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Application of artificial
intelligence in the diagnosis
of subepithelial lesions using
endoscopic ultrasonography:
a systematic review and
meta-analysis

Xin-Yuan Liu, Wen Song, Tao Mao, Qi Zhang, Cuiping Zhang
and Xiao-Yu Li*

Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
Endoscopic ultrasonography (EUS) is the most common method for diagnosing

gastrointestinal subepithelial lesions (SELs); however, it usually requires

histopathological confirmation using invasive methods. Artificial intelligence

(AI) algorithms have made significant progress in medical imaging diagnosis.

The purpose of our research was to explore the application of AI in the diagnosis

of SELs using EUS and to evaluate the diagnostic performance of AI-assisted EUS.

Three databases, PubMed, EMBASE, and the Cochrane Library, were

comprehensively searched for relevant literature. RevMan 5.4.1 and Stata 17.0,

were used to calculate and analyze the combined sensitivity, specificity, positive

likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR),

and summary receiver-operating characteristic curve (SROC). Eight studies were

selected from 380 potentially relevant studies for the meta-analysis of AI-aided

EUS diagnosis of SELs. The combined sensitivity, specificity, and DOR of AI-aided

EUS were 0.92 (95% CI, 0.85-0.96), 0.80 (95% CI, 0.70-0.87), and 46.27 (95% CI,

19.36-110.59), respectively). The area under the curve (AUC) was 0.92 (95% CI,

0.90-0.94). The AI model in differentiating GIST from leiomyoma had a pooled

AUC of 0.95, sensitivity of 0.93, specificity of 0.88, PLR of 8.04, and NLR of 0.08.

The combined sensitivity, specificity, and AUC of the AI-aided EUS diagnosis in

the convolutional neural network (CNN) model were 0.93, 0.81, and 0.94,

respectively. AI-aided EUS diagnosis using conventional brightness mode

(B-mode) EUS images had a combined sensitivity of 0.92, specificity of 0.79,

and AUC of 0.92. AI-aided EUS diagnosis based on patients had a combined

sensitivity, specificity, and AUC of 0.95, 0.83, and 0.96, respectively. Additionally,

AI-aided EUS was superior to EUS by experts in terms of sensitivity (0.93 vs. 0.71),

specificity (0.81 vs. 0.69), and AUC (0.94 vs. 0.75). In conclusion, AI-assisted EUS

is a promising and reliable method for distinguishing SELs, with excellent

diagnostic performance. More multicenter cohort and prospective studies are

expected to be conducted to further develop AI-assisted real-time diagnostic

systems and validate the superiority of AI systems.
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Introduction

Gastrointestinal subepithelial lesions (SELs) are tumors that

originate from the muscularis mucosa, submucosa, or muscularis

propria (1). According to statistics, one SEL is found in every 300

endoscopy examinations (2). SELs, including gastrointestinal

stromal tumors (GIST), leiomyomas, schwannomas,

neuroendocrine tumors (NET), lipomas, and ectopic pancreas,

are asymptomatic and difficult to distinguish due to their similar

morphology in size, shape, surface color, contour, and margin (1).

GISTs are the most prevalent SELs, with a prevalence of 14–20

cases per million, and have the potential to evolve into

malignancies (3, 4). Approximately 60% of patients with GISTs

can be cured by surgery (5). Therefore, it is crucial to differentiate

GISTs from other benign tumors.

With the development of endoscopic ultrasonography (EUS),

fine-needle aspiration biopsy (FANB), immunohistochemical

staining methods, and various new imaging technologies,

such as contrast-enhanced harmonic EUS (CH-EUS), the

approaches for diagnosing and treating SELs have improved

(6). EUS as a useful tool has recently become the conventional

inspection method for the discovery and diagnosis of SELs.

However, the diagnostic accuracy of EUS is limited and closely

related to the professional level and experience of the

endoscopists (7). EUS-FNAB can be used to obtain tissue

specimens for immunohistochemical staining and is the gold

standard for diagnosing SELs. Nevertheless, the diagnostic

yield of EUS-FNAB for SELs is not ideal, ranging from 60%

to 85% (8–10). FNAB is an invasive and risky operation, and

the limited sampling sites are subjectively determined by

endoscopists, which may lead to missed diagnoses. Therefore,

alternative methods are needed for the accurate diagnosis of

SELs to avoid surgical resection of benign lesions as GISTs with

malignant potential.

Recently, artificial intelligence (AI) has been extensively

used in medical imaging technology, owing to its superior

performance. Machine learning (ML) involves the fields of

computer science and statistics, generating algorithms to

analyze various types of data, and building appropriate

descriptive and predictive models (11). Artificial neural

networks (ANN), as mathematical models of information
02
processing, are supervised ML models inspired by the

structure of brain synaptic connections (11). A convolutional

neural network (CNN) is a deep learning algorithm that shows

strong performance in image recognition, classification, and

processing (12). AI-aided EUS diagnostic tools have been

widely applied to differentiate various types of pancreatic

diseases, such as pancreatic tumors, chronic pancreatitis, and

autoimmune pancreatitis (13–15). In recent years, several

studies have explored the value of CNN in distinguishing

SELs based on EUS images, mainly in differentiating GIST

from benign lesions. In this systematic review and meta-

analysis, we aimed to assess the effectiveness and accuracy of

AI in diagnosing SELs using EUS images and focused on the

performance of computer-aided diagnosis models in

differentiating GIST from other benign lesions by comparing

AI and EUS experts.
Methods
Search strategy

This study followed the preferred reporting items for

systematic reviews and meta-analyses (PRISMA) guidelines

(16). The PubMed, Embase, and Cochrane Library databases

were systematically and comprehensively searched for studies on

the AI-aided diagnostic accuracy of SELs under EUS with or

without EUS experts as controls published until February 2022.

Search terms in the title, abstract, and keywords are as follows:

(“artificial intelligence” OR “AI” OR “machine learning” OR

“deep learning” OR “convolutional neural network” OR

“computer-assisted” OR “computer-aided” OR “neural

network” OR “digital image analysis” OR “digital image

processing”) AND (“endoscopic ultrasound” OR “endoscopic

ultrasonography” OR “EUS”). To avoid omissions, the SELs

were not included in the retrieval strategy. The retrieved articles

were screened independently by two investigators (Xin-Y L and

WS). Disagreements were discussed and resolved by a third

researcher (TM). This protocol was registered with

PROSPERO (CRD42022303990).
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Inclusion and exclusion criteria

The inclusion criteria for studies were as follows (1):

prospective or retrospective study design; (2) study subjects

were adult participants (≥18 years old); (3) all SELs patients

were diagnosed based on histopathological diagnosis after

surgical or endoscopic resection or EUS-FNAB; (4) AI

algorithm was applied to the diagnosis of patients with SELs

using EUS images; (5) study results demonstrated the diagnostic

performance of computer-aided diagnosis (CAD) algorithms,

including area under the curve (AUC), sensitivity, specificity,

positive predictive value (PPV), negative predictive value (NPV),

diagnostic odds ratio (DOR), or accuracy, enabling the

calculation of true positive (TP), false positive (FP), true

negative (TN), and false negative (FN); and (6) the manuscript

was written in English. Conference proceedings, case reports,

narrative and systematic reviews, meta-analyses, and studies

with incomplete data (TP, FP, TN, and FN could not be

calculated) were excluded. Studies with failed randomization

and significant differences in baseline data between groups were

also excluded from this systematic review.
Data extraction and quality assessment

The number of histologically confirmed SELs that were

true-positive (GIST considered to be GIST by AI or experts),

true-negative (non-GIST considered to be non-GIST by AI or

experts), false-positive (non-GIST considered to be GIST), or

false-negative (GIST considered to be non-GIST) were

extracted. Additionally, the first author’s name; year of

publication; country where the study was conducted; study

type; number of samples in the training, validation, and test

sets ; imaging modality; AI model; and video were

also retrieved.

The Quality Assessment of Diagnostic Accuracy Studies

(QUADAS-2) tool was used to evaluate the quality and

potential bias of all included studies in four aspects: patient

selection, index test, reference standard, and flow and timing

quality (17). Regarding the problem of pre-specified thresholds,

we referred to the study by Thaninee et al. and modified the

problem as to whether the performance of the AI-assisted

diagnostic system was validated in another cohort (18). Two

reviewers (Xin-Y L and WS) independently assessed the eight

studies, and conflicts were discussed and resolved with a third

reviewer (TM).
Statistical analysis

RevMan 5.4.1 (The Cochrane Collaboration, 2020, London,

United Kingdom) and Stata 17.0 (StataCorp, College Station,
Frontiers in Oncology 03
TX, USA) were used for diagnostic meta-analysis. Published

data were extracted, including the reported TP, FP, FN, TN,

sensitivity, and specificity of the test datasets. The pooled

sensitivity, specificity, positive likelihood ratio (PLR),

negative likelihood ratio (NLR), diagnostic score, and DOR

with 95% confidence intervals (CIs) were calculated and

analyzed using the bivariate mixed-effects model. A summary

receiver-operating characteristic curve (SROC) was also

constructed, and the AUC was calculated to assess diagnostic

accuracy. A funnel plot and its symmetric distribution were

used to evaluate the risk of publication bias. Subgroup and

meta-regression analyses were performed to explore the

sources of heterogeneity. Heterogeneity among the studies

was determined using I2 and Cochran’s Q tests. P < 0.1

generally suggests significant heterogeneity, and I2 >50%

indicates substantial heterogeneity.
Result
Literature search and bias assessment

The literature retrieval process and screening results are

shown in Figure 1. Initially, 380 potentially relevant studies were

retrieved from the three databases, and 98 duplicates were

removed. Subsequently, 268 studies were excluded after

reviewing the titles and abstracts, as they were irrelevant

articles and were not suitable for the research topic or type.

After screening the full text of 14 eligible studies, two studies that

did not meet the eligibility criteria and four studies related to

GIST malignant potential were excluded. Finally, eight studies

were selected for the meta-analysis of AI-aided diagnosis of SELs

according to the PRISMA flowchart (19–26).

The characteristics of all included studies are summarized

in Table 1. A total of eight studies with 339 patients with GIST

and 194 patients without GIST were included in the meta-

analysis, seven of which were within the last three years. They

were all retrospective studies, and one of them used both

retrospective and prospective test sets in the stage of testing

AI models (22). Three studies were conducted in Japan, two in

South Korea, and three in China, Turkey, and the United

States. Only one study developed an AI model based on

contrast-enhanced harmonic EUS (CH-EUS) images, whereas

the others used the conventional brightness mode (B-mode) of

EUS. Considering computer-aided models, except for one

study that used the ANN model, the remaining studies

applied the CNN model. Only one study did not use EUS

experts as controls (19). The training, validation, and testing

datasets of the included studies are presented in Supplementary

Table 1. All the studies trained and developed AI models using

a large number of EUS images. One of the studies used videos
frontiersin.org
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from each patient divided into 0.1s intervals, yielding images to

train the AI model (24).

The quality and risk of bias of the included studies

determined using the QUADAS-2 tool are presented in
Frontiers in Oncology 04
Figure 2. One meta-analysis of AI-aided diagnosis of GIST

identified a high-risk bias in patient selection (19).

The slope coefficient of the Deeks’ funnel plot was symmetrical

(p= 0.14) (Figure 3), indicating that publication bias was insignificant.
TABLE 1 Characteristics of included studies.

Author Year Study type Country GIST non-
GIST

TP FP FN TN Reference
standard

Imaging
modality

AI
model

EUS
experts

as
control

Video Reference

Vien X.

Nguyen

2010 Retrospective USA 124*/

28

217*/

18

100 46 24 171 Histopathology B-mode ANN N N (19)

Yosuke
Minoda

2020 Retrospective Japan 47 13 42 4 5 9 Histopathology B-mode CNN Y N (20)

Yoon Ho
Kim

2020 Retrospective Korea 106*/
32

106*/
37

88 26 18 80 Histopathology B-mode CNN Y N (21)

Xintian
Yang

2021 Retrospective
&
Prospective

China 30**/
36

54**/
41

27/
32

2/
14

3/4 52/
27

Histopathology B-mode CNN Y N (22)

Chang
Kyo Oh

2021 Retrospective Korea 40 14 40 2 0 12 Histopathology B-mode CNN Y N (23)

Keiko
Hirai

2021 Retrospective Japan 85 37 84 12 1 25 Histopathology B-mode CNN Y N (24)

Gulseren
Seven

2021 Retrospective Turkey 35 10 32 4 3 6 Histopathology B-mode CNN Y N (25)

Hidekazu
Tanaka

2022 Retrospective Japan 42 11 38 1 4 10 Histopathology CH-EUS CNN Y Y (26)
fro
*ROI, region of interest, not patient.
**Data of retrospective diagnostic test.
FIGURE 1

Flowchart of literature search.
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Diagnostic performance of AI-assisted
EUS in GIST

We incorporated data from all retrospective diagnostic test

sets and performed a meta-analysis of the eight included studies.

The pooled sensitivity of AI-aided EUS diagnosis of GIST was

0.92 (95% CI, 0.85-0.96) (Figure 4A) and specificity was 0.80

(95% CI, 0.70-0.87) (Figure 4B). The pooled PLR and NLR were

4.61 (95% CI, 3.00-7.08) (Figure 4C) and 0.10 (95% CI, 0.05-

0.19) (Figure 4D), respectively. The diagnostic score and DOR

were 3.83 (95% CI, 2.96-4.71) and 46.27 (95% CI, 19.36-110.59),

respectively (Supplementary Figure 1). Figure 5A shows the

SROC curve of AI-aided EUS, with an AUC of 0.92 (95% CI,

0.90-0.94).

Subsequently, we expanded the sample size by including the

data from a prospective diagnostic test set. The combined results

of AI-assisted EUS diagnosis of GIST were shown as follows:

AUC of 0.92 (95% CI, 0.89-0.94) (Figure 5B), sensitivity 0.92

(95% CI, 0.85-0.95), specificity 0.78 (95% CI, 0.69-0.86), PLR

4.23 (95% CI, 2.88-6.22), and NLR 0.11 (95% CI, 0.06-0.19)

(Supplementary Figure 2). The diagnostic score and DOR were
Frontiers in Oncology 05
3.67 (95% CI, 2.90-4.45) and 39.40 (95% CI, 18.20-85.30),

respectively (Supplementary Figure 3).

To investigate the clinical application of AI in the diagnosis

of GIST, we generated a Fagan diagram (Figure 6). Assuming a

20% prevalence of GIST, the diagram shows a posterior

probability of 54% for GIST if the test is positive, and

approximately 2% for a negative test.
Subgroup analysis of AI-assisted EUS

The specific types of SELs in the included studies are shown in

Supplementary Table 2. One study involved five SELs, including

GIST, leiomyomas, schwannomas, NET, and ectopic pancreas

(24). Four studies developed AI only for the differential diagnosis

of GIST and leiomyoma (22, 23, 25, 26), and a subgroup analysis

of these four studies was conducted to explore the discriminating

ability of the two diseases. The AI model had a pooled AUC of

0.95 (95% CI, 0.93-0.97), sensitivity of 0.93 (95% CI, 0.87-0.97),

specificity of 0.88 (95% CI, 0.71-0.96), PLR of 8.04 (95% CI,
FIGURE 2

Quality assessment of included studies using QUADAS-2.
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2.92-22.18), and NLR of 0.08 (95% CI, 0.04-0.15) (Supplementary

Figures 4, 5).

We performed a subgroup analysis after excluding Nguyen’s

study, as the AI model adopted was ANN. The combined

sensitivity and specificity of AI-assisted EUS diagnosis of GIST

on the CNN model were 0.93 (95% CI, 0.87-0.97) and 0.81 (95%

CI, 0.68-0.89) (Supplementary Figures 6A, B), respectively. The

pooled PLR was 4.85 (95% CI, 2.81-8.36) and NLR was 0.08

(95% CI, 0.04-0.17) (Supplementary Figures 6C, D). Figure 7A

shows the SROC curve of the AI-assisted EUS, with an AUC of

0.94 (95% CI, 0.92-0.96). The I2 was 50.57% for PLR, 74.05% for
Frontiers in Oncology 06
sensitivity, 71.16% for specificity, and 73.61 for NLR, indicating

that significant heterogeneity existed in the pooled sensitivity,

specificity, and NLR.

We also conducted a subgroup analysis of seven studies

on imaging modalities without CH-EUS. The AI model had a

pooled AUC of 0.92 (95% CI, 0.89-0.94) (Figure 7B),

sensitivity of 0.92 (95% CI, 0.84-0.97), specificity of 0.79

(95% CI, 0.68-0.87), PLR of 4.39 (95% CI, 2.85-6.78), and

NLR of 0.10 (95% CI, 0.04-0.21) (Supplementary Figure 7).

However, the heterogeneity within the subgroups was still

significantly high.
FIGURE 4

Sensitivity (A), specificity (B), positive likelihood ratio (C), negative likelihood ratio (D) of AI-assisted EUS diagnosis of GIST.
FIGURE 3

Deeks’ funnel plot of publication bias.
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A subgroup analysis of AI-assisted EUS diagnosis of GIST

was performed on the study subjects, namely six studies based

on patients and not regions of interest. As shown in

Supplementary Figure 8, the combined sensitivity, specificity,

PLR, and NLR were 0.95 (95% CI, 0.89-0.97), 0.83 (95% CI, 0.67-

0.92), 5.43 (95% CI, 2.75-10.71), 0.07 (95% CI, 0.03-0.13),

respectively. The SROC curve, with an AUC of 0.96 (95% CI,

0.94-0.97), is displayed in Figure 7C. I2 was 38.69% for PLR,

51.31% for NLR, 58.46% for sensitivity, and 71.06% for

specificity, indicating a low degree of heterogeneity in PLR,

whereas there was moderate heterogeneity in NLR, sensitivity,

and specificity.

To further explore the source of heterogeneity, we

performed meta-regression analysis. The number of samples

was a major source of heterogeneity in univariate meta-

regression analysis (p <0.001, Figure 8). Study quality (p =

0.03) and study subjects (p = 0.01) were major sources of

heterogeneity in the joint meta-regression model (Table 2).
Frontiers in Oncology 07
Comparison between AI and EUS experts

Seven studies simultaneously tested the accuracy of EUS

experts in the diagnosis of GIST. All EUS experts performed

more than 500 EUS examinations or had at least 5-year

experience in evaluating gastrointestinal SELs. The SROC

curve of the EUS experts, with an AUC of 0.75 (95% CI, 0.71-

0.78), is displayed in Figure 7D. The pooled sensitivity of EUS

experts in diagnosing GIST was 0.71 (95% CI, 0.63-0.78)

(Figure 9A) and specificity was 0.69 (95% CI, 0.61-0.76)

(Figure 9B). The combined PLR and NLR are 2.28 (95% CI,

1.85-2.82) (Figure 9C) and 0.42 (95% CI, 0.33-0.54) (Figure 9D),

respectively. There was little heterogeneity in the specificity

(p = 0.37), PLR (p = 0.69), and NLR (p = 0.12).

For diagnosis of GIST under EUS, AI was superior to EUS

experts in terms of sensitivity [0.93 (95% CI, 0.87-0.97) vs. 0.71

(95% CI, 0.63-0.78)], specificity [0.81 (95% CI, 0.68-0.89) vs.

0.69 (95% CI, 0.61-0.76)], and PLR [4.85 (95% CI, 2.81-8.36)

vs. 2.28 (95% CI, 1.85-2.82)], and NLR [0.08 (95% CI, 0.04-0.17)

vs. 0.42 (95% CI, 0.33-0.54)]. Figure 10 shows the comparison of

SROC curves between AI-assisted EUS models and EUS experts

with AUC of 0.94 (95% CI, 0.92-0.96) vs. 0.75 (95% CI, 0.71-

0.78), suggesting that AI-assisted EUS models have better

diagnostic performance.
Discussion

With the application of artificial intelligence in medical

imaging technology, an increasing number of diseases have

advanced their diagnosis and treatment methods. In this
FIGURE 5

SROC curves of AI-assisted EUS diagnosis of GIST. (A) The SROC curve of eight studies. (B) SROC curve of nine datasets including prospective
diagnostic test set.
TABLE 2 P-value of parameters in the joint model.

Parameter LRTChi2 P-value I2 I2lo I2hi

Quality* 6.73 0.03 70 34 100

Number 4.59 0.10 56 2 100

Publish year 2.11 0.35 5 0 100

AI model 2.11 0.35 5 0 100

Imaging form 0.90 0.64 0 0 100

Study subject* 8.85 0.01 77 51 100
*p <0.05
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systematic review and meta-analysis, we explored the

application of computer-aided diagnosis systems in

gastrointestinal SELs and found that artificial intelligence

algorithm models have excellent diagnostic performance with

a sensitivity of 0.92 (95% CI, 0.85-0.96) and specificity of 0.80

(95% CI, 0.70-0.87). EUS is currently the most accurate and

prevalent imaging modality for evaluating gastrointestinal SELs

because of its ability to penetrate tissue layers and, thus, most

likely identify the origin of the lesion (1). A previous study has

shown that CH-EUS has better diagnostic performance than B-

mode EUS in distinguishing leiomyomas from GIST and

discriminating the risk stratification of GIST (27). In addition
Frontiers in Oncology 08
to improving the equipment performance and imaging

technology of EUS, the application of artificial intelligence

undoubtedly compensates for the limitations of EUS. With the

help of the AI system, it is expected to shorten the diagnostic

time, improve diagnostic efficiency, and reduce the misdiagnosis

rate of GIST and other benign lesions, thus avoiding unnecessary

EUS tests, invasive biopsies, and surgical operations.

In our initial literature search, we found that Kim and Lee

used digital image analysis of objective information provided by

EUS images to diagnose gastric stromal tumors (28, 29). We

excluded these two studies because they were limited to

analyzing the features of EUS images and did not develop
FIGURE 6

Fagan normogram for the prediction of GISTs in EUS images.
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corresponding AI models. We also found four studies that

explored the application of AI in the malignancy stratification

of GISTs, and the overall accuracy of the AI models in predicting

the malignant potential of GISTs was 66.0%-83.4% (30–33).

During the literature search, we found that several studies have

explored the application of AI in SELs, especially GISTs.

Therefore, we systematically and comprehensively summarized

the application of AI-assisted EUS for the diagnosis of SELs.

Although there are many types of SELs, most studies classified

SELs into two categories: GIST and non-GIST, to explore the

accuracy of AI-assisted EUS. In four studies, the non-GISTs only

referred to leiomyoma, and we performed a subgroup analysis

(22, 23, 25, 26). Nguyen et al. developed an ANN with excellent

performance for differentiating lipomas (AUC=0.92), carcinoids

(AUC=0.86), and GISTs (AUC=0.89) (19). Despite the SELs

involved in the Minoda’s research, including GIST, leiomyoma,

schwannoma, and aberrant pancreas, the results section was still
Frontiers in Oncology 09
divided into GIST and non-GIST for exploration (20). Kim et al.

utilized CNN-CAD to first classify SELs into GIST and non-

GIST tumors, and then sub-classified the non-GIST tumors into

leiomyomas and schwannomas. Accuracy of the CNN-CAD

system in differentiating leiomyomas from schwannomas was

85.0% (95% CI: 81.6-87.7%) (21). In the Hirai’s study, accuracy

of the AI system for five-category classification was 86.1%,

including GIST, leiomyoma, schwannoma, NET, and ectopic

pancreas (24).

Nguyen trained, constructed, and internally validated an

ANN through unsupervised and supervised learning based on

the features extracted through texture analysis (19). In the

traditional sense, ANN is a type of machine learning (ML). As

a computer application, ML can recognize patterns in training

data and generate mathematical models to develop an AI system

to realize the recognition and prediction function, similar to the

learning behavior of humans (13). Other studies trained CNN
FIGURE 7

SROC curves of AI-assisted EUS and EUS experts in diagnosis of GIST. (A) SROC curve of seven studies on CNN AI-models. (B) SROC curve of
seven studies on imaging modality. (C) SROC curve of seven studies based on patients. (D) The SROC curve of the EUS experts.
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FIGURE 8

Univariate meta-regression for the reason of heterogeneity in sensitivity and specificity.
FIGURE 9

Sensitivity (A), specificity (B), positive likelihood ratio (C), negative likelihood ratio (D) of EUS experts in diagnosis of GIST.
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models using deep-learning algorithms. Deep learning-based

analysis does not need to measure characteristic values, as they

can be automatically and accurately identified, thereby

demonstrating greater diagnostic ability (34). This is consistent

with our findings that the combined AUC of CNN model after

excluding the ANN model was improved from 0.92 (95% CI,

0.90-0.94) to 0.94 (95% CI, 0.92-0.96).

Heterogeneity is a prominent issue in this meta-analysis.

Although we performed subgroup analyses based on the AI

models, imaging modalities, and study subjects, the

heterogeneity was not completely eliminated. Possible reasons

for this are as follows: First, we have to consider the diversity of

clinical samples, as most of the included studies were from

different countries, and the manufacturers and models of EUS

were inconsistent. In addition, the sample size was not

sufficiently large. Second, methodological diversity should be

considered. The specific algorithms, tools used, and parameter

settings were not uniform, despite the fact that seven studies

applied the CNN deep-learning model. The EUS expert group

had little heterogeneity, probably because all EUS experts were

selected on the basis of having performed more than 500 EUS

examinations or having at least 5 years of experience in assessing
Frontiers in Oncology 11
gastrointestinal SELs. Additionally, different trial designs also

contributed to the heterogeneity. Only two studies applied

training, validation, and test sets (22, 24). Others merely had

two datasets: one set to develop the AI model and the other to

validate it. Considering the existence of heterogeneity, we

avoided directly adopting a fixed-effects model.

In this review and meta-analysis, the diagnostic performance

of AI models was superior to EUS experts, with the accuracy of

0.94 (95% CI, 0.92-0.96) vs. 0.75 (95% CI, 0.71-0.78).

Additionally, two studies also investigated the diagnostic

accuracy of AI-assisted EUS according to the size of SELs,

≥ 20 mm and <20 mm. Minoda et al. found that the accuracy,

sensitivity, and specificity of SELs ≥ 20 mm between AI-assisted

EUS and EUS experts were 90.0% vs. 53.3%, 91.7% vs. 50.0%,

and 83.3% vs. 83.3%, respectively. The diagnostic performance

for SELs ≥ 20 mm of AI-assisted EUS was significantly better

than that of EUS experts, with an AUC of 0.965 vs. 0.684

(p = 0.007) (20). Tanaka et al. discovered that the diagnostic

performance of AI and experts was completely consistent for

cases with lesions <20 mm, but the specificity and accuracy of AI

in diagnosing GISTs ≥ 20 mm were superior to those of experts

(87.5% vs. 75.0% and 88.9% vs. 86.1%, respectively) (26).
FIGURE 10

Comparison of SROC curves between AI-assisted EUS models and EUS experts.
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Therefore, we need to further develop and improve artificial

intelligence algorithms to improve their performance in the

diagnosis of small lesions.

This is the first systematic review and meta-analysis of AI-

assisted EUS for SEL diagnosis. We summarized recent advances

in AI in the diagnosis and differential diagnosis of SELs and

evaluated the overall diagnostic performance of AI. Our meta-

analysis also has some limitations. Although no publication bias

existed, the number of eligible studies was limited (n=8) and

most of the included studies were retrospective. Future studies

are expected to expand the sample size, supplement videos, add

external validation datasets, and conduct prospective real-time

clinical studies to further confirm the credibility of AI diagnostic

performance. In addition, the issue of heterogeneity among

studies is also discussed above.

In conclusion, AI-assisted EUS is a promising and reliable

method for differentiating SELs with high accuracy, and may

become an important tool to assist endoscopists in diagnosing

SELs in the near future.
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