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Disclaimer: This article is based on recommendations from the 12th WALT

Congress, Nice, October 3-6, 2018, and a follow-up review of the existing data

and the clinical observations of an international multidisciplinary panel of

clinicians and researchers with expertise in the area of supportive care in

cancer and/or PBM clinical application and dosimetry. This article is

informational in nature. As with all clinical materials, this paper should be

used with a clear understanding that continued research and practice could

result in new insights and recommendations. The review reflects the collective

opinion and, as such, does not necessarily represent the opinion of any

individual author. In no event shall the authors be liable for any decision

made or action taken in reliance on the proposed protocols.

Objective: This position paper reviews the potential prophylactic and

therapeutic effects of photobiomodulation (PBM) on side effects of cancer

therapy, including chemotherapy (CT), radiation therapy (RT), and

hematopoietic stem cell transplantation (HSCT).

Background: There is a considerable body of evidence supporting the efficacy

of PBM for preventing oral mucositis (OM) in patients undergoing RT for head

and neck cancer (HNC), CT, or HSCT. This could enhance patients’ quality of

life, adherence to the prescribed cancer therapy, and treatment outcomes

while reducing the cost of cancer care.

Methods: A literature review on PBM effectiveness and dosimetry

considerations for managing certain complications of cancer therapy were

conducted. A systematic review was conducted when numerous randomized

controlled trials were available. Results were presented and discussed at an

internat ional consensus meet ing at the World Associat ion of

photobiomoduLation Therapy (WALT) meeting in 2018 that included world

expert oncologists, radiation oncologists, oral oncologists, and oral medicine

professionals, physicists, engineers, and oncology researchers. The potential

mechanism of action of PBM and evidence of PBM efficacy through reported

outcomes for individual indications were assessed.

Results: There is a large body of evidence demonstrating the efficacy of PBM

for preventing OM in certain cancer patient populations, as recently outlined by

the Multinational Association for Supportive Care in Cancer/International

Society of Oral Oncology (MASCC/ISOO). Building on these, the WALT group

outlines evidence and prescribed PBM treatment parameters for prophylactic

and therapeutic use in supportive care for radiodermatitis, dysphagia,

xerostomia, dysgeusia, trismus, mucosal and bone necrosis, lymphedema,

hand-foot syndrome, alopecia, oral and dermatologic chronic graft-versus-

host disease, voice/speech alterations, peripheral neuropathy, and late fibrosis

amongst cancer survivors.

Conclusions: There is robust evidence for using PBM to prevent and treat a

broad range of complications in cancer care. Specific clinical practice

guidelines or evidence-based expert consensus recommendations are

provided. These recommendations are aimed at improving the clinical

utilization of PBM therapy in supportive cancer care and promoting research

in this field. It is anticipated these guidelines will be revised periodically.
KEYWORDS

photobiomodulation (PBM), cancer supportive care, guidelines, recommendations,
mucositis, dermatitis, cancer-treatment side effects
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1 Introduction

Despite the ongoing improvements in cancer therapy, it is

still associated with severe life-impairing side effects. Both

treatment- and patient-related risk factors determine the

severity of the complications. Moreover, they negatively

impact the patients’ quality of life (QoL) and daily activities.

Therefore, effective supportive care strategies are necessary (1).

The biological effects of photobiomodulation (PBM) therapy

were discovered by Endre Mester in 1965 (2). Currently, PBM is

defined as: “the use of non-ionizing optical radiation in the

visible and near-infrared spectral range is absorbed by

endogenous chromophores to elicit photophysical and

photochemical events at various biological scales without

eliciting thermal damage, leading to physiological changes and

therapeutic benefits” (3). There is a considerable body of

evidence supporting the efficacy of PBM for the prevention of

oral mucositis (OM) in patients undergoing radiotherapy (RT)

for head and neck cancer (HNC), chemotherapy (CT), or

hematopoietic stem cell transplantation (HSCT) (4). Recent

advances in understanding the mechanisms of action of PBM

and dosimetry parameters of PBM have resulted in examining

other oncology-related conditions that may lead to effective

management of a broader range of complications associated

with cancer treatment. This could improve overall QoL,

adherence to cancer treatment regimens, and their outcomes

while reducing cost of care (5).
2 Methods

This position paper was developed based on reviewing

existing literature on PBM in supportive cancer care. For oral

mucositis, a systematic review was feasible. For all other

indications, expert consensus opinions are based on a

narrative review of the literature and the personal experiences

of contributing experts. A level of evidence was assigned to these

indications based on the Somerfield criteria based on the type

and design of the study (6). The level of evidence for each

intervention is then translated into a guideline recommendation

where Level I or II evidence is achieved by at least one well-

designed randomized controlled trial (RCT). A suggestion was

possible for lower-level evidence, but only when consistent

evidence from multiple studies and panel consensus on the

interpretation of this evidence. Thus, to enable maximal,

practical clinical use and promote future research for PBM in

supportive cancer care, WALT makes recommendations in two

categories as clinical practice guidelines and consensus expert

opinion. We strongly recommend clinical judgment of the

provider and individual patient scenario be carefully

éaccounted for in interpreting and applying these WALT

PBM recommendations.
Frontiers in Oncology 03
3 Results

The reader is referred to comprehensive reviews in these

WALT series for a detailed discussion of PBM parameters. A

brief review of critical PBM parameters is presented below.
3.1 PBM parameters

PBM parameters using low-level lasers or light-emitting

diodes (LEDs) in cancer supportive care (summarized in

Table 1) are usually within the red and near-infrared (NIR)

wavelength range between 600 nanometers (nm) and around

1,000 nm, with a power density from 5 (mW)/cm2 to 150 mW/

cm2 (7). The duration of application varies according to the site,

but it may well be within 30 - 60 seconds per point. While

shorter efficacious treatment times have been used (2-10sec per

point, multiple spots that are clinically laborious), this could be

attributed to cumulative PBM dose effects. The therapeutic

dosage is depicted as the energy density measured in Joules as

J/cm2 and varies between 0.1 to 12 J/cm2 as per current

literature. Low-level laser systems used include helium-neon

(HeNe), neodymium-doped yttrium aluminum garnet (Nd :

YAG), gallium aluminum arsenide (GaAlAs) diode lasers,

indium gallium aluminum phosphorus (InGaAlP), and non-

thermal, non-ablative carbon dioxide (CO2) lasers (8). In recent

years, LEDs with wavelengths in the red or NIR regions have

become increasingly common due to their safety, low cost, and

suitability for home use (8, 9).

The biological effects of PBM on the exposed tissues depend

upon a number of variables, including the location of the cells in

the field of exposure, cell type, molecular and redox state of the

cell, the tissue microenvironment, PBM parameters such as

wavelength, power density, type of delivery as in pulsing or

continuous, beam or spot size, and duration of exposure (10, 11).

It is well known that PBM therapy exhibits a biphasic dose-

response that warrants optimal tissue-specific irradiation dose

parameters. In other words, doses lower than the optimal value

may have a diminished effect, while doses higher than optimal

can have no beneficial or even adverse therapeutic outcomes (12,

13). The effect of such a phenomenon has been consistently

evident in published data on the effectiveness and particular

disparity of PBM therapy in cancer complications.

Titrating adequate doses and defining the essential PBM

parameters as per evidence gathered in a systematic way for each

indication is a prerequisite for the successful use of this

treatment modality. Without standardization in beam

measurement, dose calculation, and the correct reporting of

these parameters, studies will not be reproducible, and outcomes

will not be consistent. A common misconception is that energy

(in J) or energy density (J/cm2) is all that is necessary to replicate

a successful treatment, irrespective of the original power, power
frontiersin.org
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density, and duration parameters (14, 15). In addition, it

is not uncommon to find discrepancies between the

specifications provided by a device manufacturer and the

actual performance of the device (16). Therefore, routine

device maintenance, including power measurements, should be

carried out regularly in the context of research trials and

clinical practice.
3.2 Safety considerations

During the course of more than two decades of PBM use in

the management of OM in HNC patients, limited significant

adverse effects have been reported. Only one study reported a

burning sensation following PBM therapy in 50% of pediatric

patients (9 out 18) (17). Given its diverse biological impact,

consideration of PBM on tumor response to therapy and/or

tumor behaviors remains a critical question that has yet to be

definitively answered. Given tumor genomic heterogeneity, it

seems likely that the effect of PBM on tumor behavior, like drugs

or biologicals, is not uniform and might provide an explanation

that addresses the contradictions of observations reported in the

literature. Even tumors of similar histological characterization

(i.e., squamous cell cancers of the mouth) vary, as is illustrated

by 35% expressing dysregulations in the PI3K pathway, a

common PBM target (18). It is important to note the

limitations of in vitro studies in oncology versus the systems

approach and clinical outcomes that are required. Clinical trials

focus more on the effects of PBM on epithelial and connective

tissue interactions, micro-environment, immune recognition,

and on immune function. While cell culture studies may

provide some insight into potential mechanisms, in vivo and

human trial data are mandatory, and no firm conclusions can be

drawn using tissue culture studies alone.

3.2.1 In vitro and in vivo safety data
It is unlikely that PBM has carcinogenic effects in normal

cells. The non-ionizing wavelengths of the red and NIR

spectrum used in PBM are far longer than the safety limit of

320 nm for DNA damage (19–21). No signs of malignant

transformation in non-malignant epithelial cells and

fibroblasts were observed following exposure to PBM with a

wavelength of 660 nm, 350 mW for 15 minutes during three

consecutive days (22). In addition, no malignant transformation

of normal breast epithelial cells was detected in an in vitro study

comparing the effects of different doses and wavelengths of PBM

during multiple exposures (23).

Conflicting data refute or support the potential for PBM to

impact tumor activity and responsiveness. As noted above, given

the lack of uniformity, which characterizes tumor biology, it

seems probable that tumors might vary widely in how they react

to the range of biomodulatory activities that results from PBM

exposure. The literature is rich with papers in this space. Many
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of the pathways associated with negative tumor behaviors are

induced by PBM, including cell proliferation and anti-apoptosis.

In fact, the effects of PBM on cell proliferation and

differentiation have been investigated in cell culture systems in

vitro using malignant cell lines, and have generated

contradictory data across a range of different tumor cell lines

and PBM parameters (24–29). For example, a study with

laryngeal carcinoma cells demonstrated proliferation after 809

nm GaAIAs laser irradiation at energy densities between 1.96

and 7.84 J/cm2 (19). Another study also found increased cell

proliferation of HEp2 carcinoma cells after PBM exposure at

different wavelengths (685 nm and 830 nm) and doses (30). In a

study comparing PBM administered to normal osteoblasts and

osteosarcoma cells with a range of different wavelengths and

doses, only 10 J/cm2 from an 830 nm laser was able to enhance

osteoblast proliferation, whereas energy densities of 1 J/cm2, 5 J/

cm2, and 10 J/cm2 from a 780 nm laser decreased proliferation.

Osteosarcoma cells were unaffected by 830 nm laser irradiation,

whereas 670 nm laser had a mild proliferative effect (31).

An in vitro study compared the effects of different doses of

PBM at various wavelengths on human breast carcinoma and

melanoma cell lines (23). Although certain doses of PBM

increased breast carcinoma cell proliferation, multiple

exposures had either no effect or showed negative dose-

response relationships. PBM (660nm) administered in low

doses (1 J/cm2) increased in vitro proliferation and potentially

increased invasive potential of tongue squamous cell carcinoma

cells (32). Similarly, another in vitro study suggested that PBM

(660 nm or 780 nm, 40 mW, 2.05, 3.07 or 6.15 J/cm2) might

stimulate oral dysplastic and oral cancer cells by modulating the

Akt/mTOR/CyclinD1 signaling pathway to produce a more

aggressive behavior (33). PBM exposure to three HNC cell

lines was noted to result in the proliferation of cells in each

tumor line, but not in a normal tissue control (34). A systematic

review demonstrated that the effect of PBM on tumor cells

depends highly on the PBM parameters used (35). While the

limits of basing broad-reaching conclusions on in vitro assays

have been noted, collectively, it would be irresponsible to ignore

the possibility that PBM could, in some cases, negatively impact

tumor behavior. Investigating and understanding how PBMmay

modify tumor behaviors, both positively and negatively, is a

research priority.

Direct investigation of the radiation effects of PBM as it

affects tumor response is limited, but as with other forms of

cytotoxic cancer therapy, it is likely that PBM may have the

ability to affect tumor response to radiation in ways, which are

informed, not only by the dose, fractions, and timing of PBM or

radiotherapy (RT) but by the tumor. While the data is sparse and

limited to in vitro systems, there is evidence to suggest that, in

some cases, PBMmay act as a radiosensitizer (36). High fluences

(120 J/cm2) have been noted to up-regulate the activity of

survivin, a member of the inhibitor of apoptosis family (IAP),

mediating self-protection during tumor cell apoptosis (37). An
Frontiers in Oncology 05
in vitro study observed a pro-apoptotic effect of PBM in oral

squamous cell carcinoma (OSCC) cells in the absence of

radiation and no anti-apoptotic effects occurred that might

promote tumor cell resistance to cancer therapy (22).

Increased apoptosis of human osteosarcoma cells was also

induced by the administration of NIR (810 nm, continuous-

wave, 20 mW/cm², 1.5 J/cm²) prior to NPe6-mediated

photodynamic therapy as a result of increased cellular ATP

and a higher uptake of the photosensitizer (38). On the potential

enhancement of ionizing RT and CT, a study demonstrated that

PBM applied shortly before RT increased the loco-regional

blood flow that contributed to better local oxygenation (39). A

study with an orthotopic mouse model of head and neck

squamous cell carcinoma (HNSCC) demonstrated that PBM

does not protect the tumor from the cytotoxic effects of RT (40).

In contrast, a decreased mitotic rate was found in gingival

SCC after PBM at 805 nm and energy density of 4 J/cm2 and 20

J/cm2 (25), whereas no effect on cell proliferation or protein

expression of osteosarcoma cells was found when PBM was

administered with a wavelength of 830 nm (41). PBM (808 nm;

5.85 and 7.8 J/cm2) had an inhibitory effect on the proliferation

of a human hepatoma cells line (42), and a study with that

glioblastoma/astrocytoma cells demonstrated a slightly

decreased mitotic rate after PBM at 805 nm and 5–20 J/cm2

(43). Similarly, 808 nm laser irradiation with an energy density

of more than 5 J/cm2 inhibited cell proliferation of glioblastoma

cells in vitro (44). Moreover, a study observed growth inhibition

of cancer cell lines at relatively high cumulative PBM doses (45).

This prompted another study to hypothesize that PBMmay have

a therapeutic potential in lung cancer (46). PBM administered at

a dose of 150 J/cm2 appeared safe, with only minor effects on

B16F10 melanoma cell proliferation in vitro, and had no

significant effect on tumor growth in vivo. Only a high-power

density (2.5 W/cm2) combined with a very high dose of 1050 J/

cm2 could induce melanoma tumor growth in vivo (47). Current

reports from in vitro studies suggest that PBM may favor tumor

progression for OSCC through the activation of the Akt/mTOR

pathway (33), cellular proliferation (32) (34), and cellular

migration (48), while there are other reports on reduction in

tumor growth (48, 49). These controversial results, in addition,

to being in-vitro evaluations, could be due to the differences in

poorly documented parameters, and experimental model

systems (e.g; cell confluency, media conditions, etc) (50). It is

important to note that the results suggesting PBM tumor

enhancement was not replicable in other studies.

PBM (660 nm, 30mW, 424 mW/cm2, 56.4 J/cm2, 133 sec, 4

J) applied to chemically-induced OSCC in hamster cheek pouch

tissue increased the growth and severity of OSCC (51). However,

different results were demonstrated in a mouse model, which

was used to study the effects of PBM on multiple UV-induced

skin tumors. The experimental mice received full-body PBM for

37 days (670 nm, twice a day, 5 J/cm2), whereas control animals

received sham PBM. There was no enhanced tumor growth.
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Moreover, there was even a small but significant reduction in

tumor area in the PBM group, which could be explained by a

local photodynamic effect or PBM-induced antitumor immune

activity (52). Similar results were reported in a rat study showing

that small tumors exposed to PBM receded and completely

disappeared (53). It was hypothesized that upregulation of

ATP signaling by PBM promoted apoptosis and differentiation

of tumor cells, thereby slowing tumor proliferation (54, 55). In

an animal model of leukemia, all the animals developed

chemotherapy-induced alopecia (CIA). In order to stimulate

hair regrowth, rats in the experimental group received PBM,

whereas control animals received sham treatment. There was no

significant difference in leukemia development between the two

groups, as 22% of the PBM-treated animals and 20% of the

control animals remained leukemia-free. As such, PBM therapy

did not negatively influence the efficacy of CT (56). A study with

xenograft melanoma and OSCC mouse models demonstrated

that PBM reduced tumor growth and invasiveness. This study

suggests that PBM can indirectly attack tumor tissue by

stimulating anti-tumor immunity and normalizing tumor

vessels after PBM (49). Several clinical studies on the impact

of PBM treatments on tumor burden are evidenced by their use

for managing oral mucositis (57–59). These reports clearly

demonstrate the reduced tumor incidences, both recurrences

at the primary site and secondaries, in these patients attributed

to several factors such as the ability to complete prescribed

oncotherapy regimens, improved host health and resilience, and

thus improved anti-tumor responses. While direct PBM

contributions to these anti-tumor responses are plausible, it

remains to be thoroughly investigated (60, 61).

The results from these studies suggest that different tumor

cells may have distinct responses to specific PBM parameters and

doses. In part, these differences may also be explained by

variations in the cellular microenvironment since these have

been shown to affect cellular signal transduction pathways to

PBM exposure. The microenvironment of tumor cells varies

among in vitro studies and differs significantly from that found

in animal models. Moreover, it is clear that additional studies

using in vivo systems and different tumor lines are needed to

better understand the differences in tumor response to PBM and

how pre-treatment molecular and genomic characterization of

malignancies can be used to determine the appropriate fit for PBM

like other aspects of precision medicine. Based on this current

evidence, the WALT expert panel concludes that PBM is safe for

use in cancer-bearing patients, but does not recommend direct

treatments over the tumor site. The ‘one-size-fits-all’ protocols or

‘point-and-shoot’ approach should no longer be acceptable for

PBM treatments for its broad range of clinical applications.

Rationalized dosimetry, including individual wavelength photon

energy (photonic fluence), appropriate delivery technique, and

clinical judgment of targeted biological responses are essential for

optimal clinical therapeutic outcomes (62, 63).
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3.2.2 Human clinical safety data
A clinical study reported no differences in cancer recurrence

rates for patients receiving PBM for lymphedema following

breast cancer treatment compared to controls (64). A recent

RCT in which PBM was administered for prevention of OM

during CRT in HNC patients (diagnosed with SCC of the

nasopharynx, oropharynx, and hypopharynx) reported that at

a median follow-up of 18 months (range 10-48 months), patients

treated with PBM had better locoregional disease control and

improved progression-free or overall survival (65). A recent

retrospective analysis on 152 advanced OSCC patients examined

the outcome of cancer therapy and the incidence of tumor

recurrence after PBM (660 nm, 40 mW, 10 J/cm2) for the

prevention of OM. Results showed that prophylactic PBM did

not influence treatment outcome of primary cancer, recurrence,

the development of new primary tumors, or survival in advanced

OSCC patients (66), bearing in mind the individual tumor

response in the era of precision oncology.

PBM in the red or NIR spectrum may be safe and effective in

managing several complications of cancer therapy and hence

should be considered for cancer patients (67). Nevertheless, as

robust evidence for the lack of malignant cell protection or

enhancement of tumor growth has not been published, and

vigilance remains warranted. Given the lack of definitive data

with respect to long-term survival and in recognition of the

complexities, which govern tumor responsiveness, it is

incumbent on the clinician to fully inform patients of the

potential benefits and risks associated with PBM. Given its

tremendous potential in the oncology population, aggressive

pre-clinical and clinical investigations are critical to fully

understand those parameters, which define tumor effects and

patients’ response or non-responsiveness to PBM benefits.
3.3 Clinical indications

Virtually all conditions modulated by PBM (e.g.,

inflammation, ulceration, edema, pain, fibrosis, neurological

and muscular injury) are thought to be involved in the

pathogenes i s o f RT, HSCT, CT, or CRT-induced

complications in patients treated for cancer.

3.3.1 Acute oral mucositis
Oral mucositis (OM) is defined as an injury to the mucous

lining of the oral cavity due to chemical irritations, CT, or RT.

The incidence of OM is 59-100% in patients with oral or

oropharyngeal cancer undergoing RT to the head and neck,

and approximately 80% of the patients receiving myeloablative

HSCT and high dose-conditioning regimen. OM is common in

patients treated with CT for hematological cancer and occurs

less frequently in patients receiving CT for solid cancers,

affecting 15-80%. In recent years, mucosal injury has become
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prevalent in patients treated with certain types of targeted

therapy and immunotherapy. Considering that the

pathogenesis and course of OM depend on the clinical

circumstances, the management of OM is discussed separately

for each cancer type and treatment that causes it (68).

The underlying pathophysiology of OM is related to

multiple factors. It consists of simultaneous, interrelated events

that develop in a progressive mode in multiple tissue regions,

including the epithelium and the connective tissue. As such, a

five-phase model of OM was developed based on extensive

research (69, 70). The key players in the development of OM

are the excessive reactive oxygen species (ROS) production (71)

and the activation of nuclear factor kappa B (NFkB). Studies also
demonstrate that microvascular damage, the production of pro-

inflammatory cytokines, host-microbiome interactions, and

extracellular matrix (ECM) alterations are implicated in the

pathogenesis of OM (72). Recent advances in understanding

the pathogenesis of OM highlight emerging mediators of toxicity

and potential insights from technological advances in mucositis

research (68). This review noted that the precise etiopathology of

OM induced by targeted therapy or immunotherapy requires

further investigations.

Clinically OM is characterized by erythematous mucosal

changes, which can develop into oral ulcerations (4, 5, 69, 73). It

can significantly impair the patients’ QoL and functional status

and interfere with the cancer treatment regimen. Furthermore,

OM may increase the risk for bacteremia and septicemia in

immunosuppressed patients and is associated with increased

mortality at day 100 post-HSCT (74). Interestingly, acute OM

may be associated with an increased risk of chronic mucositis in

HNC patients (75, 76). Up to now, effective management

strategies for OM are still scarce (77), and pain control is often

insufficient (73). However, several interventions reached the

level of evidence that allowed the Mucositis Study Group

(MSG) of the Multinational Association for Supportive Care in

Cancer/International Society of Oral Oncology (MASCC/ISOO)

to recommend Clinical Practice Guidelines or suggest their use
Frontiers in Oncology 07
in specific patient populations (HNC, hematological cancer,

solid cancers), cancer therapy modality (RT for HNC, HSCT,

CT, combination of RT-CT), and for a specific purpose

(prevention/treatment) (78). The reader is advised to read all

the MASCC/ISOO guidelines, the methods used to develop

them, and the general concepts of application.

PBM is one such intervention, and this section will only

describe the core of the MASCC/ISOO guidelines regarding

PBM (79). Since the discovery of the wound healing effects of

PBM in 1963 by Dr. Endre Mester, much research has been done

regarding PBM in general. In supportive cancer care, the main

focus has been OM prevention and management. Figure 1 shows

a brief timeline of the advances in the field of PBM as relevant to

OM. The first clinical study on OM and PBM was conducted in

2001, which was followed by many follow-up clinical trials that

have enabled a significant body of literature. This led to several

systematic reviews and meta-analyses with MASCC/ISOO

guidelines first published in 2013 that was recently updated in

2019. The MSG of MASCC/ISOO identified strong evidence in

favor of PBM to prevent OM in three categories reflecting

discrete oncotherapy scenarios (Table 1). This strong evidence

includes multiple RCTs that consistently showed significant

positive results regarding OM prevention (4). For each

category, recommendations were made in favor of effective

protocols supported by evidence obtained in an RCT with no

major study-design flaw and that was reproducible. Importantly,

since there may be more than one effective protocol for each of

these categories, they recommended that the specific physical

PBM setting of the selected protocol be followed thoroughly for

optimal results. In other words, PBM therapy outcomes will be

unpredictable if the PBM settings and delivery approaches are

randomly combined from various protocols. In the WALT

guidelines below, we summarize our best understanding of

these parameters to suggest a starting point for clinical

treatments, irrespective of a specific device, and wavelength. It

is well appreciated that research about new protocols,

adjustments to the individual photometric features, pediatric-
FIGURE 1

Timeline of advances in the application of PBM therapy for oral mucositis. The grey font represents basic science advances. *current WALT position
paper. Abbreviations used SR&MA – Systematic review and meta-analysis; OM –Oral Mucositis; PBM - Photobiomodulation; MASCC – Multinational
Association for Supportive Care in Cancer; ISOO – International Society for Oral oncology; WALT – World Association for Photobiomodulation
Therapy; CCO – Cytochrome C Oxidase; TGF-b – Transforming Growth Factor beta 1; TRPV1 - Transient Receptor Potential-V1 .
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population specific protocols, and technical innovations of PBM

devices may lead to further refinement and update of the current

recommendations. There remains some uncertainty on the

potential for malignant transformation when PBM is applied

directly to the tumor site, which should be avoided (4). Informed

consent from the patients is essential, including information

about the expected benefit and potential risks of PBM should be

explicitly communicated.

Further, there have been several studies directly investigating

the efficacy of PBM for OM in pediatric patients with cancer of

different etiologies undergoing CT, mixed RT/CRT, or mixed

HSCT/CT (17, 80–96). The study settings ranged from case

series, cohort studies, and non-randomized trials to RCTs. The

results are promising as demonstrated in the meta-analysis by

Patel et al. in 2021 (97). They showed that PBM could

significantly reduce the incidence of severe OM in pediatric

patients based on 16 studies. However, due to significant

differences in PBM protocols in these trials (as IN the

MASCC/ISOO analysis), it is hard to make definite

recommendations for pediatric patients at the moment (97–

100). Nonetheless, these studies emphasize the non-invasive,

patient-friendly, safe and well-tolerated therapy PBM represents.

Hence, we include a PBM protocol for the prevention and

treatment of OM.

3.3.1.1 WALT recommendation 2022: clinical practice
guidelines

For Prevention of oral mucositis with an intra-oral device,

WALT recommends a visible wavelength (630-680 nm) LED/

Laser device with a power density (treatment surface irradiance)

of 10-50 mW/cm2 for a total dose of 1.2 Einstein (photon fluence

at 650 nm = 5.7 p.J/cm2) of per treatment field performed within

30 to 120 min prior to oncotherapy. Other wavelengths (400-

1100 nm) may be used with suitable adjustment to dosing, but

treatments must be monitored to ensure a non-thermal (< 45 °

C) process.

For Treatments of oral mucositis with an intra-oral device,

similar device parameters for a total dose of 2.5 Einstein (photon

fluence at 650 nm = 11.4 p.J/cm2) should be used and repeated 3

- 4 times a week for at least 15-20 sessions or until healing after

the end of oncotherapy.

For Prevention of oral mucositis with a transcutaneous

device, WALT recommends a near-infrared wavelength (800-

1100 nm) LED/Laser device with a power density (treatment

surface irradiance) of 30-150 mW/cm2 for a total dose 1 Einstein

(photon fluence at 810nm = 4.5 p.J/cm2) per treatment field

performed within 30 to 120 min prior to oncotherapy.

For treatments of oral mucositis with a transcutaneous

device, similar device parameters for a total dose of 6 1.3

Einstein (photon fluence at 810nm = 9 p.J/cm2) should be

used and repeated 3 - 4 times a week for atleast 15-20 sessions

or until healing after the end of oncotherapy. Other wavelengths
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(400-1100 nm) may be used with suitable adjustment to dosing,

but treatments must be monitored to ensure they are non-

thermal (< 45°C).

Consideration for Pediatric protocol: As there is inadequate

data, we suggest the same protocols as in adults for both trans-

cutaneous and intra-oral approaches (wavelengths, fluence per

fraction, irradiance, number of treatments per week, total

number of PBM treatments) be used for preventive and

curative intent. We did note that the trans-cutaneous devices

appear to be more clinically practical, have higher patient

acceptance, and hence are easier to implement in children.

Better-designed, multicenter clinical research studies using

these recommendations as a starting point are essential to

further optimize and validate PBM treatments for this

specific application.

3.3.2 Xerostomia and hyposalivation
One of the common oral complications related to therapy for

HNC is hyposalivation, and its accompanying symptom is termed

xerostomia (i.e., subjective sensation of dry mouth). Saliva plays a

key role in oral mucosal integrity, oral caloric intake, taste

perception, and speech (101). A substantial decrease in salivary

function reduces QoL and increases the burden of long-term dental

care (102, 103). Dry mouth affects about 74% of patients

immediately after RT and increases to 85% two years after

conventional RT to the head and neck area (104, 105). While

IMRT may preserve some of the major salivary glands, 68% of

patients develop xerostomia two years post-RT (106).

Hyposalivation and xerostomia occur following CT, radioactive

iodine treatment, HSCT, targeted therapy, and immunotherapy.

About 40% of patients experience dry mouth during allo-HSCT,

and increasing to 79% of patients at about 7 years post allo-HSCT. It

is suspected that much of the late dry mouth is due to chronic graft-

versus-host disease (GVHD) (105). Moreover, it may occur

secondary to medications used to support the cancer patient (e.g.,

opioid analgesics, centrally acting pain medications) and with

dehydration. Saliva is an important factor in the maintenance of

mucosal integrity, promotion of oral wound healing, taste

perception, formation of food bolus, initiation of food ingestion,

and swallowing and speech (101). Further, it has a function in

maintaining the integrity of the oral structure, in lubrication and

hydration, and in modifying the bacterial metabolism and

adherence to the tooth surface. Hyposalivation can negatively

impact the patients’ QoL and lead to an increased risk of dental

caries and tooth loss (102, 103).

A systemic review followed the methods described above,

and similar to the MASCC/ISOO approach, added the

reproducibility variable as an exclusion criterion. The details of

this systematic review can be found in Heiskanen, 2019 (79).

Briefly, six controlled clinical trials on PBM and xerostomia/

hyposalivation were identified, two reported on the same patient

population and were considered as a single study for the purpose
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of our analysis (Table 1). Four studies examined patients with

HNC treated with RT or RT combined with CT, and one study

was in patients undergoing HSCT. Considering that salivary

gland damage caused by RT may be different from the damage

caused by high-dose CT, each patient population is considered

separately (107–112).

Regarding RT or RT-CT induced salivary gland damage,

when categorizing the studies according to the aim of the PBM,

there was one RCT for prevention (106, 107) and one for

treatment of salivary hypofunction (109). In addition, for the

prevention of salivary hypofunction in HNC patients, there was a

comparative study (110), and for the treatment of salivary

hypofunction in HNC patients, there was an additional before-

and-after study (108). The protocols used in these studies varied

regarding the laser type, the approach (extra- or intra-oral),

number of sites applied, power, irradiance, time per point,

fluence, and timing relative to the RT. All the studies had

relatively low power, and none included placebo or were

double-blind. The results for the prevention or treatment of RT/

RT-CT associated salivary hypofunction were mixed with some

studies demonstrating benefit in objective outcome measures

(106–108) and subjective outcome measures (110), whereas

other trials reported no effect for these measures (109) or for

critical outcomemeasures (110). For patients undergoing HSCT, a

single RCT assessed the effect of PBM on xerostomia (110). The

primary endpoint of the study was the prevention of OM, but also

data was collected for xerostomia. The study showed a significant

improvement in the xerostomia score in the PBM group

compared to the control group when the scores were

accumulated until day 21 post-HSCT. This study did not assess

objective outcome measures for salivary gland dysfunction (111).

In summary, the evidence about PBM for cancer therapy-

associated salivary gland dysfunction is limited. Some evidence

indicates that there is a promising potential for this therapy for the

prevention or treatment of salivary gland dysfunction. More

research is essential (Table 2).

3.3.2.1 WALT recommendation 2022: expert consensus
opinion

There is inadequate data to provide clinical treatment

guidelines. Hence, we provide the following technical

recommendations to further clinical treatments and research

studies for PBM therapy in managing oncotherapy-associated

xerostomia and hyposalivation. WALT recommends treatments

with a transcutaneous PBM device using a visible or near-

infrared wavelength (400-1100 nm) LED/Laser device with a

power density (treatment surface irradiance) of 10-150 mW/cm2

for a total dose 2 Einstein (photon fluence at 810 nm = 9 p.J/cm2)

per treatment field performed. Treatments should be repeated 2

to 3 times a week for at least 3 to 4 weeks, or clinical benefit is

evident. It is noted that this protocol may have to be repeated

after 3 to 6 months for sustained benefits. Better-designed,

mul t i center c l in ica l re search s tud ies us ing these
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recommendations as a starting point are essential to further

op t im i z e and va l i d a t e PBM trea tmen t s f o r th i s

specific application.

3.3.3 Acute dysphagia
Patients undergoing RT or CRT for HNC have an increased

risk on developing dysphagia depending upon treatment

volumes, which is characterized by pain and difficulty in

swallowing. The prevalence of dysphagia in general oncologic

patients is 15.4%. This disorder may involve changes in

neuromusculoskeletal structure and function, anatomical

alterations, changes in salivary flow and consistency, adverse

effects during oncologic surgeries in the head and neck area, and/

or odynophagia. These negatively impact the patients’ QoL and

can lead to nutritional deficiencies, which can result in increased

health care costs (111, 112). The pathophysiology is complex,

and multiple mechanisms may overlap, which may change along

the course of the disease and treatment. There is a strong

relationship between OM, xerostomia, and dysphagia.

Moreover, there seems to be a significant association between

these oral problems and the patient’s Karnofsky level (113).

In a double-blind RCT with patients with hematologic

malignancies submitted to high dose CRT followed by an

autologous peripheral SCT or bone marrow transplant (BMT),

patients were preventively treated with intraoral PBM for OM. A

significant improvement of the ability to swallow was noted

(12.8 ± 3.1 L+ vs. 19.8 ± 4.6 L-, p= 0,01), as well as improved

saliva production (5.2 ± 1.3 L+ versus 16.2 ± 2.4, p= 0,005) in

patients treated with PBM versus the control group (110). Two

prospective RCTs with HNC patients treated with intraoral PBM

have been published in which mucositis-related dysphagia was a

secondary endpoint. A double-blind, phase III study did not

demonstrate a reduction in the incidence of grade 3 pharyngeal

dysphagia using low-dose PBM (0.1J/point) five times per week

(70). However, the other RCT showed a significant reduction of

dysphagia by using a combination of intraoral PBM five times

per week before each RT session and total parenteral nutrition

(TPN) (114). A prospective, randomized, double-blind, phase III

trial with HNC patients evaluated the use of intraoral PBM for

the prevention and treatment of OM. The study showed that

gastrostomy need was significantly lower in PBM patients than

in placebo patients (p= 0.01). The QoL of the PBM group was

significantly better (64). Few PBM studies have reported

dysphagia as an endpoint. As such, currently, it is difficult to

provide suggestions on the use of PBM for the management of

dysphagia. Therefore, it is recommended that future clinical

trials need to include dysphagia as a primary endpoint.
3.3.3.1 WALT recommendation 2022: expert consensus
opinion

There is inadequate data to provide clinical treatment

guidelines. Hence, we provide the following technical
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recommendations to further clinical treatments and research

studies for PBM therapy in managing oncotherapy-associated

acute dysphagia. WALT recommends a near-infrared

wavelength 810 nm LED/Laser device with a power density

(treatment surface irradiance) of 30-150 mW/cm2 for a total

dose 1 Einstein (photon fluence at 810 n = 4.5 p.J/cm2) per

treatment field. Treatments may be repeated 2 -3 times a week,

for at least 3 to 4 weeks or till improvements are evident. Better-

designed, multicenter clinical research studies using these

recommendations as a starting point are essential to further

op t im i z e and va l i da t e PBM trea tmen t s f o r th i s

specific application.
3.3.4 Acute radiation dermatitis
Up to 95% of the patients undergoing RT develop acute

radiodermatitis (ARD), which is an inflammatory skin reaction

inflicted by cellular injury due to ionizing radiation. Skin

reactions typically become visible two to three weeks after the

first RT session and can be graded based on the criteria of the

Radiation Therapy Oncology Group (RTOG), from erythema,

and dry desquamation (grade 1), patchy moist desquamation

(grade 2), confluent moist desquamation (grade 3), or in rare

cases necrosis with hemorrhage and ulceration can occur (grade

4) (115, 116). The severity of ARD is dependent on several

patient and treatment-related characteristics (117, 118).

The pathophysiology of ARD is complex, and the severity

depends on the survival of the actively proliferating basal cells in

the epidermis. In the first phase, an erythematous skin reaction

develops caused by vascular damage leading to an increase in

vascular permeability and vasodilation. This is followed by an

inflammatory reaction characterized by transendothelial

migration of circulatory immune cells to the irradiated skin

driven by the production of cytokines and chemokines. The skin

compensates by up-regulating the proliferation of the basal

epidermal stem cells, leading to dry desquamation when the

turnover of the new cells is faster than the shedding of the old

ones. When the basal stem cells become depleted, moist

desquamation arises (119). ARD is a distressing and painful

side effect of RT, which can lead to problems in the patients’

daily life, negatively affecting their QoL. In cases of severe ARD,

interruption of RT can be necessary, which can negatively affect

the treatment outcome and overall patient survival (120).

Guidelines for prevention and management of ARD put forth

by MASCC recommend the implementation of daily hygiene

practices and the application of potent topical steroids

(120–123).

The use of PBM for the prevention and management of ARD

was first reported in a case-control study. Three breast cancer

patients with RT-induced skin ulcers were treated with PBM,

which demonstrated improved wound healing (124, 125). A

prospective intervention trial with a retrospective control group

showed that PBM reduced the incidence of grade 2≥ ARD in
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breast cancer patients (126). In contrast, an RCT was not able to

replicate these results (127). In a prospective, quasi-experimental

intervention trial (DERMIS) with breast cancer patients

undergoing RT, PBM was applied twice per week in a

therapeutic manner. Results demonstrated that PBM prevented

the aggravation of ARD and improved the patients’QoL towards

the end of RT (128). In a prospective intervention trial with

breast cancer patients, they applied PBM from the start of RT

twice per week and showed that PBM was associated with a

reduced incidence of severe ARD (129). The TRANSDERMIS

trial was a patient-blinded RCT investigating the use of PBM in

the prevention of ARD in breast cancer patients. PBM was

applied twice weekly during the full course of RT. The trial

showed that PBM was able to prevent the development of grade

2≥ARD both by subjective and objective outcome measures and,

the QoL measures were significantly better in the PBM treated

group (130, 131). A recent RCT demonstrated that PBM

improved ARD in HNC patients (132). The DERMISHEAD

study (ClinicalTrials.gov Identifier: NCT02738268) is an actively

enrolling placebo-controlled RCT, investigating the efficacy of

PBM in preventing ARD in HNC patients (133).
3.3.4.1 WALT recommendation 2022: expert consensus
opinion

There is inadequate data to provide clinical treatment

guidelines. Hence, we provide the following technical

recommendations to further clinical treatments and research

studies for PBM therapy in managing oncotherapy-associated

radiation dermatitis. WALT recommends treatments with a

transcutaneous PBM device using a visible or near-infrared

wavelength (400-1100 nm) LED/Laser device with a power

density (treatment surface irradiance) of 10-150 mW/cm2 for a

total dose of 1 Einstein (photon fluence at 810 nm = 4.5 p.J/cm2)

treatment field performed within 30 to 120 min prior to

oncotherapy. Treatments should be repeated 3 - 4 times a

week for at least 5 to 6 weeks, or clinical benefit is evident.

When ARD is associated with inflammation of subcutaneous

tissue, WALT recommends using a near-infrared (730 – 800

nm) transcutaneous LED/laser device with a dose 2 Einstein

(photon fluence at 810 nm = 9 p.J/cm2) per treatment field 3-4

times a week, for at least 5 to 6 weeks. Better-designed,

mul t i center c l in ica l r esearch s tud ies us ing these

recommendations as a starting point are essential to further

op t im i z e and va l i d a t e PBM trea tmen t s f o r th i s

specific application.

3.3.5 Lymphedema
As a consequence of cancer treatment, Lymphedema is

apparent in breast cancer and HNC patients HNC) (134, 135).

About 20% of breast cancer patients can develop lymphedema in

the upper extremity after cancer treatment (134). In the case of

HNC, it is often an undervalued late effect, but it has been
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diminished with the introduction of Intensity-Modulated

Radiation Therapy (IMRT). In HNC patients, lymphedema

may develop externally, on the face and neck, and/or

internally involving the larynx and pharynx. External

lymphedema may negatively impact the patients’ body image,

while internal lymphedema may disturb the normal breathing

process, lead to dysphagia and trismus, and impact speech. The

incidence of lymphedema in HNC patients is relatively high. For

example, a single-center study on 81 HNC patients reported an

incidence of 75%, with 10% external, 39% internal, and 51%

experiencing both types of lymphedema. Pharyngeal carcinoma

patients had the highest risk. Chronic lymphedema that develops

later (2–6 months after) may resolve spontaneously in some

patients, but not in all (135). The pathobiology of lymphedema

consists of an initiation where disruption of lymphatic structures

occurs by surgery or RT, leading to the accumulation of lymph

fluid in the interstitial tissues. Inflammatory cells will infiltrate

the affected tissue. This inflammatory reaction will be enhanced

by the recruitment of additional immune cells from the

circulation by cytokines and chemokines that remain in the

tissue due to lymphatic dysfunction. This will ultimately lead to

additional soft tissue damage and fibrosis, worsening the

lymphatic function even more (134, 136).

The current treatment of lymphedema is based on

symptom management and prevent ion of d i sea se

progression. As such, the main therapeutic option for

lymphedema is complete decongestive therapy (CDT) (137–

139). There was only one case-control study that showed a

beneficial effect of PBM in the management of lymphedema

in HNC patients (140). However, no prospective trial has

been published to date, and further research is recommended.

Also, in breast cancer patients, PBM has been investigated as

a potential treatment for post-mastectomy lymphedema. The

possible underlying mechanism of PBM for this indication is

the stimulation of lymphangiogenesis, enhancement of

lymphatic motility, and reduction of lymphatic fibrosis. A

meta-analysis showed moderate evidence for the effectiveness

of PBM in the reduction of arm swelling and pain in women

with breast cancer-related lymphedema (98). Additionally,

results demonstrated that the combination of PBM with CDT

was more effective in reducing the arm volume than with

CDT alone (141–144). An RCT with 40 breast cancer patients

demonstrated a pain decrease of 50% and significantly higher

grip strength after PBM (145). Another RCT evaluated the

effectiveness of PBM as a complementary treatment to CDT

for managing lymphedema in breast cancer patients 12

months post-intervention. Results demonstrated that the

combination of PBM and CDT significantly decreased the

number of lymphedema symptoms and relieved their

impaired limb mobility symptoms. In addition, PBM

reduced their emotional distress from lymphedema

symptoms, such as sadness and self-perception (146).
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3.3.5.1 WALT recommendation 2022: expert consensus
opinion

There is inadequate data to provide clinical treatment

guidelines. Hence, we provide the following technical

recommendations to further clinical treatments and research

studies for PBM therapy in managing oncotherapy-associated

lymphedema. WALT recommends treatments with a

transcutaneous PBM device using a visible or near-infrared

wavelength (400-1100 nm) LED/Laser device with a power

density (treatment surface irradiance) of 10-150 mW/cm2 for a

total dose of 2 Einstein (photon fluence at 810 nm = 9 p.J/cm2)

per treatment field. Treatments should be repeated 2 to 3 times a

week for at least 3 to 4 weeks, or clinical benefit is evident.

Better-designed, multicenter clinical research studies using these

recommendations as a starting point are essential to

further optimize and validate PBM treatments for this

specific application.
3.3.6 Dysgeusia
Dysgeusia is a taste disorder characterized by a persistent

gustatory sensation in the absence of taste stimulants or

distorted gustatory perception. The complete loss of gustatory

perception (ageusia) is rare, as most of the patients experience a

reduction in the intensity of gustatory perception (hypogeusia).

This disorder may be temporary or, in some cases, permanent

(147, 148). Taste dysfunction in cancer patients can lead to

decreased food intake and subsequent malnutrition and weight

loss, resulting in a decreased QoL and increased healthcare costs

(149, 150). In one report, the prevalence of dysgeusia in patients

submitted to induction CT exclusively was 56.3%, to RT

exclusively 66.5%, and to CRT 76%. About 15% of the patients

continued to experience this side effect up to one-year post-

treatment (151).

The pathogenesis of dysgeusia is complex and not well

understood because there are multiple mechanical and

chemical factors and clinical conditions (systemic factors and

diseases; hyposalivation; oral, dental, and oropharyngeal

pathologies) that can impact the gustatory perception (152).

The mechanism by which CT and RT cause taste alterations is

believed to be due to neurological damage, a decrease in the

number of receptor cells, and/or an alteration of cell structure

(151). Evaluating the severity of dysgeusia is complicated

because of the heterogeneity of the methods, which can be

qualitative, sip and spit tests, and/or patient surveys (150). No

standard management approaches for dysgeusia have been

established (151).

Other than a single case report with a positive outcome

(153), there are no prospective clinical trials evaluating the use of

PBM in the management of dysgeusia. Therefore, the potential

utility of PBM in the management of dysgeusia in cancer

patients currently remains limited.
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3.3.6.1 WALT Recommendation 2022: Expert
Consensus Opinion

There is inadequate data to provide clinical treatment

guidelines. Hence, we provide the following technical

recommendations to further clinical treatments and research

studies for PBM therapy in managing oncotherapy-associated

dysgeusia. WALT recommends treatments with an intraoral

visible (red 630-680 nm) or transcutaneous near-infrared

(800-1100 nm) wavelength LED/laser device with a power

density (treatment surface irradiance) of 10-150 mW/cm2 for a

total dose of 2 Einstein (photon fluence at 810 nm = 9 p.J/cm2)

per treatment field performed. Treatments should be repeated 3

to 4 times a week for 3 to 4 weeks, or clinical benefit is

evident.Better-designed, multicenter clinical research studies

using these recommendations as a starting point are essential

to further optimize and validate PBM treatments for this

specific application.

3.3.7 Trismus
Trismus is a restriction in jaw movement, which may be due

to tumor, local infection, tissue fibrosis, pain upon mouth

opening or a tonic contraction of the muscles of mastication

(131). It has been defined variously as a mouth opening of less

than 40 or less than 20 mm, whereas less restrictive

classifications also have been used (154). Trismus is caused by

tumor invasion or RT of the masticatory muscles or the

temporomandibular joint (154, 155). The weighted prevalence

of trismus is estimated to be 25% following conventional RT, 5%

following IMRT, and 31% for CRT (156). The risk of trismus

increases when the cumulative radiation dose is higher than 60

Gy (157). However, the most important risk factor is the

inclusion of the lateral pterygoid muscles in the high-dose RT

field (158). Trismus typically develops 3-6 months post-RT and

frequently becomes a lifelong problem (155, 159).

As demonstrated by several studies, fibrosis seems to be an

important event in the development of RT-induced trismus.

Other factors enhancing the development of trismus are post-

surgical scar tissue, nerve damage, or a combination of these

factors (155). Mandibular hypomobility eventually leads to

muscle shortening and possibly temporomandibular joint

dysfunction (156). The number of negative consequences of

trismus and orofacial pain for the patients’ general health is high,

including a reduction in nutritional intake, difficulty speaking,

compromised oral health, and a poor QoL (160). Trismus can be

prevented by avoiding RT to the masticatory structures.

However, early interventions can also be used to minimize

trismus (161–163).

There is a single case report study that investigated the use of

PBM in the management of trismus two months post-RT. At the

final PBM session, the patient’s mouth opening increased from

20 to 30 mm, and the pain decreased from a visual analog score

(VAS) from 9 to 1. These positive results persisted up to one year
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after the final PBM session (164). The main rationale for a

possible clinical benefit of PBM in the management of trismus is

the potential of PBM to reduce fibrosis and promote muscle

regeneration. Due to the limited amount of clinical data, no

recommendations are possible on the use of PBM for the

management of trismus.

3.3.7.1 WALT Recommendation 2022: Expert
Consensus Opinion

There is inadequate data to provide clinical treatment

guidelines. Hence, we provide the following technical

recommendations to further clinical treatments and research

studies for PBM therapy in managing oncotherapy-associated

trismus. WALT recommends treatments with a transcutaneous

near-infrared (800-1100 nm) wavelength LED/laser device with

a power density (treatment surface irradiance) of 10-150 mW/

cm2 for a total dose of 2 Einstein (photon fluence at 810 nm = 9

p.J/cm2) per treatment field performed. Treatments should be

repeated 3 to 4 times a week for 4 to 6 weeks, or clinical benefit is

evident.Better-designed, multicenter clinical research studies

using these recommendations as a starting point are essential

to further optimize and validate PBM treatments for this

specific application.

3.3.8 Bone Necrosis
Bone necrosis can occur due to RT of the HNC region, which

is specified as osteoradionecrosis (ORN), or due to specific

medication, also termed medication-related osteonecrosis of

the jaw (MRONJ) (165, 166) (167, 168). RT can cause vascular

occlusion leading to the loss of osteocytes, which can result in

bone necrosis (165, 166). Mandibular ORN prevalence is

estimated between 5%-15%, but due to the improvements in

the RT technique and the introduction of IMRT, less than 5% of

patients develop ORN. Moreover, suitable pre-RT dental care

can also help to prevent ORN (155, 169). To date, the underlying

mechanism of ORN is still not completely clear. Most obvious,

RT induces a fibro-atrophic process, which will consist of free

radical formation, endothelial dysfunction, inflammation,

microvascular thrombosis, fibrosis, and remodeling. This will

eventually result in bone and tissue necrosis (170). Several

factors can increase the risk of ORN, including inflammatory

dental disease, soft tissue trauma, and dental surgical procedures

to the bone in sites of high dose RT. An important risk factor of

ORN is removing diseased teeth after RT. However, bone

necrosis can also develop due to periodontal disease, trauma,

or in a spontaneous manner (171, 172). Removing compromised

teeth before RT and proper dental care during and following RT

is essential to prevent ORN (165, 166).

Medication-related osteonecrosis of the jaw (MRONJ) can

occur in cancer patients undergoing treatment with angiogenesis

inhibitors (e.g., bevacizumab, sunitinib) for advanced HNC and

in patients with bone metastases treated with bisphosphonates
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(167, 168). Bevacizumab is an antibody that blocks vascular

endothelial growth factor (173), which can lead to tissue

ischemia (174–176). In addition, it may inhibit proper wound

healing and stimulate oral mucosal breakdown leading to

exposure of the necrotic jawbone (177). Sunitinib is a TKI that

can also cause MRONJ by blocking several pathways related to

angiogenesis (178, 179). Bisphosphonates inhibit bone turnover

by inducing osteoclastic apoptosis and inhibiting osteoblast-

mediated osteoclastic activity (168). The incidence of MRONJ

ranges from 0.8% to 12%. The American Association of Oral and

Maxillofacial Surgeons (AAOMS) recommends good oral

hygiene, the use of pharmacological therapy (e.g., antibiotics,

pain medication), and, in case of persisting exposed bone,

surgical removal (180).

In an in vivo study, PBM applied on rat bone before and

during RT had a positive effect (181), and comparable results

were described by another animal study (182). However, another

in vivo study found that PBM was not able to repair the RT-

induced bone damage (183). To our knowledge, no clinical

studies on the effects of PBM for ORN have been conducted.

Although, several studies demonstrated a beneficial effect of

PBM in the management o f MRONJ induced by

bisphosphonates (184–190). A review concluded that the use

of PBM might have a significant advantage above classical

therapy as the overall complete response rate was 55% for the

patients that underwent PBM, while this was only 30% for the

patients receiving the classical care (191). A study in a rodent

wound healing model found evidence that both laser and LED

were capable of stimulating angiogenesis in vivo (192). Up to

now, no clinical trials on the management of MRONJ induced by

angiogenesis inhibitors have been found in the literature. Rapid

repair of chronic soft tissue necrosis in previously radiation-

treated HNC patients has been reported in 2-4 weeks of PBM in

a small series of cases (193). This finding was confirmed by

similar findings in another case report of another institution

(194). This case report describes an additional case of a

persisting radiation-associated mucosal necrotic lesion, treated

at another institution with rapid and early improvement and

complete resolution in 6 weeks, comparable to the three cases

previously reported (195). These cases provide clinical evidence

of rapid repair of radiation-induced chronic mucosal ulceration

due to PBM.

3.3.8.1 WALT Recommendation 2022: Expert
Consensus Opinion

There is inadequate data to provide clinical treatment

guidelines. Hence, we provide the following technical

recommendations to further clinical treatments and research

studies for PBM therapy in managing oncotherapy-associated

bone necrosis. WALT recommends treatments with an intraoral

visible (red 630-680 nm) or transcutaneous near-infrared (800-

1100 nm) wavelength LED/laser device with a power density

(treatment surface irradiance) of 10-150 mW/cm2 for a total
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dose of 2 Einstein (photon fluence at 810 nm = 9 p.J/cm2) per

treatment field performed. Treatments should be repeated 3 to 4

times a week for 4 to 6 weeks, or clinical benefit is evident. Better-

designed, multicenter clinical research studies using these

recommendations as a starting point are essential to further

optimize and validate PBM treatments for this specific application.
3.3.9 Voice and Speech Alterations
The main communication tools of a person are his/her voice

and speech, and they play an important role in a person’s

identity and personality. The quality of the voice is determined

by the movement and characteristics of the vocal cords, while the

quality of speech is dependent on the resonance characteristics

of the vocal tract. Any alteration to the muscle or tissue

properties of the articulator structures can affect the

coordinated volitional movements leading to speaking

problems. Impairments of the voice and speech can

significantly diminish the patient’s QoL. However, these

complications do not receive much supportive care during

cancer therapy. In addition, they are likely under-reported in

efforts to preserve organ function after cancer therapy (196, 197).

The pathophysiology of voice and speech problems

resembles that o f dysphag ia , which may inc lude

neuromuscular weakness due to tumor invasion. Mucositis of

the soft palate and laryngeal soft tissues, fibrosis or vocal fold

atrophy, edema and atrophy of laryngeal and pharyngeal tissues,

and altered saliva or xerostomia can lead to CRT-induced voice

and/or speech alterations (198, 199). Long-term functional

impairment of the voice and/or speech may be prevented by

new RT delivery techniques, including IMRT, which are

designed to spare anatomical structures that are involved with

voice and/or speech. Further, early speech rehabilitation may

also help (200).

Currently, there are no exact figures of the prevalence of

speech and voice dysfunction in advanced HNC patients treated

with (C)RT. Therefore, prospective studies are needed that will

inc lude base l ine measurements and s tandard ized

multidimensional assessment of functional aspects of voice and

speech (196). To our knowledge, there are no studies on the

effect of PBM on the quality of speech and voicing in HNC

patients. Still, PBM may preserve the function of the anatomical

structures involved directly and could have indirect benefits by

decreasing hyposalivation.
3.3.9.1 WALT Recommendation 2022: Expert
Consensus Opinion

There is inadequate data to provide clinical treatment

guidelines. Hence, we provide the following technical

recommendations to further clinical treatments and research

studies for PBM therapy in managing oncotherapy-associated

voice and speech alterations. WALT recommends treatments

with a transcutaneous near-infrared (800-1100 nm) wavelength
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LED/laser device with a power density (treatment surface

irradiance) of 10-150 mW/cm2 for a total dose of 2 Einstein

(photon fluence at 810 nm = 9 p.J/cm2) treatment field performed.

Treatments should be repeated 3 to 4 times a week for 2 to 4

weeks, or clinical benefit is evident. Better-designed, multicenter

clinical research studies using these recommendations as a starting

point are essential to further optimize and validate PBM

treatments for this specific application.

3.3.10 Palmar-plantar erythrodysesthesia
Palmar-Plantar Eythrodysesthesia (PPE), also known as

hand-foot syndrome, is a side effect of many classic CT agents

and newer molecular targeted therapies (201, 202). PPE is

characterized by redness, swelling, and pain on the palms of

the hands and/or the soles of the feet, that when severe, can

progress to frank blistering. It sometimes occurs elsewhere on

the skin, such as the knees or elbows, but this is less common

(201, 202). The most conventional cytotoxic drugs that can cause

this syndrome include doxorubicin, cytarabine, docetaxel,

capecitabine, or 5-fluorouracil. Also, multitargeted TKIs such

as sorafenib, sunitinib, regorafenib, and others that target

angiogenesis is associated with PPE. PPE is usually the worst

during the first 6 weeks of treatment with targeted therapy,

although with conventional CT, the condition may not present

until 2-3 months after initiation of therapy (203–205).

The underlying mechanism is still not clear. There are

several factors that could explain the development of PPE in

hand palms and foot soles, such as the rapid cell division,

gravitational forces, specific vascular anatomy, temperature

gradients, as well as increased drug concentration in the

eccrine sweat glands (203–205). Management of PPE consists

of discontinuation of the drug and symptomatic treatment to

provide relief, diminish edema, and prevent superinfection.

Symptom management includes wound care, pain medication,

and/or the application of topical alcohol-free (anti-

inflammatory) emollients (206).

The evidence regarding the use of PBM for the management

of PPE is limited. A single clinical trial with patients that

presented PPE due to active CT or targeted therapy was

conducted. Patients served as their own control, as one body

site was treated with PBM while the other one was treated with

sham laser. Preliminary results of 31 patients demonstrated no

significant effect of PBM on the severity of PPE when both body

sites were compared at the end of the therapy. However, patients’

pain decreased, and patient satisfaction was higher due to

PBM (207).

3.3.10.1 WALT Recommendation 2022: Expert
Consensus Opinion

There is inadequate data to provide clinical treatment

guidelines. Hence, we provide the following technical

recommendations to further clinical treatments and research
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studies for PBM therapy in managing oncotherapy-associated

Palmar-Plantar Eythrodysesthesia. WALT recommends

treatments with an intraoral visible (red 630-680 nm) or

transcutaneous near-infrared (800-1100 nm) wavelength LED/

Laser device with a power density (treatment surface irradiance)

of 10-150 mW/cm2 for a total dose of 2 Einstein (photon fluence

at 810 nm = 9 p.J/cm2) per treatment field performed. For early

lesions, a LED/Laser device with a red wavelength (630-660 nm)

in direct contact with the skin can also be used. Treatments

should be repeated 2 to 3 times a week for 2 to 4 weeks, or

clinical benefit is evident. Better-designed, multicenter clinical

research studies using these recommendations as a starting point

are essential to further optimize and validate PBM treatments for

this specific application.
3.3.11 Graft versus host disease
One of the complications that occur following allogenic

HSCT is graft-versus-host disease (GVHD). This side effect is

accompanied by skin, digestive, and oral problems. The

mechanism underlying GVHD is based on an immune

reaction caused by the immune cells from the non-identical

donor (the graft) that recognize the transplant recipient (the

host) as foreign. When it occurs in the first 100 days after

transplantation, it is defined as the acute form, while after this

time period, it is called chronic GVHD, which can persist for

months to years. Oral problems occur mostly during the chronic

GVHD and are characterized by white and red changes on oral

mucosa with or without ulceration and may be complicated by

dry mouth. Moreover, oral lichen planus GVHD can occur as a

single manifestation of GVHD, which often resembles classic

oral lichen planus, an inflammatory condition that affects oral

mucous membranes. Oral lichen planus is characterized by

white, lacy patches; red, swollen tissues; or open ulcers.

Clinical symptoms range from a painful, burning sensation, a

diminished taste, a loss of appetite, and hyposalivation in some

extreme cases (208, 209).

Acute GVHD may appear in 20%–40% of patients receiving

an allogeneic HSCT from a sibling with an identical human

leukocyte antigen (HLA) and in over 50% of patients receiving

an allogeneic HSCT from an unrelated donor. The incidence of

chronic GVHD ranges from 30% to 70% (210–212).

Management of oral GVHD is based on good oral hygiene

and/or systemic/local treatment with steroids or other

immunomodulatory medicines. However, this seems to be

insufficient in some cases (208, 209). PBM has been evaluated

in the treatment of oral lichen planus with positive outcomes

(213–220). Based upon this, PBM has been utilized for local

treatment of oral GVHD in patients with continuing symptoms

and signs despite systemic and topical therapies with

corticosteroids and other immunosuppressants. Two reports of

patients who were treated with PBM showed mucosal lichenoid

change; particularly, ulceration and erythema were improved in
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3-4 weeks of treatment and oral pain, and dry mouth improved

in most patients (221, 222). These findings suggest that PBM

may represent an additional approach for the management of

oral GVHD and suggest that controlled studies should be

conducted to confirm the efficacy of PBM therapy in oral

GVHD and to determine optimal PBM therapy protocols.

3.3.11.1 WALT Recommendation 2022: Expert
Consensus Opinion

There is inadequate data to provide clinical treatment

guidelines. Hence, we provide the following technical

recommendations to further clinical treatments and research

studies for PBM therapy in managing oncotherapy-associated

Graft-versus-Host Disease. WALT recommends treatments with

a transcutaneous near-infrared (800-1100 nm) wavelength LED/

laser device with a power density (treatment surface irradiance)

of 10-150 mW/cm2 for a total dose of 2 Einstein (photon fluence

at 810 nm = 9 p.J/cm2) per treatment field performed. For early

lesions, a LED/Laser device with a red wavelength (630-660 nm)

in direct contact with the skin has been noted to be beneficial as

well. Treatments should be repeated 3 to 4 times a week for 4 to 6

weeks, or clinical benefit is evident.Better-designedd,

mul t i center c l in ica l re search s tud ies us ing these

recommendations as a starting point are essential to further

op t im i z e and va l i da t e PBM trea tmen t s f o r th i s

specific application.

3.3.12 Peripheral neuropathy
Chemotherapy-induced peripheral neuropathy (CIPN) is a

common side effect of CT, with an incidence of 68% in the first

month after CT (223). The main neurotoxic CT agents are

taxanes, platinum drugs, vinca alkaloids, thalidomide, and

bortezomib. Symptoms related to CIPN are typically

symmetric and bilateral and include paresthesia, numbness,

burning pain, loss of temperature sensation, and loss of

tendon reflexes typically appearing in distal extremities,

indicating increased vulnerability of neurons with the longest

axons (224, 225). Sensory neurons are particularly affected, while

motor, autonomic, or CNS involvement is rare. This selective

vulnerability likely relates to the permeability of the blood-nerve

barrier at the level of the dorsal root ganglion (226). CIPN

impairs patients’ daily activities because of comorbidities such as

psychological distress, fall risk, and poor sleep quality resulting

in a significant decrease in QoL (227). Furthermore, CIPN

represents a heavy economic burden (228). The pathogenesis

of CIPN can be explained by the fact that neurotoxic CT agents

cause mitochondrial DNA damage, stabilize or destabilize

microtubule formation, or have an anti-angiogenic effect.

However, the exact pathophysiology of CIPN is still not

clear (226).

Pharmacological symptom management (e.g., anti-

depressants or pain medication) provides a limited benefit
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(229, 230). In severe cases, CT dose delays and/or reductions

are necessary, which can affect treatment outcomes (224). There

are no widely accepted evidence-based measures to prevent or

minimize CIPN (231). Several animal studies have been

performed to investigate the effectiveness of PBM in the

management of CIPN (232–234). They demonstrated that

PBM is able to reduce neuropathic pain, promote functional

recovery of peripheral nerves, and stimulate axonal growth and

regeneration. Moreover, an in vivo study showed a reduction of

cold and mechanical allodynia after PBM (233). Furthermore,

research with beneficial results has been reported for PBM in

patients with diabetic neuropathy, demonstrating that the nerve

conduction velocity significantly improved after PBM (230,

235–237).

Three clinical trials have been conducted investigating the

effect of PBM on the management of CIPN. A single group

prospective trial with breast cancer patients observed a decreased

Brief Pain Index (BPI) after PBM (238). According to an RCT,

PBM induced a significant reduction in the modified Total

Neuropathy Score (mTNS) in patients with cancer from

different etiologies (239). Another prospective, single-arm

study with gastrointestinal cancer patients observed a

significant reduction in neurotoxicity symptoms after PBM

(240, 241).

3.3.12.1 WALT Recommendation 2022: Expert
Consensus Opinion

There is inadequate data to provide clinical treatment

guidelines. Hence, we provide the following technical

recommendations to further clinical treatments and research

studies for PBM therapy in managing oncotherapy-associated

peripheral neuropathy. WALT recommends treatments with a

transcutaneous near-infrared (800-1100 nm) wavelength LED/

laser device with a power density (treatment surface irradiance)

of 10-150 mW/cm2 for a total dose of 2 Einstein (photon fluence

at 810 nm = 9 p.J/cm2) per treatment field performed.

Treatments should be repeated 3 to 4 times a week for 4 to 6

weeks, or clinical benefit is evident. Better-designed, multicenter

clinical research studies using these recommendations as a

starting point are essential to further optimize and validate

PBM treatments for this specific application.

3.3.13 Radiation-induced fibrosis
The soft tissue and lymphatic complications of HNC

radiation are ubiquitous, as more than 50% of the patients

develop severe fibrosis (242). Radiation-induced fibrosis

(RIF) can adversely impact patients’ QoL. A particularly

important manifestat ion of RIF includes impaired

swallowing and aspiration due to mucosal and stromal

fibrosis of the neck and pharyngeal musculature, laryngeal

lymphedema, and stiffness of the tissue architecture that

result in substantial physical symptom burden and
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functional loss (135). The extent of RIF depends on multiple

factors, including the tumor site, the affected adjacent organs,

and the dose prescribed (243).

The underlying mechanism of RIF in normal tissues has

been extensively studied. Ionizing radiation generates ROS and

nitrogen species (NO) that lead to localized inflammation, which

in the acute setting causes irritation of the skin and the epithelial

lining of adjacent organs (70). The acute inflammatory process

evolves into a chronic inflammatory state and tissue remodeling

several months after RT, which can progress over many years,

causing lymphedema, fibrosis, pain, atrophy, and organ

dysfunction (243, 244). Transforming growth factor-beta

(TGF-b) serves as one of the primary mediators in this

response along with a host of other cytokines and growth

factors (243). The current treatment of RIF involves taking

pentoxifylline/vitamin E primarily daily for several years with

modest benefit. Despite elucidation of molecular mechanisms of

RIF secondary to RT in animal models, to date, no effective

treatment measures are available (245).

The use of PBM in the management of fibrosis has been

investigated in studies in vitro (246–249). The available evidence

demonstrates that PBM can regulate the main targets of the

fibrosis pathway ranging from the reduction of the fibroblast

proliferation and migration speed, inhibition of the production

of TGF-b and the related pathway, to the downregulation of the

production and deposition of collagen (247). There are currently

no published clinical studies using PBM to address RIF (250).

Currently, investigators at New York University are evaluating

the feasibility, safety, and tolerability of providing PBM for the

treatment of RIF in HNC patients treated with RT. Moreover,

they are investigating the corresponding metabolic changes in

the microenvironment.

3.3.13.1 WALT Recommendation 2022: Expert
Consensus Opinion

There is inadequate data to provide clinical treatment

guidelines. Hence, we provide the following technical

recommendations to further clinical treatments and research

studies for PBM therapy in managing radiation-induced fibrosis.

for prevention with a transcutaneous device, WALT

recommends a near-infrared wavelength (800-1100 nm) LED/

Laser device with a power density (treatment surface irradiance)

of 10-150 mW/cm2 for a total dose of 2 Einstein (photon fluence

at 810 nm = 9 p.J/cm2) per treatment field. Treatments should be

performed 30 to 120 min before each treatment for the duration

of the radiation treatment,

for treatments with a transcutaneous device, WALT

recommends a near-infrared wavelength (800-1100 nm) LED/

Laser device with a power density (treatment surface irradiance)

of 10-150 mW/cm2 for a total dose of 2 Einstein (photon fluence

at 810 nm = 9 p.J/cm2) per treatment field. Treatments should be

repeated 3 to 4 times a week for 6 to 8 weeks, or clinical benefit

is evident.
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Better-designed, multicenter clinical research studies using

these recommendations as a starting point are essential to

further optimize and validate PBM treatments for this

specific application.

3.3.14 Chemotherapy-induced alopecia
Chemotherapy-induced alopecia (CIA) is a common side

effect of CT, affecting approximately 65% of patients undergoing

CT, although this figure is highly dependent on the CT agent

used (251). CIA is a direct effect of the cytotoxic CT on the

rapidly dividing cells, including the hair matrix cells (251). This

side effect is considered as one of the most distressing and

traumatizing experiences for cancer patients, particularly in

women (252, 253). During and even after CT, CIA will hinder

patients’ QoL and their ability to cope effectively with their

disease. Since hair is an important indicator of femininity,

attractiveness, and personality, loss of hair could lead to body

dissatisfaction and poor post-treatment adjustment (254). In

addition, CIA can induce physical pain such as headaches and

pain on the scalp (255). There are no approved pharmacologic

therapies for CIA (251). The effect of topical or oral application

of minoxidil has been investigated with limited success (256,

257). The only available preventive measure is based on scalp

cooling (258). Nevertheless, this treatment has a highly variable

success rate and brings along certain complications (e.g., feeling

cold, dry skin, nausea, mild headaches) (258).

Concerning the use of PBM and hair loss, positive results

were demonstrated in clinical trials applying PBM for the

treatment of androgenetic alopecia and alopecia areata (259–

261). An in vivo study investigated the effectiveness of PBM in

CIA in rats. By 15 days post-CT, the PBM-treated rats showed

hair regrowth while none of the sham-treated rats did. PBM

probably stimulated the proliferation of hair-matrix keratinocyte

stem cells or activated dermal papilla cells (56). No clinical trials

on the use of PBM for CIA are available.

3.3.14.1 WALT Recommendation 2022: Expert
Consensus Opinion

There is inadequate data to provide clinical treatment

guidelines. Hence, we provide the following technical

recommendations to further clinical treatments and research

studies for PBM therapy in managing chemotherapy-induced

alopecia. WALT recommends treatments with a transcutaneous

visible to near-infrared (400-1100 nm) wavelength LED/laser

device with a power density (treatment surface irradiance) of 10-

150 mW/cm2 for a total dose of 2 Einstein (photon fluence at 810

nm = 9 p.J/cm2) per treatment field performed. The red (630-680

nm) wavelength has shown the most efficacy in several studies.

Treatments should be repeated 3 to 4 times a week for 6 to 8

weeks, or clinical benefit is evident. Better-designed, multicenter

clinical research studies using these recommendations as a

starting point are essential to further optimize and validate

PBM treatments for this specific application.
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4 Conclusions and future
perspectives

Cancer therapy is still associated with a wide range of acute

and late complications that impair the patients’ QoL. Based on

the evidence collected in this review, PBM has the potential to

become a new preventive and/or therapeutic option for a broad

range of acute and chronic side effects associated with cancer

therapy. The effectiveness of PBM for the prevention and

management of OM has already been demonstrated. As such,

PBM has been taken up in the general treatment guidelines

developed by the MASCC/ISOO, the European Society for

Medical Oncology (ESMO), and the National Institute for

Health and Care Excellence (NICE) (4, 262, 263).

The aim of this position paper is to provide scientific

evidence for the use of PBM in various cancer therapy-related

side effects, and a rigorous effort is made to indicate specific

PBM parameters (Table 3). Future investigations should be

performed to better define optimal PBM parameters

(irradiation and treatment) for each of the complications.

Concerning the safety of PBM in oncologic patients, in vitro,

in vivo, and even recent clinical data have been generated. Even

though the clinical trial results did not demonstrate adverse

events associated with PBM, it is still necessary to treat cancer

patients with caution when applying PBM. More in vivo studies

with animal tumor models need to be developed to elucidate the

effect of PBM on the tumor and its microenvironment. Large

clinical trials with a wide variety of cancer patients in which

different PBM parameters are tested, and that include a long

follow-up period of at least five years, are required to conclude

that PBM does not negatively affect cancer progression and

overall survival.

An emerging approach in general medicine, which also seems

to be important when applying PBM in cancer patients, is precision

medicine. It is based on taking into account the patient’s personal

lifestyle, environment, and variability in gene expression. Each cell

type and especially tumor cells may have different responses to

certain PBM parameters and doses, which are caused by variations

in the cellular microenvironment. As such, more personalized PBM

protocols for each indication will be necessary for the future. PBM

in the daily clinical oncology practice setting may address a number

of significant and common adverse effects (264). This may

eventually reduce the incidence, duration, and severity of these

devastating effects. Thereby, the patient will experience less pain and

discomfort during and after their cancer therapy, which enables

them to perform their daily activities during active cancer treatment

and throughout survival. This will eventually result in improved

patients’ QoL and optimization of their specific cancer treatment.

Further, the treatment compliance of the patient will increase,

resulting in an improved success rate of the cancer therapy. Thus,

patient care will advance, which will ultimately result in increased

patient survival.
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TABLE 3 WALT 2022 recommendations for PBM treatments in prevention and/or management of cancer therapy-related complications.

Complication PBM Treatment Parameters Level of
Evidence*I

to V

Level of Evidence
Recommendation
or Expert OpinionDelivery parameters

Distance
from tissue
(Contact/
on-contact)

Frequency(No. sessions/
week andTotal sessions)

TBD Daily10->30 II Expert opinion

TBD 3 times a week for 4 - 6 weeks III Expert Opinion

TBD 3 times a week for 4 - 6 weeks NA Expert Opinion

TBD 3 times a week for 4 - 6 weeks V Expert Opinion

TBD 3 times a week for 4 - 6 weeks IV Expert Opinion

TBD 3 times a week for 4 - 6 weeks V Expert Opinion

TBD 3 times a week for 4 - 6 weeks V Expert Opinion

TBD 3 times a week for 4 - 6 weeks V Expert opinion

TBD 3 times a week for 4 - 6 weeks IV Expert Opinion

TBD 3 times a week for 4 - 6 weeks NA Expert Opinion

TBD 3 times a week for 4 - 6 weeks IV Expert Opinion

TBD 3 times a week for 4 - 6 weeks NA Expert Opinion

TBD Daily10 to 30 NA Expert Opinion

; randomized trials with low false-positive and false-negative errors (high power); Level II:
well-designed, quasi-experimental studies such as nonrandomized, controlled single-group,
rrelational descriptive and case studies; Level V: Evidence obtained from case reports and
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Device parameters

Route
of

delivery

Beam Mode
(Continuous

and/or
Pulsed)

Wavelength
(nm)

Power
(mW)

Irradiance
(mW/cm²)

Time
(sec)

Specified at 810 nm Treatment
area

n
Fluence(J/cm²)
(Prophylactic
or Curative
intent)

Photon
Fluence
(p.J/cm2)

Einstein
(E)

Acute
Radiodermatitis

External CW &/P 630-904 20-150 20-150 TBD 3 4.5 1 TBD

6 9 2

Lymphedema External CW &/P 750-904 20-150 20-150 (Red)20-80 (IR) TBD 2 3 0.7 TBD

6 9 2

Radiation Fibrosis External
&

Internal

CW &/P 750-850 20-150 20-150 (Red)20-80 (IR) TBD 2 3 0.7 TBD

6 9 2

Palmar-Plantar
Erythrodysesthesia

External CW &/P 630-680+750-
850

20-150 20-150 (Red)20-80 (IR) TBD 2 3 0.7 TBD

6 9 2

Graft versus Host
disease

External
&

Internal

CW &/P 630-680+750-
850

20-150 20-150 (Red)20-80 (IR) TBD 2 3 0.7 TBD

6 9 2

Dysphagia External
&

Internal

CW &/P 630-680+750-
850

20-150 20-150 (Red)20-80 (IR) TBD 2 3 0.7 TBD

6 9 2

Dysgeusia External
&

Internal

CW &/P 630-680+750-
850

20-150 20-150 (Red)20-80 (IR) TBD 2 3 0.7 TBD

6 9 2

Trismus External
&

Internal

CW &/P 630-680+750-
850

20-150 20-150 (Red)20-80 (IR) TBD 2 3 0.7 TBD

6 9 2

Osteonecrosis and
Mucosal necrosis

External
&

Internal

CW &/P 630-680+750-
850

20-150 20-150 (Red)20-80 (IR) TBD 2 3 0.7 TBD

6 9 2

Voice and/or
Speech alterations

External CW &/P 630-680+750-
850

20-150 20-150 (Red)20-80 (IR) TBD 2 3 0.7 TBD

6 9 2

Chemotherapy-
Induced Peripheral
Neuropathy

External CW &/P 780-970 80-120 20-150 (Red)20-80 (IR) TBD 7.5 11.2 2.5 TBD

48 72 16

Chemotherapy-
Induced Alopecia

External CW &/P 630-680+750-
850

20-150 20-150 (Red)20-80 (IR) TBD 2 3 0.7 TBD

6 9 2

Periodontal lesions
after
Chemotherapy and
Radiotherapy

Internal CW &/P 630-660+810-
830

20-150 20-150 (Red)20-80 (IR) TBD 2 3 0.7 TBD

6 9 2

NA, not applicable TBD: to be decided by the operator
These proposed protocols are based on expert opinion and do not exclude other protocols. *Level I: Evidence obtained from meta-analysis of multiple, well-designed, controlled studie
Evidence obtained from at least 1 well-designed experimental study; randomized trials with high false-positive and/or false-negative errors (low power); Level III: Evidence obtained from
pre-test, and post-test comparison, cohort, time, or matched case-control series; Level IV: Evidence obtained from well-designed, non-experimental studies, such as comparative and c
clinical examples (48).
1 Einstein = 4.5 p.J/cm2 which is the photonic fluence at 810 nm that is equivalent to the conventional fluence of 3 J/cm2 (62).
Photon Energy at 632 nm = 2 eV, 660 nm = 1.9 eV, 680 nm = 1.8 eV, 750 nm = 1.6 eV, 780 = 1.5 eV, 808 = 1.5 eV, and 850 nm = 1.5eV, 904 nm = 1.4 eV.
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