
mitochondrial capacity and resistance to oxidative stress. Cancer Cell (2013) 23
(3):287–301. doi: 10.1016/j.ccr.2012.11.020
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83. Vidács DL, Veréb Z, Bozó R, Flink LB, Polyánka H, Németh IB, et al.
Phenotypic plasticity of melanocytes derived from human adult skin. Pigment Cell
& Melanoma Res (2022) 35(1):38–51. doi: 10.1111/pcmr.13012

84. Fedele M, Cerchia L, Pegoraro S, Sgarra R, Manfioletti G. Proneural-
mesenchymal transition: Phenotypic plasticity to acquire multitherapy resistance
in glioblastoma. Int J Mol Sci (2019) 20(11):2746. doi: 10.3390/ijms20112746

85. Couturier CP, Ayyadhury S, Le PU, Nadaf J, Monlong J, Riva G, et al. Single-
cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental
hierarchy. Nat Commun (2020) 11(1):3406. doi: 10.1038/s41467-020-17186-5

86. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, et al.
Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of
disease progression, and resemble stages in neurogenesis. Cancer Cell (2006) 9
(3):157–73. doi: 10.1016/j.ccr.2006.02.019

87. Wang L, Babikir H, Müller S, Yagnik G, Shamardani K, Catalan F, et al. The
phenotypes of proliferating glioblastoma cells reside on a single axis of variation.
Cancer Discov (2019) 9(12):1708–19. doi: 10.1158/2159-8290.CD-19-0329

88. Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, et al. Breast cancer stem
cells transition between epithelial and mesenchymal states reflective of their
normal counterparts. Stem Cell Rep (2013) 2(1):78–91. doi: 10.1016/
j.stemcr.2013.11.009

89. Camand E, Peglion F, Osmani N, Sanson M, Etienne-Manneville S. N-
cadherin expression level modulates integrin-mediated polarity and strongly
impacts on the speed and directionality of glial cell migration. J Cell Sci (2012)
125(4):844–57. doi: 10.1242/jcs.087668

90. Schaeffer D, Somarelli JA, Hanna G, Palmer GM, Garcia-Blanco MA.
Cellular migration and invasion uncoupled: Increased migration is not an
inexorable consequence of epithelial-to-Mesenchymal transition. Mol Cell Biol
Frontiers in Oncology 16
( 2014) 34 (18 ) : 3486–99 . do i : 10 . 1128 /mcb .00694 -14 / supp l_fi l e /
zmb999100574so2.pdf

91. Goyal Y, Dardani IP, Busch GT, Emert B, Fingerman D, Kaur A, et al. Pre-
determined diversity in resistant fates emerges from homogenous cells after anti-
cancer drug treatment. BioRxiv (2021) 2021:471833. doi: 10.1101/
2021.12.08.471833

92. Su Y, Ko ME, Cheng H, Zhu R, Xue M, Wang J, et al. Multi-omic single-cell
snapshots reveal multiple independent trajectories to drug tolerance in a melanoma
cell line. Nat Commun (2020) 11(1):2345. doi: 10.1038/s41467-020-15956-9

93. Kim YJ, Sheu KM, Tsoi J, Abril-Rodriguez G, Medina E, Grasso CS, et al.
Melanoma dedifferentiation induced by IFN-g epigenetic remodeling in response
to anti–PD-1 therapy. J Clin Invest (2021) 131(12). doi: 10.1172/jci145859

94. Kavran AJ, Stuart SA, Hayashi KR, Basken JM, Brandhuber BJ, Ahn NG.
Intermittent treatment of BRAF V600E melanoma cells delays resistance by
adaptive resensitization to drug rechallenge. Proc Natl Acad Sci (2022) 119(12):
e2113535119. doi: 10.1073/PNAS.2113535119

95. Goldman A, Majumder B, Dhawan A, Ravi S, Goldman D, Kohandel M,
et al. Temporally sequenced anticancer drugs overcome adaptive resistance by
targeting a vulnerable chemotherapy-induced phenotypic transition. Nat Commun
(2015) 6(1):2015. doi: 10.1038/ncomms7139

96. Grosse-Wilde A, D’Hérouël AF, McIntosh E, Ertaylan G, Skupin A,
Kuestner RE, et al. Stemness of the hybrid Epithelial/Mesenchymal state in
breast cancer and its association with poor survival. PLoS One (2015) 10(5):
e0126522. doi: 10.1371/journal.pone.0126522

97. Kröger C, Afeyan A, Mraz J, Eaton EN, Reinhardt F, Khodor YL, et al.
Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast
cancer cells. Proc Natl Acad Sci USA (2019) 116(15):7353–62. doi: 10.1073/
pnas.1812876116

98. Pasani S, Sahoo S, Jolly MK. Hybrid E/M phenotype(s) and stemness: A
mechanistic connection embedded in network topology. J Clin Med (2021) 10
(1):60. doi: 10.3390/jcm10010060
frontiersin.org

https://doi.org/10.7554/elife.13374
https://doi.org/10.1111/pcmr.13012
https://doi.org/10.3390/ijms20112746
https://doi.org/10.1038/s41467-020-17186-5
https://doi.org/10.1016/j.ccr.2006.02.019
https://doi.org/10.1158/2159-8290.CD-19-0329
https://doi.org/10.1016/j.stemcr.2013.11.009
https://doi.org/10.1016/j.stemcr.2013.11.009
https://doi.org/10.1242/jcs.087668
https://doi.org/10.1128/mcb.00694-14/suppl_file/zmb999100574so2.pdf
https://doi.org/10.1128/mcb.00694-14/suppl_file/zmb999100574so2.pdf
https://doi.org/10.1101/2021.12.08.471833
https://doi.org/10.1101/2021.12.08.471833
https://doi.org/10.1038/s41467-020-15956-9
https://doi.org/10.1172/jci145859
https://doi.org/10.1073/PNAS.2113535119
https://doi.org/10.1038/ncomms7139
https://doi.org/10.1371/journal.pone.0126522
https://doi.org/10.1073/pnas.1812876116
https://doi.org/10.1073/pnas.1812876116
https://doi.org/10.3390/jcm10010060
https://doi.org/10.3389/fonc.2022.913803
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Mapping phenotypic heterogeneity in melanoma onto the epithelial-hybrid-mesenchymal axis
	Introduction
	Materials and methods
	Software and datasets
	Pre-processing of datasets
	ssGSEA
	Calculation of EMT scores
	Correlations
	Moving window average
	Conditional probabilities
	Assigning phenotypes to samples
	Metabolic scores

	Results
	Enrichment of mesenchymal genes can capture the extent of de-differentiation in melanoma
	The mesenchymal axis follows a non-monotonic relationship with de-differentiation
	Metabolic reprogramming along the proliferative-invasive axis in melanoma

	Discussion
	Code Availability
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


