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Gliomas are known as an incurable brain tumor for the poor prognosis and robust
recurrence. In recent years, a cellular subpopulation with tumor microtubes (TMs) was
identified in brain tumors, which may provide a new angle to explain the invasion,
resistance, recurrence, and heterogeneity of gliomas. Recently, it was demonstrated
that the cell subpopulation also expresses neural stem cell markers and shares a lot of
features with both immature neurons and cancer stem cells and may be seen as an
improperly reactivated neural cell network with a stemness feature at later time points of
life. TMs may also provide a new angle to understand the resistance and recurrence
mechanisms of glioma stem cells. In this review, we innovatively focus on the common
features between TMs and sprouting axons in morphology, formation, and function.
Additionally, we summarized the recent progress in the resistance and recurrence
mechanisms of gliomas with TMs and explained the incurability and heterogeneity in
gliomas with TMs. Moreover, we discussed the recently discovered overlap between
cancer stem cells and TM-positive glioma cells, which may contribute to the
understanding of resistant glioma cell subpopulation and the exploration of the new
potential therapeutic target for gliomas.

Keywords: glioma, tumor microtubes, tunneling nanotubes, cancer stem cells, resistance, heterogeneity, invasion, brain
tumor microenvironment
Abbreviations: TM, tumor microtube; NSC, neural stem cell; CNS, central nervous system; Gap43, growth-associated protein
43; Cx43, connexin 43; ICWs, intercellular calcium waves; SVZ, subventricular zone; NPCs, neural progenitor cells; BTSCs,
brain tumor stem-like cells; TMZ, temozolomide.
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1 INTRODUCTION

Gliomas represented approximately 25% of primary CNS
(central nervous system) tumors and 80% of malignant tumors
(1), characterized by poor prognosis with a median overall
survival of approximately 15 months (2). Gliomas share a lot
of morphological features with glial cells in the normal brain,
such as astrocytes, oligodendrocytes, and ependymal cells,
consequently classified morphologically (3). Of note, there is
an increasing recognition of the important role of molecular
characteristics in the classification of gliomas, such as the
mutation of Isocitrate dehydrogenase (IDH) and 1p/19q co-
deletion, for the distinctive clinical manifestations of
heterogeneous cell subpopulations (3). Gliomas are still known
as an incurable brain tumor for the poor prognosis and robust
recurrence (3). Increasing attention has been paid to the
mechanism related to their widespread infiltration and robust
resistance and self-repairment, particularly the heterogeneity of
the resistant cellular subpopulation (4). For example, a cellular
subpopulation of glioma cells with NSC (neural stem cell)
marker expression, usually forming tumor microtubes (TMs),
was identified (5–7), which may be related to the high resistance
of gliomas to all existing standard therapies and recurrence (8–
11). Furthermore, the TM-positive cell subpopulation may
provide a new angle on the explanation of the mechanisms
and the heterogeneity of glioma cells (12).

Tumor microtubes are ultralong membrane protrusions
extended by glioma cells, which are demonstrated to facilitate
glioma cell widespread infiltration and treatment resistance (12,
13). Two morphologically, molecularly, and functionally
different TM subtypes have been identified: non-connecting
ones, which are crucial for glioma invasion and proliferation,
and interconnecting ones, which build Cx43-separated
membrane tube connections between individual glioma cells
(14). Ramı ́rez-Weber and his colleagues first detected
membrane tubes for intercellular connections in Drosophila
development (15). Subsequently, accumulating cell types have
been identified to form and utilize membrane tubes to exchange
various cellular components, which are exemplified by organelles
(16), pathogens including HIV (17–19) and prions (20), and
genetic material (12, 21). The membrane tubes have gained
various names: membrane nanotubes, tunneling nanotubes,
and cytonemes (12). For the distinctive characteristics of the
membrane tubes in gliomas, they were specially termed “tumor
microtubes” (TMs) (12).
2 TMS AND TM-POSITIVE CELLS SHARE
A LOT OF FEATURES WITH SPROUTING
AXONS AND IMMATURE NEURONS

Recently, it was demonstrated that the dysregulated and disordered
glioma progression and malignancy are, in essence, parallel to the
directed and ordered CNS development and function based on the
morphological characteristics, mechanism of cellular proliferation,
migration, and communication (22, 23). In line with this, TMs and
Frontiers in Oncology | www.frontiersin.org 2
the TM-positive glioma cell network share a lot of features with
sprouting axons and immature neuroblasts (Table 1).

2.1 Morphology and Formation
Different TM subtypes are morphologically and molecularly
heterogeneous. A non-connecting tumor microtube is an
ultralong membrane protrusion extended by a glioma cell,
while an interconnecting tumor microtube is a continuation of
the membrane of a glioma cell and extends to another cell
separated with gap junctions (Figure 1) (12, 14). TMs are 1.7
mm in width on average, and the maximum length reaches more
than 500 mm, while tunneling nanotubes are less than 1 mm in
width and 30 mm in length on average; the life span of a tumor
microtube reaches more than 200 days, while that of tunneling
nanotubes is up to 60 min (Table 1) (24). It can also be seen in
vivo that the leading edges of invasive TMs are morphologically
parallel with the axonal growth cones of normal sprouting axons
(12, 25). Together, these findings suggest morphological parallels
between invasive TMs and normal sprouting axons.
Additionally, immunohistochemistry showed that the tumor
microtubes were rich of myosin IIa, actins, and microtubules,
which play an important role in the generation of contractile
forces necessary for the movement of glioma cells (12). Likewise,
myosin, actin, and microtubules are also known to be rich in the
protrusions of neural precursor cells for migration (26).
Furthermore, three key molecular players of TMs have been
identified: Ttyh1 (14), Gap43 (growth-associated protein 43)
TABLE 1 | Characteristics of TMs in comparison with human sprouting
neuron axons.

Feature TMs Axons

Width Mean, 1.7 mm 0.08–0.4 mm
Maximum, 20 mm

Length Maximum,>500 mm Minimum,<1 mm
Maximum,>1 m

Lifetime Days, up to 200 years
Content
Actin + +
Mitochondria + +
Protein + +
Endoplasmic reticulum + +
Microvesicles + +
Microtubules + +
Myosin X – +
Myosin IIa + –

b III tubulin – +
Voltage-gated Ca2+ channel + +
Ttyh1 + +
Gap43 + +
Cx43 + +
Functions
Nucleus transmission + ?
cell migration + ?
Mitochondria transmission + +
Protein transmission + +
Propagation of ICWs + +
Pathogen spread + +
Microvesicle transmission + +
June 2022 | Volume 1
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(12), and Connexin 43 (12). The gap junction protein connexin
43 is highly expressed at TMs integrated into the network (12).
Cx43 immunoreactivity was most frequently only expressed at
one end of a TM connecting two cells, suggesting that the one
end of a TM is continuous with the cell membrane; the other end
is a membrane boundary separated with a gap junction (12).
Since the presence of Cx43 is usually accompanied with poor
prognosis while the absence of Cx43 is accompanied with a
reduced tumor size and improved survival, it was once viewed as
an important molecular driver of tumor microtubes. However,
some controversial views suggest that Cx43 did not always
promote the growth and function of tumor microtubes (27).
Recently, it was demonstrated that Cx43 may play an important
role in the communication and maintain the integrity of the
network, which is exemplified by empowering gliomas to acquire
resistance to oxidative stress (28). Gap43 was demonstrated to be
a key molecular player in driving TM outgrowth, which is highly
expressed in the growth of cone-like tips of the TMs, driving the
growth of TMs and TM-dependent astrocytoma cell migrations
(12, 24). The knockdown of GAP-43 in mouse brain blocked
both TM-non-connected glioma cell invasion and proliferation
and intercellular TM connection (12). According to the recent
research in mouse models, Ttyh1 also plays a key role in the
growth of invasive non-connecting TMs, while the knockdown
of Ttyh1 contributed to a dramatically declined proportion of
invasive TM-non-connected glioma cells (14). Of note, TM-
connected glioma cells appear to be uncompromised by
Frontiers in Oncology | www.frontiersin.org 3
interference with Ttyh1; it was shown that TM-connected
glioma cells were not affected in the absence of Ttyh1 (14).
Together, these findings suggest that the two TM subtypes are
molecularly and functionally heterogeneous. Similarly, Ttyh1
and Gap43 are also highly concentrated in axonal growth
cones during neurite outgrowth, driving developmental and
regenerative axon growth (29–31) and neuronal progenitor cell
migrations (32). The overexpression of Ttyh1 and Gap43 appears
to induce neurite outgrowth not only in neuronal (31, 33) but
also in non-neuronal cells (34), while the downregulation of
expression of them inhibit the neurite outgrowth (35).
Furthermore, a recent study in mouse brain showed that
intercellular adhesion and signaling provided by p120-catenin-
dependent adherens junctions is crucial for both TM-non-
connected glioma cell invasion and the TM-connected network
(36), which may be highly reminiscent of epithelial tumors
regulated by p120 signaling for anchorage-independent growth,
anoikis, resistance, and metastasis (37–39).

2.2 Function
2.2.1 Communication Network
Interconnecting TMs are shown to be involved in the molecular,
organelle, and vesicle transport and intercellular calcium wave
(ICW) propagation (12). Cells can be electrically coupled over
long distances viamembrane tubes associated with gab junctions
(12). Thus, interconnecting TMs can mediate the bidirectional
spread of ICWs between connecting cells through gap junctions
FIGURE 1 | Schematic illustration of the morphology and the function of TMs. Tumor microtube is a continuation of the membrane of a glioma cell and extends to
another cell separated with gap junctions connexin 43, which is rich of myosin IIa, actins, microtubules, mitochondria, microvesicles, and endoplasmic reticulum.
Nuclei could be seen to travel in TMs after mitosis. Intracellular Ca2+ exchange via Cx43.
June 2022 | Volume 12 | Article 921975
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(12). ICWs play an important role in the communication of
glioma cells with each other and in the coordination in the
multicellular network (40, 41). Spontaneous widespread ICWs
are rare to be seen in mature brains under physiological
conditions; however, it can be observed in the communication
of neural stem and progenitor cells to coordinate the
proliferation and differentiation (42, 43).

2.2.2 Cell Migration
Non-connecting tumor microtubes can also promote the invasion
and proliferation of the glioma cells. Immunohistochemistry
showed that the tumor microtubes were rich of actins, myosin
IIa, and microtubules, and three-dimension scanning electron
microscopy (3D SEM) showed that mitochondria and
microvesicles traveled quickly and frequently in the tubes,
implying active movement, ATP production, and vesicle
trafficking (12, 44). It has been shown that the nucleus is able to
travel in cellular membrane tubes after mitosis, which may be
concerned with the invasion, treatment resistance, and cellular self-
repairment and regeneration of glioma cells (12). Notably, it has
been demonstrated that the synaptic and electrical integration
described above also drives a calcium-dependent activation of
glioma cell invasion (45) and promotes glioma proliferation (46).

According to the “seed and soil” hypothesis, it is not tumor
cells that determine where to metastasize (47, 48). In contrast,
the premetastatic niche is a prerequisite for the subsequent
metastases of tumor cells (47, 48), supporting the fact that
metastasis occurs only in selected organs but not in other
organs, although tumor cells reach the vascular system of all
organs (49). Residing in a specific niche is necessary for the
survival and metastases of specific cells (50). The neurogenic
niche in the subventricular zone (SVZ) of human lateral
ventricles (51) is composed of neural stem cells (NSCs) and
progenitor cells (NPCs), ependymal cells, astrocytes, microglia,
macrophages, neurons, and extracellular matrix and associated
vessels (52). The neurogenic niche is known to play an important
role in the sustainment of the stem cell properties, including cell
proliferation and self-renewal (53, 54). Similarly, in the
perivascular niches in brain tumors, a cellular subpopulation of
brain tumor stem–like cells (BTSCs) with NSC marker
expression, including nestin and CD133, has also been
identified (22). The perivascular niches were demonstrated to
be related to the proliferation, self-renewal, invasion, and
stemness of the tumor cells (55–57). Consequently, it is critical
for tumor cells to be localized in the perivascular niches. It was
seen that glioma stem–like cells extended TMs to move to the
perivascular niche (12). A similar migration can be observed in
the self-repairment of regeneration-damaged tumor cells (12).
Likewise, it has been demonstrated that gliomas travel the same
extracellular routes with migrant neural stem cells and neural
progenitor cells during normal CNS development and damage
repair (58–60). Above all, glioma cell migration induced by the
growth of TMs is necessary for the invasion, malignancy
progression, and recurrence of gliomas.

Normal neurodevelopment depends on the regulation of
intracellular mechanisms, interactions with the microenvironment,
and signaling pathways (22). Studies on TMs support the hypothesis
Frontiers in Oncology | www.frontiersin.org 4
that glioma progression may be seen as neurodevelopment with the
loss of regulation and improperly reactivated, exploiting
developmental pathways and molecules for TM formation and cell
invasion (14, 22). The growth of TMs and the formation of a TM-
connected network just like neurodevelopment are improperly
reactivated at later time points of life.

2.2.3 “Dendritic” Function in Electrical and Synaptic
Integration of Glioma Into Neural Circuits
The newly discovered glutamatergic synaptic input observed in
mouse models and resected patient tumor material with
glutamate receptors of the AMPA subtype are usually located
on tumor microtubes (45, 46), and activity-dependent, non-
synaptic potassium currents (46) can activate intercellular
calcium currents in the glioma cell network to drive a calcium-
dependent activation of glioma cell invasion and promote glioma
proliferation, which indicate that TMs may have a “dendritic”
function for cancer cells. These findings are highly reminiscent of
stem-cell populations regulated by a glutamatergic synaptic
input, such as neuronal (61) and oligodendrocyte precursor
cells (62) during normal neurodevelopment and function.
3 THE ROLE OF TMS IN
NEW EXPLANATION FOR THE
MECHANISMS OF RESISTANCE
AND RECURRENCE OF GLIOMAS

It has been shown that TMs can mediate depolarization signals
when subjected to stimulation such as radiotherapy and
chemotherapy (12, 13). Apparently, even a slight fluctuation in
intracellular calcium levels can cause great damage to
intracellular homeostasis and impair cells and contribute to
apoptotic cell death in glioma cells (63). It has been
demonstrated that the synchronicity of the calcium peak of
TM-connected cells is better than that of non-connected cells,
implying that interconnecting tumor microtubes contribute to
redistribute intracellular calcium to keep it at a nonlethal level
and maintain intracellular homeostasis via membrane tubes
connecting two cells and their forming networks to withstand
adverse events (12). Intracellular calcium levels in cells without
radiotherapy and TM-connected cells with radiotherapy were
very homogeneous, while unconnected cells developed a high
variability of calcium levels with radiotherapy (12). It has been
shown that after radiotherapy, the vast majority of TM-
connected glioma cells were protected from cell death, while
most of the TM-unconnected and TM-negative cells died (12,
14). Moreover, glioblastoma cells may hijack neighboring
nonmalignant astrocytes to transfer cGAMP via gap junctions
as a result that activate the cGAS-STING pathway and release
cytokines including IFNa and TNF to promote tumor metastasis
(64) as it was demonstrated that melanoma cells can connect to
active astrocytes via gap junctions to resist chemotherapy (65).

However, when the impairment is beyond their capacity of
resistance, what would they do? It has been shown that the death
of the TM-connected tumor cell network resulted in a rapid
June 2022 | Volume 12 | Article 921975
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extension of the TMs of neighboring glioma cells into the lesion
region, new TMs were extended toward the dead cells, and
within a few days, new nuclei were transmitted through the
tumor microtubes to the cells to facilitate the process of self-
repairment (13). The density of tumor cells in that region
increased significantly and gradually even exceed those of
unlesioned brain regions over time to improve the resistance of
damaged tumor cells and maintain the integrity of the tumor cell
network (13) (Figure 2). In contrast, non-TM-connected glioma
cells are infrequently expected to observe the self-repairing
mechanism. It has been demonstrated that the number of TMs
of astrogliomas is usually more than those of oligodendrocytes,
while the length of the TMs of astrogliomas is also frequently
longer than those of oligodendrocytes (12). Simultaneously, the
number and the length of TMs appear to have a positive
correlation of the grade and poor prognosis (12). According to
the studies of Venkataramani et al. (45) and Venkatesh et al. (46),
the electrical and synaptic integration of the TM-connected
glioma cell network into neural circuits may dramatically
promote glioma cell proliferation.
4 TMS PROVIDES A NEW ANGLE TO
UNDERSTAND THE INCURABILITY AND
HETEROGENEITY IN GLIOMAS

Malignant gliomas are still regarded as a type of incurable tumor.
Current clinical standard treatments for gliomas include
radiotherapy, chemotherapy particularly with temozolomide
(TMZ) (66, 67), and surgical resection (68). However, as a
Frontiers in Oncology | www.frontiersin.org 5
result of the widespread dissemination and robust recurrence
of gliomas, the existing therapies are all limited.

After surgical resection, it has been shown that the vast
majority of glioma cells tend to recur at or around the
resection margin and even excessively proliferate (69), which
means that, in fact, the resection of gliomas and the wound-
healing response of a normal brain appear to promote the
recurrence of gliomas. The phenomenon has also been
observed in other tumors and has been attributed to the effect
of wound-healing factors (70, 71) and growth factors (72). TMs
may promote a new angle of explanation to the characteristic. S.
Weil et al. proved that new TMs will be extended toward the
margin of the resected region to promote the process of self-
repairment after resection (13). Thus, more and more glioma
cells recur, neighboring the margin and eventually exceeding the
tumor cell density before the resected and that of the unresected
region (13). Similarly, the similar self-repairment mechanism
also applies to the reaction of gliomas after radiotherapy (12).

Additionally, although radiochemotherapy with temozolomide
(TMZ) is still a mainstream therapy for gliomas, the poor diagnosis
is attributed to the innate and acquired drug resistance of gliomas
(68). O6-methylguanine-DNA methyltransferase (MGMT)
protein, which is effective to repair DNA damage and
consequently avoid cell apoptosis, is a major known mechanism
for TMZ resistance (73). Clinical studies have shown that MGMT
promoter hypermethylation in approximately half of gliomas
appears to predict a better treatment response to TMZ (74).
However, the nonresponders indicate that the novel mechanisms
of the drug resistance should be explored further. It has also been
demonstrated that gliomas with TMs connected are more resident
to TMZ than those without TMs and also appear to excessively
FIGURE 2 | Schematic illustration of the excessive proliferation of glioma cells after radiation. After radiation damage to the network, the death of TM-connected
tumor cell network resulted in a rapid extension of TMs of neighboring glioma cells into the margin. Within a few days, new nuclei were transmitted there through the
TMs to facilitate the recurrence of glioma cells. The density of tumor cells in that region increased significantly and gradually even exceed those of unlesioned brain
regions over time.
June 2022 | Volume 12 | Article 921975
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proliferate (13), which indicates an important role played in the
TMZ resistance by the TMnetwork. It may be attributed to the gap
junction connections via Cx43 in glioma cells, which has been
demonstrated to have a marked negative correlation of the TMZ
resistance that may, in part, be attributed to mitochondrial
apoptosis (75–77). Consequently, TM may be a potential
therapeutic target for the TMZ resistance of gliomas. Recent
research reveals that meclofenamate as a connexin43 blocker can
impair the integrity of the TM network and increase the TMZ
sensitivity of TMZ-resistant glioma cells (78).

Based on the discussion above, the number and length of TMs
are highly influenced by the tumor type and grade, with a marked
positive correlation of treatment resistance and poor prognosis
(12). The explanation may be applied to the 1p/19q co-
deleted gliomas.

Gliomas with 1p/19q co-deletion frequently predict a
favorable diagnosis and a high responsiveness to various
therapies, such as radiotherapy And chemotherapy, which is a
characteristic for oligodendrogliomas but absent in astrocytomas
(79). However, the potential molecular mechanisms remain
indistinct. The function of the tumor microtubes and their
forming networks may provide an explanation of this
phenomenon. It has been demonstrated that TMs in 1p/19q
non-co-deleted gliomas are frequently more and longer than
those in 1p/19q co-deleted ones and the RNA-Seq gene
expression data revealed that the gap junction protein Cx43
and core pathways driving neurite formation and the growth of
neurite-like TMs are highly expressed in 1p/19q non-co-deleted
gliomas (12). Since the genes of neurotrophic factors such as
NGF and NT-4 (also called NTF4) that play a crucial role in the
expression of GAP-43 and TTYH1 are demonstrated to be
located on both chromosomal parts 1p and 19q, 1p/19q co-
deleted gliomas may lack TMs due to downregulation of GAP-43
and their corresponding receptors (TrkA, TrkB), making them
more susceptible to various therapies. As a consequence, the
prognosis of oligodendroglioma is more favorable than that of
astrocytoma (2, 66, 80–82).
5 TM-CONNECTED GLIOMA CELLS
SHARE A LOT OF FEATURES WITH
GLIOMA STEM-LIKE CELLS

There is a view pointing out that the tumor development is a
more abnormal organ development than tumor cell clones,
implying that the principles of normal stem cell biology may
also be applied to tumor development and cancer stem cells (83).
The first purification of cancer stem-like cells is a leukemia-
initiating cell isolated by Dick and his colleagues (84).
Subsequently, a subpopulation of BTSCs was identified and
also becomes a major area of interest within the field of neuro-
oncology (5, 6). The BTSCs share a lot of features with normal
neural stem cells (NSCs), such as they both have the ability of
self-renewal and differentiation (22). CD133 (57), OCT4,
NANOG and SOX2 (85) are all involved in well-established
Frontiers in Oncology | www.frontiersin.org 6
stemness markers in gliomas. However, it has been demonstrated
that cells expressing different CSCs markers in gliomas are not
distinguished by distinct functional properties or transcriptomic
profiles; the difference is more likely to be a result of intrinsic
tumor plasticity induced by the microenvironment (86). In
recent years, there is growing evidence that BTSCs may play
an important role in the treatment resistance and robust
recurrence in gliomas (8, 9, 22). The studies of TMs may
provide a new angle to understand and explain the associated
mechanism in BTSCs.

According to the research of Xie and his colleagues in mouse
models and resected patient material, TM-connected glioma cells
share features with BTSCs (87). Compared with the TM-negative
subpopulation, the TM-connected subpopulation performs
significantly more genetic enrichment associated with both the
embryonic stemcell status and the cell cycle (87).Nestin is knownto
be one of the best-established markers of cell stemness (57) and
treatment resistance in gliomas (88). Compared with the TM-
negative subpopulation, the TM-connected subpopulation
performs a significantly higher expression of nestin and other
stemness markers such as Musashi and Sox2 (87). Additionally,
mice receiving the reimplantation of TM-connected glioma cells is
shown to suffer obvious tumorigenesis with poor survival, while
tumorigenesis fails to be detected in mice receiving the
reimplantation of TM-negative glioma cells (87). The
reimplanted TM-connected subpopulation is also demonstrated
to reconstitute the heterogeneity of the TM content and network
integration (87). Together, these findings suggest that TM-
connected glioma cells share two typical features with BTSCs:
proliferative potential and give rise to heterogeneous
combinations of cells with different phenotypes (83).

Furthermore, after radiotherapy, it is shown that only nestin-
positive tumor cells collectively extended more TMs and survive
while nestin-negative tumor cells tend to fail to respond in such
way and get impaired. Eventually, nestin-positive TM network–
integrated glioma cells account for the vast majority of the tumor
cells after radiotherapy. However, notably, both nestin-positive
subpopulation with or without a TM response survived better,
implying that the resistance mechanism induced by nestin is, in
part, independent of that of TMs (87). According to the
discussion above, the new findings may suggest a relationship
between TM proficiency and cellular stemness.

It has been shown that reducing tumor bulk can induce the
excessive proliferation of particularly quiescent BTSCs (89, 90).
According to the discussion above, a similar mechanism has been
detected in the self-repairment process induced by TMs (12, 13).
Consequently, we speculate that responsive TMs might also be
related to the tumor self-repairment induced by BTSCs for
further research.

As a result that most standard therapies for glioma target
proliferating cells, one of the crucial mechanisms of CSC
treatment resistance is to switch into a quiescent state,
particularly when the CSCs suffer from various standard
therapies and a recent research showed that quiescent human
glioma stem cells drove tumor initiation, infiltration, and
recurrence following chemotherapy (91), which may be related
June 2022 | Volume 12 | Article 921975
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to the dormancy of tumor cells in the perivascular niches (92).
For example, it has been demonstrated that a cellular
subpopulation of slow-cycling CSCs in GBM plays an
important role in TMZ treatment resistance, and the resistance
will be suppressed with the ablation of the slow-cycling CSCs
(88). It is demonstrated that glioma cells may extend TMs to
migrate to the specific perivascular niches with nuclei transport
and contractile forces provided (12). It is the specific perivascular
niche that determines the proliferating or quiescent state of
tumor cells (47, 48). Consequently, we speculate that the
dormancy process might be related to the rapid migration to
the quiescent pool with TMs. Moreover, we speculate that other
resistance mechanisms of TMs, such as ICW propagation, might
also be applied to BTSC resistance for further research.

Although Xie and his colleagues have only demonstrated that
TM-connected glioma cell networks are enriched for certain
stem-like behaviors (87), it is highly likely that also invasive TM-
positive but non-TM-connected glioma cells have stem-like
properties for their many common features shared with neural
progenitor and stem cells, which have been discussed above.
Therefore, further research should be considered to unravel
which stem/progenitor cell–like subpopulations are enriched in
TM-positive cancer cells (unconnected or connected
subpopulation) on the RNA expression level and on cellular
functional levels.
6 CLINICAL IMPLICATIONS

Current clinical standard treatments for gliomas include
radiotherapy, chemotherapy particularly with temozolomide
(TMZ), and surgical resection. However, as a result of the
robust resistance and self-repairment of gliomas, the existing
therapies are all limited and there is an urgent need for a new
treatment. TMs may provide a novel potential therapeutic target
for gliomas.

6.1 Inhibition of Gap Junction
Since the gap junction is critical to the formation and
communication of the network of tumor microtubes (12), we can
inhibit the function of the gap junction to impair the integrity of the
network. The available inhibitorsmay include1) carbenoxolone (an
effectivemedicine for gastriculcer treatment but also shows a strong
inhibitory effect on astrocytoma ICWs) (93), 2) inhibitors of ICW-
propagating molecules (IP3, ATP receptors), 3) other calcium
antagonists, such as mibefradil, and 4) inhibitors of various types
of connexins. However, since various types of connexins,
particularly connexin43, have crucial and complex functions to
sustain intracellular homeostasis, the selection of the inhibitors
must discreetly and considerably concentrate on the target
specificity. The recent studies of Schneider and his colleagues in
the human neocortical slice model showed a clear road for the
introduction of TM network–targeting therapies into clinical
concepts, proposing MFA as the first TM-targeted FDA-
approved drug (78). They demonstrated that in comparison with
TMZ treatment alone, TMZ and connexin43 blocker
meclofenamate (MFA) co-treatment dramatically reduced
Frontiers in Oncology | www.frontiersin.org 7
interconnecting TMs and tumor bulk, achieving better
therapeutic effect and prognosis (78). However, further research
should be considered to evaluate the concentration levels of MFA
within the human brain. In the environment,MFAmonotherapy is
being tested in patients with recurrent/progressive brainmetastases
from primary tumors in the United States (NCT02429570). In
addition, based on the findings of Schneider et al. (78), a national
phase I/II study ofMFA/TMZ combination treatment in recurrent
MGMT-methylated glioblastoma (“MecMeth” EudraCT2021-
000708-39) is underway in Germany to measure the
concentrations of MFA within gliomas, examine the safety and
practicality of a combined MFA/TMZ strategy, and may acquire
first insights into theeffectivenessofMFAas thefirst clinicallyviable
TM-targeted medication.

6.2 Blockade of Electrical and Synaptic
Integration of TM-Connected Glioma Cells
Into Neural Circuits
Glutamatergic synapses with the glutamate receptors of the
AMPA subtype and activity-dependent potassium currents are
crucial for glioma cell resistance, invasion, and proliferation (45,
46). The genetic and pharmacological blockade of AMPAR
signaling may be applied to block the communication between
neurons and glioma cells in order to inhibit the glioma
progression and malignancy. According to clinical studies,
epileptic seizures are common in individuals with gliomas (94),
the recurrence or progression of which is linked to malignant
glioma recurrence (95). The clinical manifestation was once
thought to be due to the induction of glutamate released by
brain tumors (96). However, a recent study suggested that
excessive neural activity due to epilepsy might hasten glioma
progression and malignancy (97), which is supported by the
study of Venkataramani et al. (45). Together, these findings
suggest that the clinically approved AMPAR-inhibiting
antiepileptic medication perampanel (98) may be a new
potential drug for gliomas. Lange et al. demonstrated anti-
tumorigenic effects mediated by perampanel in vitro (99). In
addition, the study of Salmaggi et al. has demonstrated that
perampanel showed a pro-apoptotic effect on human glioma cell
lines when used alone and also showed synergistic cooperativity
when combined with TMZ (100). Against this backdrop, further
preclinical studies and clinical trials should be considered.

6.3 Inhibition of the Growth of TMs
There are two known factors to be demonstrated to direct the
growth of TMs: GAP-43 and Ttyh1 (12). Neurotrophic factors
such as NGF and NT-4 (also called NTF4) promote the
expression of GAP-43 (12). Silencing genes and disrupting
signaling pathways related to the expression of GAP-43 and
Ttyh1 may be potential choices.

6.4 Regulation of Associated Signaling
Pathway in Tumor Microenvironment
Recent research showed that the downregulation of NOTCH1 is
effective to promote the growth of TMs (101). However, since it
was also demonstrated to play an important role in the
perivascular niche of resistance in gliomas (101), additional
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Tumor Microtubes in Gliomas
potential signaling pathways or specific blockers remain to be
identified. Gritsenko et al. recently demonstrated that
intercellular adhesion and signaling provided by p120-catenin–
dependent adherens junctions is indispensable for TM-
connected glioma cell progression and malignancy, implying
that p120-catenin–dependent adherens junctions or their
downstream effectors may be a potential target (36).

6.5 Hijack the Network for Drug Transport
It is a potential way of therapy to hijack the network to distribute
injected toxic molecules, which are gap junction permeable (24).
In addition, it has been demonstrated that lipopolysaccharide-
anchored macrophages can hijack tumor microtube networks for
selective drug transport, serving as versatile bioactive carriers of
drugs such as Dox and repressing tumor genesis (102).
7 CONCLUSION AND PERSPECTIVES

The newly discovered TMs and their forming network may
provide a new angle to understand the resistance and
recurrence of incurable gliomas. TMs share a lot of features in
development and function with the axons of immature neural
cells and may be seen as “electric synapse” connecting glioma
cells and mediating intercellular communication. Both TM-
connected cells and immature neural cells can be integrated
into a multicellular network and enrich cell stemness (22, 87).

The findings may support the hypothesis that gliomas are
initiated by cancer stem cells (5, 7, 57, 103). In essence, glioma
progression can be seen as neurodevelopment improperly
reactivated at later time points of life (22). The subpopulation
of cancer stem cells has been demonstrated to play a crucial role
in the robust resistance and recurrence in gliomas (7, 104).
Recent research showed that glioma cells with stemness feature
tend to extend TMs and integrate into a network to withstand
adverse events (87), which might provide a new angle to
Frontiers in Oncology | www.frontiersin.org 8
understand the resistance and recurrence mechanism of glioma
stem–like cells. However, further research should be undertaken
to investigate the stem cell behavior of TM-connected nestin-
positive glioma cells and the existence of the subpopulation of
TM connected with the expression of other stemness markers. In
previous studies, BTSCs and TM-connected glioma cells are
always discussed as two independent subpopulations. In this
review, we discuss the overlap between them and appeal to do a
further comprehensive study. TMs connect glioma cell
morphology with the molecular phenotype, suggesting network
integration as a new potential signature of cancer stem cells. A
similar mechanism may be also applied to other tumors with a
membrane tube connection such as breast cancer (105, 106),
cervix cancer (107), leukemia (108–110), and lung cancer (111),
which require further research. Overall, TM-connected cells
provide a novel potential therapeutic target subpopulation for
gliomas and might also be a target of resistant cancer stem cells
after further research.
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