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Radiological imaging techniques, includingmagnetic resonance imaging (MRI) and

positron emission tomography (PET), are the standard-of-care non-invasive

diagnostic approaches widely applied in neuro-oncology. Unfortunately,

accurate interpretation of radiological imaging data is constantly challenged by

the indistinguishable radiological image features shared by different pathological

changes associated with tumor progression and/or various therapeutic

interventions. In recent years, machine learning (ML)-based artificial intelligence

(AI) technology has been widely applied in medical image processing and

bioinformatics due to its advantages in implicit image feature extraction and

integrative data analysis. Despite its recent rapid development, ML technology

still faces many hurdles for its broader applications in neuro-oncological radiomic

analysis, such as lack of large accessible standardized real patient radiomic brain

tumor data of all kinds and reliable predictions on tumor response upon various

treatments. Therefore, understanding ML-based AI technologies is critically

important to help us address the skyrocketing demands of neuro-oncology

clinical deployments. Here, we provide an overview on the latest advancements

in ML techniques for brain tumor radiomic analysis, emphasizing proprietary and

public dataset preparation and state-of-the-art ML models for brain tumor

diagnosis, classifications (e.g., primary and secondary tumors), discriminations

between treatment effects (pseudoprogression, radiation necrosis) and true

progression, survival prediction, inflammation, and identification of brain tumor

biomarkers. We also compare the key features of ML models in the realm of

neuroradiology with ML models employed in other medical imaging fields and

discuss open research challenges and directions for future work in this nascent

precision medicine area.

KEYWORDS

artificial intelligence, machine learning, brain tumor, immunotherapy, radiomics,
tumor classification, survival prediction, radiogenomics
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Introduction

Glioblastoma (GBM, WHO grade 4 glioma, IDH-wildtype)

is the most aggressive primary brain tumor in adults with a

dismal median overall survival (OS) of only 12 to 18 months and

a 5-year OS rate of 6.8% (1, 2). Approximately 13,000 GBM cases

are diagnosed in the United States each year, with an incidence

rate of 3.2 per 100,000 members of the population (3, 4). Despite

standard-of-care therapy including aggressive surgical resection

followed by radiation therapy and chemotherapy, more than

90% of glioblastomas recur (4). To date, magnetic resonance

imaging (MRI) remains the standard approach in the diagnosis,

prognosis, and therapeutic monitoring of GBM patients because

it is non-invasive, accessible, and cost efficient. However,

interpretation of radiological imaging data can be subjective,

challenging, and time-consuming, mainly because histologic

findings are often radiologically occult. For example, therapy-

induced treatment effect (i.e., pseudoprogression (PsP) or

radiation necrosis) and true tumor progression manifest with

identical MRI appearances, and differentiation between these

entities remains an unsolved conundrum in current neuro-

radio-oncology, particularly with novel therapies such as

immune checkpoint inhibitors (5).

Radiomics (6, 7) in neuro-oncology seeks to improve the

understanding of the biology and effects of treatment on the

imaging appearance of brain tumors. Radiomics can promote

precision medicine by extracting quantitative features from

clinical imaging arrays and using methods from the field of

artificial intelligence (AI) to make the radiological diagnosis

more objective, accurate, and automatic. Rather than designing

hard-coded step-by-step algorithms based on prior knowledge in

biology or medicine, or design specific “learning” approaches to

mimic human cognitive functions, machine learning (ML) as a

subfield of AI can create a computational model and train it with

a number of datasets to statistically solve problems without

being explicitly programmed (8). Generally, ML includes

supervised learning, unsupervised learning, and reinforcement

learning. Supervised learning trains an ML model to predict a

target variable from a set of predictive variables (i.e., data

samples) with the help of labels/annotations (i.e., ground truth

of the target variables) and the loss function, also known as cost

function, which is a computational difference between predicted

target variable values and the label/annotation values (9). It

should be noted that, although labeling and annotation share the

same meaning in ML, they slightly differ in neuro-oncology

radiomic analysis. In the context of this manuscript, labeling is

related with classification problems (e.g., the ground truth of

tissue is histological, including different classes of brain tumors,

treatment effect versus tumor growth, and others) whereas

annotation refers to segmentation problems (partitioning an

image into multiple regions/objects, such as enhancing tumor,

necrosis, and unenhancing tumor and edema). Unsupervised
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learning infers the inherent structure from the input data

without labels/annotations (10). In reinforcement learning,

intelligent agents learn to take actions in an environment in

order to maximize the notion of cumulative reward (11).

Currently, most AI techniques applied in brain tumor

radiomic studies belong to the supervised ML, for both

classifications and segmentations. Unsupervised ML is mainly

employed for image segmentations while reinforcement learning

has not been explored in this area. Therefore, in this paper, we

mainly focus on the supervised ML techniques for most GBM

radiomic analyses. Thanks to the rapid development of radiology

and computational hardware, researchers can now take

advantage of many radiological data to train various ML

models, such as decision trees (DTs), logistic regression,

artificial neural networks (ANNs), support vector machines

(SVMs), and k-nearest neighbors (k-NN) for brain tumor

radiomic analysis. The different techniques applied in AI

(mainly ML algorithms) are the technical core for the analysis

of large amounts of multidimensional radiologic and clinical

data (12), which directly determine the quality of radiomic

analysis results.

In the past decade, ML has been widely exploited in many

data-driven applications, e.g., imaging and computer vision (13),

bioinformatics (14), online advertising (15), and natural

language processing (16). The dataflow of a general supervised

ML-based GBM radiomic analysis can be divided into four steps

as shown Figure 1A: 1)Data Acquisition. MRIs are performed on

patients with a brain tumor. These raw MRI data are further

preprocessed (e.g., data cleaning, co-registration, bias correction,

normalization), and then they are labeled/annotated by

radiologists to define the regions for the ML training and

validation process. The labeled/annotated imaging data are

deposited into customized/private datasets that are owned and

maintained by medical research institutions. Some imaging data

are also uploaded into public datasets for the purpose of open

access to all researchers. AI-assisted radiomic analysis can

acquire imaging data from both types of datasets. It is of note,

however, that private datasets usually contain a fairly large

amount of raw data, hundreds of samples for each institution

if applicable, whereas public datasets usually contain limited

amount of less well-labeled/annotated, non-standardized

imaging data (17); 2) Data Augmentation and Preprocessing

for ML Models. The acquired data and its labels/annotations are

usually first subject to augmentation, in which image data are

processed in pair-wise format (i.e., each pair contains a data

sample and the corresponding labels/annotations) to increase

the sample variety, hence improving the generality of the data.

Multiple approaches are utilized in augmentation, such as

geometric transformation, color augmentation, and synthesis

of similar-appearing imaging data. Then, the augmented

imaging data can be preprocessed (e.g., through feature

extraction) to simplify and/or to improve the effectiveness and
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efficiency of the subsequent ML training process (18); 3) ML

Model Training and Validation: The augmented and

preprocessed data are subsequently fed to ML models to train

the model parameters in order to minimize the “cost function,”

while the implicit data feature will be extracted statistically. The

ML models are also validated during the training process to

prevent overfitting, which is when the trained ANN model only

predicts accurately to the training dataset but loses the

generalizability to new samples (19); 4) AI-Assisted Clinical

Diagnosis/Deployment. Once the trained models meet the

accuracy requirement, they can be deployed to the application

to perform predictions such as classification and segmentation.

As aforementioned, no biologic hypothesis or knowledge is

required to build an ML model. However, inclusion of this

information and/or other forms of data (e.g., clinical data,

genomic data) may help with the overall ML model

performance by reducing the data size or improving the data

quality during the preprocessing step.

Traditional ML methods such as SVMs (20–22) and random

forests (RFs) (23–26), an ensemble combination of decision

trees, are commonly used for pattern classification in tumor
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studies. Recently, ANN, especially convolutional neural network

(CNN)-based deep learning (DL), is gaining popularity because

of its improved scalability and the capability of exploiting deep

layers to extract implicit local and global features in neuro-

oncology images. They can achieve state-of-the-art performance

in object detection and tracking (27, 28), image classification,

and semantic segmentation (25, 29–32). In ML, each “neuron” is

referring to a computational unit in the ANN rather than a

biological neural. With more complicated ML models and

structures (e.g., more neuron network layers, more neurons in

each layer) and a larger number of parameters introduced into

the neural network, the training process intends to extract more

features but may suffer extensive computational performance

degradation and overfitting of the trained model. Current state-

of-the-art ML models can achieve an accuracy as high as 0.97

(i.e., 97%) in brain tumor radiomic analysis (33). However, these

results are based on a limited number of datasets and from

retrospective studies, which may still not be generalizable for

patients from different geographic locations. Therefore, current

clinical brain tumor radiomic analysis cannot entirely rely on the

ML-based techniques and still needs manual verification. In
BA

FIGURE 1

AI/ML in GBM radiomic analysis: (A) Overall workflow of AI-assisted GBM analysis: 1) Data Acquisition. Raw radiological image data are acquired
by MRI scanning of GBM patients. Images are collected into public or private data sets. Before analysis, images are preprocessed (e.g., data
cleaning, co-registration, normalization) and standardized (e.g., format, resolutions, voxel sizes). Then, radiologists annotate the images, color-
coding different parts of the tumor habitat. 2) Data Augmentation and Preprocessing for ML Models. Imaging dataset and its annotations from
step 1 are further “augmented” via geometric transformations, photometric transformation, and/or synthetic data (e.g., GAN) to improve the data
generalizability, followed by the optional preprocessing for ML modeling, a process that includes feature extraction to filter out “useless” data
and extract explicit features (e.g., biological and/or geometry) in the images. 3) ML modeling and training. Augmented and preprocessed data
are fed into various ML models (e.g., SVM, RF, CNN) for GBM radiomic analysis training and validation. Advanced techniques such as transfer
learning and multimodal data fusion (e.g., clinical and genomic data) can be employed to improve the training accuracy as well as generality. 4)
AI-Assisted Clinical Diagnosis/Deployment. Predictions from the ML models for various medical demands, such as differential diagnosis and
survival estimation. (B) Current major challenges (left panel: 1, 2, 3) and perspectives for corresponding solutions (right panel: 1*, 2*, 3*) in AI/
ML-assisted GBM radiomic analysis: 1→1* Current GBM radiological image datasets are limited in low numbers, insufficient annotations, and
poor organization. Enrichment and standardization of current GBM radiological datasets are urgently needed, while incorporation of clinical
and/or genomic data (red circle) can further enhance the performance of ML prediction models; 2→2* develop more comprehensive ML
models to further improve the prediction accuracy and address the relatively low generalizability of current models; 3→3* further strengthen
collaborations among clinicians, biomedical researchers, and computer scientists to overcome the lack of efficient communications between
these parties for the highly multidisciplinary research.
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summary, existing ML techniques can only partially fulfill the

need for automatic detection and analysis of GBM

characteristics for both clinical and preclinical studies (34–37).

In addition to the ML techniques, the quality of radiologic

images that are used for ML training dramatically affects the

outcomes of radiomic analysis. Radiological images can be

acquired from different imaging modalities, such as MRI,

computed tomography (CT), and positron emission

tomography (PET). Among these, MRI image data are

currently employed as an essential data type in radiomic

neuro-oncology applications because 1) they provide exquisite

detail of brain, spinal cord, and vascular anatomy through

excellent tissue contrast in any imaging plane; 2) different MRI

sequences are able to capture key components of tumor biology

with high sensitivity, such as blood–brain barrier breakdown,

necrosis, edema, non-enhancing tumor infiltration, blood flow,

and cellular density, and can distinguish tumoral sub-

compartments that are likely to reflect local cellular

phenotypes and genotypes; and 3) they can non-invasively and

non-destructively interrogate tumors repeatedly to assess

response to treatment and thus they can be integrated into

therapeutic strategies. Understanding these image-based features

is critical as they not only represent a key data resource in

radiomic analysis (6) but also help improve the accuracy and

other performance criteria of ML models.

In this review, we provide an overview of the latest

advancements and in-depth discussions on the most urgent

and challenging questions of AI-assisted GBM radiomic

analysis. Given the exponential increase of AI-based radiomic

studies led by researchers from various backgrounds, such as

oncology, radiology, computer science, and engineering, our

review article briefly explains the key concepts of ML

techniques instead of delving into the technical details. This

article is structured with emphases on the deployments of

various ML techniques in meeting specific GBM radiomic

clinical needs, e.g., differentiating GBM from other brain

tumors or non-tumors, predicting overall survival (OS), and

correlating with other biomarkers. First, as ML technology in

radiomics is radiological imaging data-driven, we start with the

discussion on imaging data preparations that are commonly

employed in current GBM radiomic analyses. We briefly

introduce the acquisition pipeline for private or customized

imaging datasets and summarize public radiologic datasets

that are currently available for researchers to train their ML

models for various applications. We also describe general

methods for data augmentation and preprocessing for ML

models, which are critical for training, validation, and testing

of ML algorithms. Next, we overview the ML techniques that

have been employed in radiomic analysis for GBM diagnosis and

treatment. Advantages and limitations of existing ML models

including both algorithms and architectures are discussed in the

context of various GBM-associated medical applications. Finally,

we bring up our perspectives on the strategies for overcoming
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challenges regarding AI/ML applications in GBM radiomic

analysis, including 1) the most challenging issues affecting the

generalizability and accuracy of AI-assisted radiomic GBM

analysis; 2) promising strategies to enhance performance of AI

models in GBM radiomic analysis; 3) outlook on the

collaborative teamwork between computer scientists,

engineers, physicians, and biomedical researchers. By

elaborating current research developments and challenges in

the state-of-the-art ML-assisted GBM analysis, we hope to

inspire researchers from different fields for the development of

the next generation of AI-assisted radiomic tools that can

significantly improve early detection, treatment efficacy, and

life quality of patients with GBM.
Radiomic data preparation

As ML is an intensive data-driven algorithm/process, the

quality of the training data can significantly influence the

trainable parameters in ML models, hence affecting the accuracy

and generalizability of the network outcomes (38). Thus, it is

essential to review the key components of data preparation in

ML-based GBM radiomic analysis, including radiological imaging

data resources, the image acquisition pipeline, imaging datasets

(private/customized datasets vs. publicly accessible datasets), data

augmentation, and preprocessing techniques for the subsequentML

model training.
Radiomic image resources

MRI is the most frequently used radiological modality for

brain tumor imaging. MRI provides better contrast resolution

than CT, with better tissue characterization. It can also detect

blood vessels, vascular malformations, and demyelinating

disease (39). It does not involve X-rays or the use of ionizing

radiopharmaceuticals, either. Therefore, MRI is particularly

suitable to image gliomas. Yet, MRI may be perceived as less

comfortable by patients (e.g., overweight or fear of enclosed

spaces) and cannot be performed if the patient has

ferromagnetic implants. In addition, MRI does not show

ossified or calcified structures as well as CT (such as the

calvarium) and therefore may not show the effects of tumors

on the calvarium in comparison to CT (39, 40).

For GBM MRI, T1-weighted (T1), T1-contrast-enhanced

(T1c or T1-ce), T2-weighted (T2), and fluid-attenuated

inversion recovery (FLAIR) are the most commonly used MRI

sequences , because they can provide different yet

complementary information in characterizing tissue such as

gray matter, white matter, fat, blood, fluid, and lesions (41,

42). MRI is based on radiofrequency pulses within a magnetic

field in which time of repetition (TR) and time of echo (TE) are

calculated. T1 and T1-ce are produced through short TR and TE
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times; T2 is produced by larger TR and TE times; and FLAIR is

produced through very large TR and TE times. In addition,

diffusion-weighted imaging (DWI) can detect the restriction of

random movements of water molecules that makes DWI

extremely sensitive to detect acute stroke and increased

cellularity as in GBMs, lymphoma, and metastases (43);

magnetic resonance angiography (MRA) and venography

(MRV) can generate pictures of the arteries and veins to

evaluate for stenosis or aneurysms; magnetic resonance

spectroscopy (MRS) is used to measure the levels of different

metabolites and biochemical changes in the brain (44),

providing information on tumor metabolism (45, 46);

perfusion-weighted imaging (PWI) shows the perfusion of

tissues by blood, such as the cerebral blood volume of a tumor

relative to normal-appearing white matter of the brain (47); and

functional MRI (fMRI) detects the increase in blood oxygen level

when blood flow increases to a brain area involved in the

performance of an assigned task (e.g., finger tapping, lip

pursing, thinking of words, thinking of answers to questions

after hearing a story) (48) and depicts where eloquent brain

areas are in relation to the tumor as the surgeon or radiation

oncologist plans a surgical approach to biopsy or resection or

radiation therapy. The novel amide proton transfer (APT)

imaging can detect amide protons of endogenous mobile

proteins and peptides in tissue based on chemical exchange–

dependent saturation transfer (CEST) MRI (49, 50).

Another useful radiological technology is the PET scan,

which takes advantage of a slightly radioactive substance (e.g.,

C-11 methionine (MET), F-18 fluorothymidine (FLT), F-18

fluoroethyl-L-tyrosine (FET)) that functionally is preferentially

taken up by tumor cells (51). PET is especially helpful for fast-

growing (high-grade) tumors and for distinguishing between

tumors and non-tumor (e.g., scar, inflammation) tissue (52, 53).

Therefore, the combined use of MRI and PET can provide

complementary information to achieve more accurate brain

tumor diagnosis (54).
Radiological image acquisition pipeline

The image acquisition pipelines remain very similar between

radiological scanners (50, 55). Subjects undergoing MRI (i.e.,

patients and control subjects) are usually examined on a clinical

1.5T or 3T scanner with a multichannel receive-only head coil

array under various scanning parameters (e.g., TR, TE, field of

view, matrix/voxel size). A sequence of 2D and 3D radiologic

images (e.g., various MRI, CT, PET) is obtained. These images

are cleaned, normalized, and co-registered (i.e., image

preprocessing, Figure 1A). It is worth noting that different

image intensity normalization schemes may influence not only

the registration (56) and segmentation process (57, 58) but also

the implicit texture features hidden in the different modal MR

images and thus affect the subsequent feature selection and ML
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(59). Shinohara et al. (60) introduced a set of seven statistical

principles of image normalization (SPIN). In addition to the

common mean-maximum (or s tandard devia t ion)

normalizations (59) and histogram-based normalizations (57,

61, 62), Shinohara et al. (60) also proposed a hybrid multimodal

normalization method to match the natural balance of tissue

intensities with physical interpretation. On the other hand, some

data may be standardized (e.g., voxel sizes, resolution) while

others may not. Then, the images are labeled and annotated into

various categories of tissues and/or lesions by experienced

radiologists using a variety of software (e.g., ITK-SNAP (63),

3D Slicer (64)) to produce a labeled/annotated imaging data

set (17).
Major public datasets

Since not all ML researchers can directly access private/

customized high-quality labeled/annotated brain tumor datasets,

which are usually owned and protected by medical institutions,

public datasets are essential and provide an equal platform to

these researchers to train and compare the outcomes of their ML

models. In neuro-oncology, one of the most commonly used

public online image datasets is from the Brain Tumor

Segmentation (BraTS) challenges, organized by the Medical

Image Computing and Computer Assisted Interventions

(MICCAI) and other professional organizations (34, 65–69)

since 2012. As of March 2022, the latest BraTS 2021 consists

of a total of 2,040 brain tumor cases/patients, and it is divided

into three subsets: training (1,251 cases), validation (219 cases),

and testing (570 cases). Only training and validation subsets are

open to the public research access, and these two subsets include

a set of multimodal 3D MRI scans (i.e., T1, T1c, T2, FLAIR) for

each case. The training dataset also includes a 3D annotation

model (i.e., GD-enhancing tumor, peritumoral edema/non-

enhancing infiltrative tumor, necrotic tumor core (NCR), and

normal) for each case (17). In addition, BraTS 2021 includes O6-

methylguanine-DNA-methyltransferase (MGMT) biomarkers

for 585 patients (out of a total of 1,251 cases) for the training

datasets. It should be noted that, unlike BraTS 2020, BraTS 2021

does not include survival information any longer. BraTS 2020

included the survival information for 265 patients (out of a total

of 460 cases) in the training and validation datasets. Other

widely used datasets include The Cancer Imaging Archive

(TCIA) (70) and The Whole Brain Atlas by Harvard Medical

School (71). TCIA has a collection of 13 brain tumor sub-

datasets, including the Ivy Glioblastoma Atlas Project (IvyGAP)

(72), The Cancer Genome Atlas (TCGA)-GBM (73), GLIS-RT

(74), and CPTAC-GBM (75). These sub-datasets mainly focus

on high-grade glioma (HGG/GBM) and lower-grade glioma

(LGG). Some of the data in TCIA are also included and

standardized in the most recent BraTS 2021 dataset. The
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Harvard brain atlas consists of the radiology data (e.g., MRI, CT,

PET) for about 40 subsets of normal brain and various brain

disease states. However, none of the datasets in the TCIA or

Harvard brain atlas are pixel-wisely annotated for the ML

segmentation tasks. In addition, the data format for each

patient in TCIA collection varies in terms of pulse sequences

(e.g., T1, T1c, T2, FLAIR, PWI, DWI) and the resolution (i.e.,

with matrices varying from 128*128 to 896*896), even in the

same sub-dataset (e.g., TCGA-GBM, IvyGAP). A summary of

these datasets is depicted in Table 1.
Data augmentation and preprocessing
for the ML models

Data augmentation is a commonly used technique in ML for

the purpose of promoting the accuracy and generalizability of

the ML algorithms. Data augmentation can be attained by 1)

adding slightly modified copies and/or 2) creating new synthetic

data from already existing data. The former usually employs

geometric transformation and photometric transformation

including flipping, pixel-level augmentation, cropping,

rotating, noise injection, and random erasing (76, 77), while

the latter may make use of generative adversarial networks

(GANs) (78, 79) to create new synthetic images that resemble

the original dataset. It should be noted that GANs also belong to

ML-based networks that require abundant training data to

generate resembled data. Data augmentation acts as a

regularizer and helps reduce class imbalance and overfitting

(76), so as to improve both the accuracy and the generalizability

of the ML outcomes.

Current GBM radiomic studies are often hindered by limited

and unbalanced data samples; therefore, using ML models alone

may not achieve statistically significant outcomes (80–82). In

this regard, the preprocessing plays a vital role by enhancing and

extracting some image features, especially the biological/medical

meaningful ones in the regions of interests (ROIs), and/or filters

out some “useless” image data from the datasets, before

performing the ML training and analysis (18). General data

preprocessing approaches for ML models include feature

extraction and feature selection (18, 81). In GBM radiomic

datasets, MRIs contain various features, such as image texture

(23), local histograms (24), structure tensor eigenvalues (25),
Frontiers in Oncology 06
gray-level co-occurrence matrix (GLCM) (83), and local binary

pattern (LBP) (41). Yet some of these features might be

correlated in that the total number of effective features can be

further reduced, by employing feature selection algorithms such

as principal component analysis (PCA) (84), least absolute

shrinkage and selection operator (LASSO) (85), linear

discriminant analysis (LDA) (86), t-tests (87), analysis of

variance (88), and information gain based methods (89), or

based on certain evaluation criteria, such as probability of error

(POE) and average correlation coefficient (ACC) (59, 90).

Injecting feature extraction and selection can significantly help

to reduce the computational complexity of ML models and

speed up the training process and possibly improve the

accuracy of ML models for brain tumor classification and

segmentations (91, 92). Nevertheless, one should note that

such preprocessing should be treated with care so that the ML

model is not overfitted to particular features, which could lose

generalizability to a different dataset.
Discussion

We have illustrated various radiomic data sources and data

preparation techniques that are commonly employed in ML-

based GBM radiomic analysis. One prominent issue in current

GBM radiomic data preparation lies in the lack of standardized

image acquisition specifications (e.g., repetition time, echo time,

voxel sizes, image resolutions) between different radiological

equipment and medical institutions (i.e., multicenter multi-

vendor, McMv, datasets), which may 1) bias the image data

(e.g., intensity of pixels, actual voxel size); 2) require additional

image data preparation (e.g., cropping, up/down-sampling) to

train ML models with different datasets; and 3) impede the

development and cross-validation of more general/robust and

accurate ML models for McMv datasets. Although BraTS has

made a huge effort and progress in standardizing radiology data

for over 2,000 GBM patients/cases, it is not yet sufficient for

various GBM analysis applications. The second important issue

is that most existing datasets have limited types of brain tumors

(e.g., GBM/HGG, metastasis, and LGG), while the Harvard Atlas

is limited by the number of subjects/patients. Scarcity of brain

tumor/disease types and lack of data impede the application of

ML to accurately distinguish various brain tumors and diseases.
TABLE 1 List of three major sources for radiomic neuro-oncology public datasets.

Dataset Radiology data
type

Data size Image resolution

BraTS 3D MRI 2,040 subjects, including both HGG and LGG 240 * 240 * 155

TCIA 2D MRI, CT, axial
slices

13 brain tumor sub-datasets, including IvyGAP (39 subjects), TCGA-GBM (262
subjects), and TCGA-LGG (199 subjects)

Varying from 128*128
to 896*896

Harvard Medical School: The
Whole Brain Atlas

2D MRI, CT, PET,
axial slices

8 subsets for brain tumors, and 30 other subsets for normal brains and other non-
tumor brain diseases

256 * 256
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Lastly, most datasets include only MRI data while only a few

datasets consist of other modality radiology data such as CT and

PET. Most of them do not include other biological information

(e.g., survival time, histopathological data, biomarkers) either.

There is also lack of longitudinal radiology data to show disease

evolution for patients receiving various treatments. With more

complementary data and medical/treatment history (including

radiomic data) that help comprehensively describe the brain

tumor/disease status, an improvement in the accuracy of

radiomic analysis and prediction can be expected.
Application of AI/ML in
GBM diagnosis and
therapeutic monitoring

The early brain tumor radiomic studies often relied on

conventional radiomic feature-based ML methods that extract

relatively explicit image texture features (e.g., shape, GLCM,

LBP) to train traditional ML models such as SVMs (20–22) and

RFs (23–26) in order to differentiate brain tumor versus non-

tumors (or different types of brain tumors), predictions of

overall survival, etc. Recently, by taking advantage of deep

neural networks (DNNs) that include more neurons and layers

to statistically recognize global, deep, and implicit imaging

features, DL techniques can achieve state-of-the-art

performance for automatic analysis of brain tumors on

multimodality imaging and clinical data (32). Additionally,

deep feature-based ML techniques build statistically/

biologically meaningful models or utilize DNNs to extract

deep implicit features from the radiology images and then

apply traditional ML models for classifications (93, 94).

Despite their differences, the above ML models all exploit

prior biomedical and image features knowledge to 1)

preprocess the radiological imaging data to extract imaging

and/or biological meaningful features and 2) optimize the ML

structure/algorithm for specific classification/segmentation

tasks. Examples include the stacked denoising autoencoders

(95) and the Convolutional Restricted Boltzman Machine (96).

All these ML models have been applied in radiomic analysis to

address unmet needs in GBM diagnosis, therapeutic monitoring,

and/or prognosis (e.g., brain tumor classifications, survival

predictions and biomarker identifications), while at this point,

CNN-based DL enjoys the most generalizability and highest

accuracy. Details are further discussed under the context of

individual study case as follows.
GBM diagnosis and classification

One of the major ML applications in GBM radiomic analysis

is to facilitate the differentiation between GBM and other
Frontiers in Oncology 07
histopathological processes. More specifically, such

applications mainly fall into three categories: 1) distinguish

brain tumor from other non-cancerous pathologies; 2)

distinguish GBM from other brain tumors; and 3) differentiate

between true progression and treatment effect (PsP or radiation

necrosis). We hereby provide an overview of a few of these

classification problems in brain tumor diagnosis.
1) Differentiating tumor from non-tumor
One of the most critical radiomic functions in brain tumors

is to distinguish between malignant brain tumor and non-tumor

pathologies, which include tumefactive demyelination, infection,

inflammation (e.g., paraneoplastic syndromes and autoimmune

disease), cortical dysplasia, and stroke. However, due to

insufficient data available for ML training of each specific non-

tumor type, existing studies mostly classify all data into two

major categories: tumor (e.g., GBM/HGG, metastases, LGG) and

non-tumor (i.e., control/normal and non-cancerous pathologies

such as inflammation). Some studies tested their ML models on

their own private data, while others took advantage of public

datasets (e.g., BraTS, TCIA, Harvard brain atlas) or a

combination of private and public data to expand the model’s

generalizability. As discussed in Section 2.4, data preprocessing

(e.g., filtering and feature extractions) are also often used to

denoise and enhance the lesion region in the input MRI slides,

with a hope to speed up the ML training process and improve

the accuracy of distinguishing between tumors and non-tumors.

For those using public datasets, Ari et al. (97) proposed a

three-phase extreme learning machine local receptive field

(ELM-LRF) method for tumor classifications: removal of the

noise using local and non-local methods, segmentation of benign

or malignant tumor using ELM-LRF, and then use of a CNN

classification. As a result, they achieved an effective classification

accuracy of 0.97. Mohsen et al. (84) took advantage of a discrete

wavelet transform (DWT) for feature extraction and principal

component analysis (PCA) for reduction, together with a fuzzy

C-means DNN to classify a dataset of 66 brain MRIs from

Harvard Brain Atlas into four classes, i.e., normal, glioblastoma,

brain sarcoma, and brain metastatic bronchogenic carcinoma

tumors. An accuracy of 0.97 was achieved, and an area under the

curve (AUC) approximated 0.984.

Alves et al. (83) quantified the gray-level pattern, pixel

interrelationships, and the spectral properties of an image and

achieved two fundamental features from an MRI sample, i.e.,

GLCM and gray-level run-length (GLRL). By combining this

texture analysis with ML models (e.g., SVM, RF), they

differentiated brain tumors from inflammatory lesions in their

local MRI dataset and achieved a high accuracy of 0.83 and AUC

of 0.906. Citak-Er et al. (93) applied a multiregional and

multiparametric recursive feature elimination method, which

was based on the Mann–Whitney ranking score, and then they

employed the SVM-based multilayer perceptron (MLP)
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classification model to achieve a tumor detection accuracy

of 0.93.

Amin et al. (41) mixed the public datasets and local datasets

to differentiate tumors and non-tumors. They employed a

Weiner filter to denoise and enhance the lesion region in the

input MRI slides and used potential field (PF) clustering to

identify the tumor region. Gabor wavelet transform (GWT) and

LBP features were fused with various ML models (i.e., SVM, DT,

k-NN, and naïve Bayes) to further improve the classification

accuracy. The approach yielded an accuracy greater than 0.93

and an AUC of 0.96. Zhou et al. (98) treated holistic 3D MRI

samples as sequences of 2D slices to extract some 3D features on

brain tumors. They introduced a recursive structure, i.e., the long

short-term memory (LSTM), to a deep CNN model (i.e.,

DenseNet) to handle such sequential data classification, and

this DenseNet-LSTM model achieved an outstanding accuracy

of 0.92 using the BraTS dataset (99).

Both Banerjee et al. (100) and Xu et al. (101) introduced

transfer learning (TL) to improve the accuracy of the DNN-

based ML classifier with non-brain-tumor images. They first

pretrained the ML classifier with the large general image dataset,

ImageNet (102), and then they fixed the pretrained parameters

in the CNN hidden layers and fine-tuned the parameters in the

output layers with neuro-oncology MRI images. Xu et al. (101)

even embedded an SVM with the CNN to distinguish between

GBM and LGG. By doing so, the two studies achieved

classification accuracies of 0.97 and 0.975, respectively.

2) Differentiating primary from secondary
brain tumors

Secondary/metastatic brain tumors have as high as fivefold

incidence of that of primary brain tumors and manifest a rapid

growth, causing significant brain tissue damages. Patients

typically present with multiple metastatic tumors throughout

the brain (103). A traditional non-ML-based approach to

distinguish multifocal GBM from metastases on a[11C]-
methyl-L-tryptophan (AMT)-PET images is to examine the

tumoral standardized uptake values (SUVs), mean tumor/

cortex SUV ratio, and tumor/cortex volume of distribution

(VD)-ratio (104). Compared to GBM, metastases had lower

values of all three parameters. However, this approach can only

achieve an accuracy of 0.72.

Many studies implemented a combination of various feature

extractions and regular ML models to find the best performance

for their applications. Zacharaki et al. (86) introduced a Gabor

texture filter with feature ranking to extract tumor features, and

derived feature ranking scores, and then applied three ML

models to distinguish GBM from metastases: SVM with

recursive feature elimination (SVM-RFE), linear discriminant

analysis (LDA, also known as Fisher linear discriminant) with

Fisher’s discriminant rule (105), and k-NN. Among the three

models, SVM-RFE achieved the highest mean accuracy and

AUC of 0.91 and 0.936, respectively. Chen et al. (85)
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compared 30 diagnostic models that were built based on five

feature selection models and six classification algorithms for

distinguishing GBM and metastases. The five feature selection

models included distance correlation, RF, least absolute

shrinkage and selection operator (LASSO), eXtreme gradient

boosting (XGBoost), and gradient boosting decision tree

(GBDT), while the six classification algorithms included LDA,

SVM, RF, k-NN, Gaussian naïve bayes (GaussianNB), and

logistic regression (LR). The results showed that the

combinational model of distance correlation and LR

outperformed all other combinations in terms of testing

accuracy (0.79) and AUC (0.80), although some other

combinations achieved similar results as well.

Priya et al. (106) analyzed 60 GBM and 60 metastases cases

with 12 regression or ML-based classifier models and four

feature reduction/selection strategies—45 combinations in

total. According to their results, the mean performance of

various models was slightly better with FLAIR images than

multiparametric sequences in terms of AUC, while the

combination of full feature and LASSO achieved the highest

AUC of 0.953, although full features with other models, such as

ElasticNet (107) and RF, achieved similar results. de Causans

et al. (55) trained on T1 MRI data with 71 GBM and 72

metastasis cases using 100 extracted features, based on the

Image Biomarker Standardization Initiative (IBSI) (108). With

these selected features, a total of 144 models combining nine

feature scaling methods and 16 classifiers (regression and ML-

based) were compared. All 144 classifiers of the 21 GBM and 16

metastases cases achieved a mean accuracy and AUC of 0.8 and

0.85, respectively.

3) Differentiating GBM from primary central
nervous system lymphoma

GBM and primary central nervous system lymphoma

(PCNSL) are not only common intracranial malignancies but

also often share similarities in radiological appearance. However,

the management for each disease is quite different (109).

Recently, multiple ML-based predictive analytics have arisen to

help differentiate GBM from PCNSL radiologically with a

relatively high sensitivity and specificity. Outcomes were

assessed based on test characteristics such as accuracy,

sensitivity, specificity, and AUC.

Due to the binary classification nature of distinguishing

between GBM and PCNSL, SVM used to be the most

commonly employed model for its computational simplicity

(110–115). Other commonly used ML models such as k-NN

and RF were also exploited and compared (114, 116). Even

though the training datasets were relatively small, approximately

110 or fewer samples with about two-thirds of the entire dataset

containing GBM and one-third of PCNSL, it turned out that

most ML-based models were able to achieve an accuracy

between 0.9 and 0.96, a sensitivity of 0.84 or higher, a

specificity of 0.89 or higher, and AUC of 0.92 or higher. More
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notably, Kang et al. (114) and Suh et al. (116) even compared the

prediction outcomes of their ML models with the prediction

from human radiologists, and the results showed the superiority

of ML models over human radiologists in all four criteria,

especially in accuracy, sensitivity, and AUC. It is unknown

whether the combination of the ML model and human

radiologist read would have attained even higher accuracy,

sensitivity, and AUC.

Recently, more sophisticated DL models have been

employed. Priya et al. (117) examined five different ML

approaches (i.e., LASSO, SVM, RF, Ridge, and MLP) to

distinguish between 97 GBM and 46 PCNSL cases, with all

five approaches sharing similar results. Yet, LASSO had the best

performance (0.88 in accuracy and 0.92 in AUC) when using

features from the whole tumor, while MLP had the best

performance (0.86 in accuracy and 0.91 in AUC) when only

using the features from the single largest slice. For an even larger

dataset (i.e., 160 GBM and 160 PCNSL), McAvoy et al. (118)

applied a CNN variant, EfficientNet (119), and by using TL

based on ImageNet, they achieved an accuracy of 0.93 and AUC

of 0.94.

4) Differentiating treatment effects versus true
disease progression

Pseudoprogression (PsP) is the apparent growth of a lesion

or development of new lesions on imaging that represents

inflammatory treatment-related changes but looks just like

viable tumor growth on MRI. PsP is most common between 3

and 6 months after the completion of radiation therapy, and the

corresponding imaging findings will subside on their own over

time (120). PsP is more likely in MGMT promoter-methylated

tumors treated with temozolomide. The increased contrast

enhancement on MRI may be caused by the increased vascular

permeability from cytotoxic therapies including radiotherapy

and chemotherapies such as temozolomide, which may benefit

patients receiving immunotherapy and temozolomide but often

leads to premature discontinuation of treatment owing to the

false judgment of progression of disease (121). Radiation

necrosis is another treatment effect that can occur any time

after radiation therapy but is most common 1–2 years after

radiation. It should be differentiated from true progression of

viable tumor before treatment changes are contemplated. As a

result, accurate differentiation between treatment effect (i.e.,

pseudoprogression or radiation necrosis) and true tumor

progression is critical in the treatment decision. PsP may be

associated with a survival advantage. A key radiology tool in

differentiating pseudoprogression or radiation necrosis from

true progression of disease is dynamic susceptibility contrast

(DSC) MR perfusion-weighted imaging (PWI). Elevated

corrected relative cerebral blood volume (crCBV) relative to

normal-appearing white matter is more common in a viable

tumor than in treatment effects (122). However, PWI is

unreliable in patients treated with immunotherapy such as
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immune checkpoint inhibitors, such that, per immunotherapy

response assessment in neuro-oncology (iRANO), the patient is

followed for 3 months and then a determination is made of

whether the initial increase in size of the lesion represented

treatment effects or a viable tumor (123–125).

Booth et al. (126) first analyzed the tumor heterogeneity in

T2 MRI using topological descriptors called Minkowski

functionals (MFs). Then they utilized an SVM model, together

with image features such as MFs, size, and signal intensity, to

distinguish between pseudoprogression and true progression,

and achieved an accuracy of 0.88, slightly higher than using RF

for feature selection and LASSO for classification (0.86). Hu et al.

(127) took advantage of T1 MRI and other eight-dimensional

feature vectors, including T2, FLAIR, proton density, ADC,

PWI, derived relative cerebral blood volume (rCBV), relative

cerebral blood flow (rCBF), and mean transit time maps, to train

an SVM model, and achieved an AUC of 0.94 in distinguishing

between pseudoprogression and true progression. The ADC

map derived from DWI and rCBV and rCBF derived from

PWI were found to make a greater contribution to the

discrimination than the conventional radiology images do.

Due to the time correlation embedded in true progression

and PsP radiology data, Lee et al. (128) and Jang et al. (129)

exploited recursive LSTM-CNN structures on MRI to

distinguish between the two occurrences. In comparison to

Lee’s multimodal MRI data (i.e., T1, T2, FLAIR), Jang et al.

(129) combined/fused T1 MRI data with clinical features to

develop an LSTM-CNN clinic-feature-fused model and achieved

an AUC of 0.87 and F1 score of 0.74, outperforming the model

trained with MRI data only and the RF-based model.

Akbari et al. (130) employed TL with a CNN pretrained on

ImageNet and feature extraction based on four structural MRIs

(i.e., T1, T1-ce, T2, FLAIR), diffusion tensor imaging (DTI), and

PWI (rCBV, peak height (PH), percentage signal recovery

(PSR)) and achieved an accuracy of 0.84 and AUC of 0.83.

Ismail et al. (131) extracted 30 global and local shape features

from T1-ce, T2, and FLAIR images and used an SVM classifier to

achieve an accuracy of 0.90 in distinguishing PsP from true

tumor progression.

In addition to the ambiguity between PsP and true tumor

progression, immunotherapies in GBM also suffer from the lack of

reliable evaluation methods on the radiological imaging

manifestation regarding the alteration of the tumor immune

microenvironment (TME, e.g., tumor immune cell infiltration,

functional characterization of immune effector/suppressive cells,

gene expression profile of immunostimulatory/immunosuppressive

cells), a crucial parameter for assessment of intratumoral immune

responses (5). In their pioneering work (132), Narang et al. utilized

T1-weighted post-contrast and T2-FLAIR images in combination

with T-cell surfacemarker CD3D/E/GmRNA expression data from

78 GBM patient-derived TCGA data to extract six imaging features

that are associated with intra-GBM CD3 activity. These imaging

features were further trained and tested using an internal dataset
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from 69 GBM patients that has immunohistochemically (IHC)

validated intratumoral CD3 counts. The image-based intra-GBM

CD3+ T-cell infiltration model reaches an accuracy of 97.1% and

AUC of 0.993 for the training set, with an accuracy of 76.5% and

AUC of 0.847 in the test group. A similar study has been reported

recently in lower-grade gliomas (LGG) with an expansion from

CD3 expression data to multiple immune gene expression profiles,

including major histocompatibility complex (MHC)-related

molecules, immune checkpoint molecules, and effector/suppressor

immune cells (94). In this study, radiomic features extracted by a

deep learning neural network-basedmodel have been demonstrated

to predict the TME-associated signature immunophenotype

mRNAs with an AUC of 0.821 in the test group. Unfortunately,

there is no IHC validation on expression of signature immune genes

in the test group specimens.

To date, although numerous ML models for differentiating

PsP from true tumor progression have been proposed and tested,

none of them have been prospectively validated, reflecting the

lack of confidence in clinicians to apply these radiomic

approaches in their clinic practice. Multiple factors can lead to

this significant issue, such as difficulty to applying small sample

size-derived prediction models to a large population cohort,

poor reproducibility, and lack of consistency between various

ML models and/or datasets (further discussed in Section 4). One

of the important and challenging factors is that currently there is

no clear objective histological definition of pseudoprogression.

In a representative study by Melguizo-Gavilanes et al. (133),

MRI images and surgical resection-derived histological data

from 34 patients with GBM were retrospectively reviewed.

Only one-third of the cohort (11/34) demonstrated a

concordance for PsP between radiological interpretation and

histological diagnosis, whereas the majority of the patients had a

histologically “mixed” pattern with tumor and treatment effect,

indicating that even histology might not be applied as a gold

standard to differentiate PsP and tumor true progression.
Overall survival prediction

Overall survival prediction of GBM patients provides useful

information for surgical and treatment planning. Conventional

survival prediction based on clinical information is subjective

and could be inaccurate. Radiomic analysis, on the other hand,

provides a variety of MRI features to predict disease prognosis,

thus providing beneficial information for personalized

treatment. Nevertheless, manual feature engineering is still

time consuming, laborious, and subjective and may not be

able to effectively encode other predictive but implicit

information hidden in the multimodal neuroimages (134).

Thus, an accurate, generalized yet automated OS prediction

is desired.

Macyszyn et al. (135) extracted about 60 features from 105

GBM patients to train an SVM-based predictive model for
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patient survival and molecular subtype. The predictors were

evaluated in 29 new patients and achieved a three-way (long/

medium/short survival for longer than 18 months, between 6

and 18 months, and shorter than 6 months) accuracy of about

0.80. Another classifier was trained to discriminate among each

of the various GBM molecular subtypes and achieved an

accuracy of about 0.76. Sanghazni et al. (136) derived texture

features (e.g., first-order texture features, GLCM), tumor shape

and volumetric features, and patient ages from 173 patients’

multimodal MRI data (e.g., T1-ce, T2, and Flair) and used an

SVM-RFE-based ML model to perform binary (i.e., short and

long‘s threshold upon 400 days) and multiclass (i.e., <10, 10~15,

and >15 months) OS prediction. Prediction accuracies of 0.987

and 0.89 were achieved for binary and multic lass

predictions, respectively.

Choi et al. (137) collected 250 radiomic features extracted

from 296 LGG cases from institutional and TCGA/TCIA

datasets. They trained three random survival forest (RSF, i.e., a

variant of RF) models with 1) these radiomic features; 2) non-

imaging prognostic factors including age, resection extent,

WHO grade, and IDH status; and 3) combination of 1 and 2

on the institutional dataset and validation of the model on the

TCGA/TCIA dataset. When applying radiomic features or non-

imaging features alone, the two RSF models achieved an AUC of

0.620 and 0.627, respectively. When applying radiomic features

together with non-imaging prognostic parameters, the AUC was

improved to 0.709. Similarly, in a GBM hypoxia-associated

radiomic study, Beig et al. (138) also revealed that when

combining clinical features (age, gender, and Karnofsky

Performance Score (KPS)) with 270 radiomic features, the

concordance index for survival prediction rises to 0.83 in

comparison to 0.74 when using radiomic features alone (138).

Grist et al. (139) examined various analysis techniques on

survival predictions through perfusion and MRI data,

especially DWI, collected from 69 pediatric patients.

Approaches included conventional regressions and Bayesian

analysis on apparent diffusion coefficient (ADC) maps,

uncorrected and corrected cerebral blood volume (uCBV and

cCBV) maps, and K2 maps (140) and achieved an AUC between

0.63 and 0.82. Supervised (i.e., SVM, RF, and a single-layer

neural network) and unsupervised (i.e., k-means clustering) ML

analyses achieved an accuracy between 0.90 and 0.98 in

distinguishing between high- and low-risk clusters, with

distinct differences in survival. In addition to the above

models, the Tiwari group has developed a radiomic risk score

in which the extracted GBM radiomic features were trained by

various Cox regression-based algorithms for survival

stratification with an overall concordance index at 0.7 to 0.8

(141–143).

Nie et al. (134) proposed a two-stage learning-based method

to predict the OS of HGG patients. Specifically, in the first stage,

they adopted a CNN to extract implicit features from

multiparametric maps that are computed by multimodal
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multichannel MRI (i.e., T1-ce, DTI, and rs-fMRI) from 68 HGG

patients. Then, those radiomic features along with the

demographic and tumor-related features (e.g., age, tumor size,

and histological type) were trained in an SVM to model OS

prediction (i.e., long or short overall survival time, with a

threshold of 650 days). The experimental results demonstrated

an accuracy of up to 0.91.
Identifying biomarkers of brain tumors

Radiogenomics uses radiomics techniques to predict the

genetic makeup of tumors. This promotes precision medicine

by identifying patients with tumor molecular markers that can

be targeted by particular drugs and by predicting how aggressive

a tumor will behave, with implications for survival and treatment

choice. Via exploring the implicit correlation between

radiological images and genomic data such as DNA

microarrays, microRNA, RNA-Seq, ML techniques can help

improve the effectiveness and efficiency in identifying the

biomarkers of brain tumors (144).

Isocitrate dehydrogenase (IDH) mutation
Since the initial reworking of the WHO CNS Tumor

Classification System in 2016, genetic biomarkers have become

increasingly important in the classification of brain tumors.

Isocitrate dehydrogenase is an enzyme in the Krebs cycle, and

its mutated gene (IDH) is an oncogene. The mutant IDH enzyme

produces an oncometabolite 2-hydroxyglutarate (2HG) (145),

which promotes the growth of various cancers throughout the

body. In brain tumors, IDH-mutated tumors are less aggressive

than IDH wild-type tumors, yet they can convert to the latter. In

the 2021WHOCNSTumor Classification System, only IDHwild-

type tumors are classified as GBMs. It is of utmost importance for

therapeutic planning to differentiate between the IDH mutation

and IDH wild type, and it would greatly benefit patients if this

determination could be done non-invasively and obviate biopsy or

resection. Yogananda et al. (33) developed a 3D Dense-UNet

network using (a) T2 images only (T2-net) and (b) a combination

of T1-ce, T2, and FLAIR images (TS-net) from TCIA and TCGA

to non-invasively predict IDH mutation. The T2-net

demonstrated a mean cross-validation accuracy of 0.97

(sensitivity 0.97, specificity 0.98, AUC 0.98), and TS-net

demonstrated a mean cross-validation accuracy of 0.97

(sensitivity 0.98, specificity 0.97, AUC 0.99). In addition, this

model automatically segmented the tumor to show areas with

either IDH mutation or IDH wild type. Dice scores were 0.85 for

T2-net and 0.89 for TS-net. The benefit of being able to use only

T2-weighted images is that gadolinium-based contrast material,

which deposits in the brain to unknown effect, does not have to be

administered and T2-weighted images can be quickly acquired

and are less sensitive to motion artifact.
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MGMT promoter methylation
MGMT promoter methylation predicts less aggressive

glioma behavior for both IDH-mutated and IDH-wild-type

gliomas. When its promoter is methylated, the MGMT gene,

which is involved in DNA repair, is hindered and the tumor has

greater difficulty overcoming the damage caused by

chemotherapy such as temozolomide. Yogananda et al. (146)

used a 3D-dense UNet on only T2 images to simultaneously

segment the tumor and predict the presence ofMGMT promoter

methylation with a mean three-fold cross-validation accuracy of

0.95 (sensitivity 0.96, specificity 0.92, AUC 0.93, Dice

score 0.82).
H3K27M alterations
In 2016, the WHO released a new histological diagnosis in the

classification of CNS malignancies: diffuse midline glioma

(DMG), H3K27M-mutant. It was renamed as H3K27M-altered

in 2021 because there are multiple mechanisms involved. These

WHO grade 4 tumors are found in or near the midline in the

brainstem, thalamus, spinal cord, pineal region, hypothalamus,

and cerebellum and exhibit aggressive clinical behavior (147, 148).

H3K27M is the most frequent mutation in brainstem gliomas

(BSGs) (149). Su et al. (150) extracted radiomics features from

FLAIR images from 40 patients with H3K27M mutations and 60

wild-type patients, all with midline gliomas. The Tree-based

Pipeline Optimization Tool (TPOT) was applied to optimize the

ML pipeline and select important radiomics features. A total of 10

independent TPOT ML models were compared and tested on 22

independent cohorts of patients, achieving an accuracy ranging

from 0.6 to 0.84, and the AUC from 0.73 to 0.90. Pan et al. (149)

included a total of 151 patients with newly diagnosed BSGs. A

total of 1,697 features, including six clinical parameters and 1,691

imaging features (e.g., GLCM, LBP), were extracted from pre- and

post-contrast T1 and T2 images. Spearman’s correlation and relief

algorithm were applied for feature selection. Thirty-six MRI

features and three clinical features remained and were fed to an

RF model to predictH3K27Mmutations. For comparison, a least-

square estimation method-based ML model was developed by

utilization of the KPS at diagnosis, symptom duration at diagnosis,

and edge sharpness on T2, which achieved an accuracy of 0.80 and

AUC of 0.79 in the test cohort if using MRI features alone but can

be improved to 0.84 and an AUC of 0.83 if integrated with clinical

parameters. The simplified model achieved an AUC of 0.78. Zhuo

et al. (151) studied 81 BSG patients with APT imaging at 3T MR

and knownH3K27M status. APTw values (i.e., mean, median, and

max) and radiomic features within manually delineated 3D tumor

masks were extracted. H3K27M-mutant prediction using APTw-

derived radiomics was conducted using various models, such as

SVM, AdaBoost, autoencoder, LASSO regression, and RF, which

achieved an accuracy of 0.86 and an AUC of 0.93 as validated by a

prospective cohort of 29 BSG patients.
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Discussion

Despite that numerous ML studies have been conducted in

GBM radiomic analysis, comparing the results from individual

articles is not a trivial task due to the use of different data sets.

The accuracies, AUCs, and Dice scores in different studies may

vary from 0.7 to 0.98: most state-of-the-art studies using public

datasets (e.g., BraTS) achieve an accuracy of 0.84–0.94, but some

studies with certain private data can reach 0.98. Meanwhile,

current major public datasets also lack sub-categories for brain

tumor classification and segmentations, which restricts the

development of a more powerful and comprehensive ML-

model to distinguish more brain tumor types. Without

sufficiently large datasets, ML models with too many

parameters (i.e., neurons in each layer and the number of

layers) are easily overfitting to a specific dataset, losing the

generalizability of the model to other patient groups.
Challenges and perspectives on
future AI/ML techniques

Overview of current challenges in ML-
based radiomic neuro-oncology studies

As ML is a data-driven statistical approach to extract common

features within different data samples, sufficient imaging datasets

are required to train advanced ML models and to fairly evaluate

their performances (e.g., accuracy, Dice score, AUC) in the field of

neuro-oncology. Currently, only a limited number of brain tumor

sub-categories have been analyzed with ML studies while many

other brain tumor/disease types have not, due to the lack of labeled/

annotated data for training. Examples include differentiating

dysembryoplastic neuroepithelial tumor (DNET), ganglioglioma,

pleomorphic xanthoastrocytoma (PXA), and multinodular and

vacuolating neuronal tumor (MVNT).

However, establishing standardized radiological imaging

datasets or standardizing McMv datasets for extensive and

generalized ML-based GBM analysis can be manpower and

time consuming because most of these datasets require highly

accurate manual labeling/annotation to serve as the “ground

truth” for the ML model training and validation. In addition,

these datasets should be generalizable for various neuro-

oncology analyses and patient groups and should be carefully

labeled by various disease categories. Additional information

(e.g., survival time, related biotest results, related clinical/

medical history) may also be necessary for more sophisticated

and comprehensive analyses. This requires a continuous update

of the datasets, leading to a significant cost of data management

(Figure 1B).

Another challenge is that current mathematic mechanisms

in the ML model are based on statistics, which means there may
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not be a “deterministic optimal” algorithm or architecture for an

ML model to achieve the “ideal/optimal” outcomes. The initial

values of the trainable parameters in ML models and the slight

differences in structure may affect the training outcome

significantly. Even when using public datasets (e.g., BraTS),

similar ML networks may yet achieve varying results (152,

153). Thus, many researchers intend to simply add more

layers in CNNs to improve the accuracy, potentially causing

extensive yet unnecessary computational complexity during the

training process but overlooking the biological connections and

meaning behind those data. On the other hand, too much

engineering (i.e., strong feature extraction, data restriction/

collection) in data preprocessing may also lead to overfitting

of the ML network to the training data and lose the

generalizability of trained ML models for larger populations

with more diversity (Figure 1B).
Promising strategies enhancing
performance of AI models in GBM
radiomic analysis

Aside from using genuine radiological brain tumor images

alone to train ML models, three other trends are gaining

popularity to improve the model performance in accuracy,

Dice score, AUC, and generalizability. The first trend is to use

TL (100, 101), which takes advantage of other larger non-neuro-

oncology or even non-medical image datasets to pretrain the ML

model. Then by keeping the pretrained parameters in the low-

level hidden layers (i.e., closer to the input layer) and fine-tuning

the ones in the high-level layers and output layers with brain

tumor training image datasets, the pretrained ML model can be

adopted for brain tumor analysis. Typical image datasets for

pretraining ML models includes ImageNet (102), the modified

National Institute of Standards and Technology (MNIST)

database (154), and International Symposium on Biomedical

Imaging (ISBI) (155). However, if the pretraining dataset is

drastically unsimilar to the target dataset, the pretraining effect is

limited. Therefore, a standardized radiomic medical dataset with

various categories is preferred, benefitting not only neuro-

oncology studies but also other medical and biomedical studies.

The second trend is to use GANs to generate synthetic data

for augmentation (78, 79, 155). However, as discussed in Section

2.4, this approach itself requires a large set of genuine images to

train the discriminator network in the GAN, before it can

synthesize accurate-appearing brain tumor images to train

other ML models for brain tumor analysis.

The third trend is to fuse multimodal data for a more

comprehensive analysis. Examples include multimodal MRI

(156, 157), combinations of MRI and PET (54), image

genomics (i.e., radiogenomics), and clinical data to study the

association between imaging biomarkers and genomic
frontiersin.org

https://doi.org/10.3389/fonc.2022.924245
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhu et al. 10.3389/fonc.2022.924245
characteristics (144, 149–151, 158, 159). Especially for

radiogenomics, some studies (144, 158, 159) have identified

associations between quantitative image features and gene

expression profiles of glioblastoma (e.g., H3K27M, TP53,

EGFR, NF1, and IDH1) and its molecular subtypes (e.g.,

classical, mesenchymal, proneural, and neural). Additional

studies indicate that quantitative MR imaging features derived

from entire tumor volumes can be used to identify glioblastoma

subtypes with distinct molecular pathways (160, 161). With the

help of additional complementary correlated features from

different types of radiomic images and/or genomic

information, or simply just the medical history of the patients,

ML can take advantage of data to achieve more accurate

predictions (Figure 1B).
Outlook on teamwork among computer
scientists/engineers, physicians, and
biomedical researchers

As aforementioned, high-quality clinical data and labels/

annotations are critical to ML algorithms for both accuracy and

generalizability, and biological knowledge can help extract

certain features to improve the accuracy as well as the training

efficiency. Therefore, strong collaborations should be established

among computer scientists, engineers, physicians, and

biomedical researchers to facilitate the standardization and

enrichment of neuro-oncology radiomic datasets and the

development of innovative and more advanced AI/ML models

(Figure 1B). In addition, with larger amounts of data to track

patients’ treatment process and the outcomes, it is even possible

to develop ML/AI techniques to determine more suitable plans

for their treatment, to improve the patients’ survival time as well

as their quality of life.
Conclusion

With the urgent needs for highly accurate and automatic

analysis of brain tumors and the rapid growth of clinical imaging

data, image-based ML/AI techniques are playing an increasingly

important role. Various combinations of feature extraction

algorithms and ML models have been implemented and have

achieved comparable or even better performance than manual

analysis. However, challenges remain for exploring cancer

heterogeneity, higher prediction accuracy, and generalizability

for larger, more diverse patient groups. We believe that, by
Frontiers in Oncology 13
improving dataset quality, employing multimodal data fusion,

developing more advanced ML models, and further enhancing

collaborations between computer scientists, engineers,

physicians, and biomedical researchers, AI techniques will

accelerate quantitative cancer imaging analysis for clinical

applications with great improvements in patient care.
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