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Breast cancer as the most common cancer in women has become the leading

cause of cancer death for women. Although many inflammatory factors

increase the risk of breast cancer, there are very few studies on the

mechanisms by which inflammation affects the initiation and progression of

breast cancer. Here, we profiled and compared the transcriptome of normal

tissues, inflammatory breast tissues, benign breast tumors, and malignant

breast tumors. To find key regulatory factors, a protein interaction network

between characteristic modules in inflammatory lesions and ER-negative (ER−)

breast cancer was constructed and inflammation-cancer interface genes were

identified. We found that the transcriptional profile of inflammatory breast

tissues was similar with ER− malignant tumors, featured with low ER expression

levels and similar immune signaling pathway activation. Through

comprehensive protein network analysis, we identified the interface genes

and chemokine signaling pathway that have the potential to promote

inflammatory cancer transformation. These interface genes could be used as

a risk factor to provide a certain basis for the clinical early detection and

treatment of breast cancer. This is the first study to explore the association

between breast inflammatory lesions and breast cancer at the transcriptome

level. Our inflammation data and research results provide a basis for future

inflammation-cancer transformation analysis.
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Introduction

Breast cancer as the most common cancer in women has

become the leading cause of cancer death for women (1).

Because of its high heterogeneity in molecules and phenotypes,

breast cancer is traditionally divided into four clinical subtypes:

Luminal A, Luminal B, HER2-positive (Her2+), and triple-

negative breast cancer (TNBC), according to the expression of

estrogen receptor (ER), progesterone receptor (PR), and human

epidermal growth factor receptor 2 (HER2) (2, 3). On the basis

of the characteristics of the transcription profile, breast cancer

can also be divided into five “intrinsic” molecular subtypes:

LumA, LumB, Her2+, basal and normal-like, and the

concordance between molecular subtypes and clinical subtypes

can reach about 70%–80% (4, 5). Although many factors that

increase the risk of breast cancer have been reported, the exact

carcinogenic mechanism of breast cancer is still unknown (6, 7).

Because of the many similarities between inflammation and

cancer, people have been working on the relationship between

them for many years (8). Since 1863, the inflammation-cancer

transformation model was proposed, that is, cancer occurs from

chronic inflammation, more and more studies have proved that

inflammation can lead to the occurrence and development of

cancer (9, 10). Although there is some evidence of the

carcinogenic effects of inflammation in many cancer types,

such as hepatocellular carcinoma (HCC) and colorectal cancer

(CRC), the link between breast cancer and inflammation is still

poorly understood (11, 12). Chronic inflammation exists in

breast cancer and makes an important contribution to the

infiltration of lymphocytes and macrophages (12, 13).

Therefore, it is pointed out that chronic inflammation in the

breast may have a certain effect on the occurrence of breast

cancer. Recently, a retrospective study of patients in Taiwan

found that patients with mastitis will have a higher risk to

developed into breast cancer in the future (14), implying the

possibility of inflammatory lesions transforming into cancer.

Here, we profiled and compared the expression profiles of

normal, inflammatory, benign tumor, and malignant tumor

tissues. To analyze the relationship between inflammatory

lesions and breast cancer more comprehensively, we included

four subtypes of invasive breast cancer: Luminal A, luminal B,

Her2+, and TNBC. By comparing the expression profiles of

characteristic genes and the activation of signal pathways, we

found that the inflammatory lesions of the breast were more

similar to the two ER− breast cancer subtypes: Her2+ breast

cancer and TNBC. Using network analysis to integrate the

expression profile of inflammation and ER− breast cancer

including Her2+ breast cancer and TNBC, we identified the

genes at the interface between inflammation and cancer

modules. From these interface genes, we speculate that

chemokine signaling pathway and genes may be key factors

for inflammatory cancer transformation, and some of these

genes can be used as prognostic factors.
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Materials and methods

Samples collections

All breast tissue samples from 46 cases were collected from

patients admitted to Fudan University Cancer Hospital. An

informed consent was obtained for all patients, and the study was

approved by the institution’s ethics committee (Fudan University

Shanghai Cancer Center Institutional Review Board, 050432-4-

1212B) (Shanghai, China). The patients were examined by

professional clinicians, and the biopsy sample for each patient

was checked by professional pathologists. The phenotype

classification of samples was identified based on stained subtype-

specific molecular markers by these professional pathologists.

According to the phenotype classification, the samples fell into

five categories: five normal breast tissues (NB), five inflammatory

breast tissues (IBT), five fibroadenoma (Fibro) samples, five ductal

carcinoma samples in situ (DCIS), and 26 invasive ductal

carcinoma (IDC) samples. On the basis of receptor molecular

status, 26 IDC samples were further divided: five Luminal A, 11

Luminal B, five Her2+, and five TNBC samples.
Library preparation and sequencing

Total RNA was isolated and purified using TRIzol reagent

(Invitrogen, Carlsbad, CA, USA) following the manufacturer’s

procedure. The RNA amount and purity of each sample was

quantified using NanoDrop ND-1000 (NanoDrop, Wilmington,

DE, USA). The RNA integrity was assessed by Bioanalyzer 2100

(Agilent, CA, USA) with RIN number >7.0 and confirmed by

electrophoresis with denaturing agarose gel. Poly(A) RNA was

purified from 1 mg of total RNA using Dynabeads Oligo (dT)25-

61005 (Thermo Fisher, CA, USA) using two rounds of

purification. Then, the poly(A) RNA was fragmented into small

pieces using Magnesium RNA Fragmentation Module (NEB, cat.

e6150, USA) under 94°C 5–7 min. Then, the cleaved RNA

fragments were reverse-transcribed to create the cDNA by

SuperScript™ II Reverse Transcriptase (Invitrogen, cat.

1896649, USA), which were next used to synthesize U-labeled

second-stranded DNAs with E. coli DNA polymerase I (NEB, cat.

m0209, USA), RNase H (NEB, cat.m0297, USA), and

Deoxyuridine Triphosphat (dUTP) solution (Thermo Fisher,

cat. R0133, USA). An A-base is then added to the blunt ends of

each strand, preparing them for ligation to the indexed adapters.

Each adapter contains a T-base overhang for ligating the adapter

to the A-tailed fragmented DNA. Single- or dual-index adapters

are ligated to the fragments, and size selection was performed with

AMPureXP beads. After the heat-labile UDG enzyme (NEB, cat.

m0280, USA) treatment of the U-labeled second-stranded DNAs,

the ligated products are amplified with PCR by the following

conditions: initial denaturation at 95°C for 3 min; eight cycles of

denaturation at 98°C for 15 s, annealing at 60°C for 15 s, and
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extension at 72°C for 30 s; and then final extension at 72°C for 5

min. The average insert size for the final cDNA library was 300 ±

50 bp. At last, we performed the 2×150-bp paired-end sequencing

(PE150) on an illumina Novaseq™ 6000 (LC-Bio Technology

CO., Ltd., Hangzhou, China) following the vendor ’s

recommended protocol.
Read mapping and gene
expression summary

High-quality reads were aligned to the human hg19

reference genome by STAR (15) version 2.6, and the number

of reads on each gene was counted by featureCounts (16) version

2.0.0. The expression levels for each gene was normalized to

fragments per kilobase of exon model per million mapped

fragments by DESeq2 (17).
Identification of differential
expressed genes

DESeq2 (17) was used for differential expression analysis in

our dataset. Limma (18) was used for differential expression

analyses for RNA sequencing (RNA-seq) and microarray data in

GEO database (GSE162694, GSE4183, and GSE83687). The final

screening criterion is that absolute value foldchange is greater

than 1.5, and the adjusted p-value is less than 0.05.
Identification of dynamic
change modules

We identified the differentially expressed genes between

different subtypes of breast disease relative to normal samples

(IBT vs. NB, ER− vs. NB, Her2+ vs. NB, and TNBC vs. NB). We

performed k-means cluster analysis based on the expression

profiles of these differentially expressed genes and finally

obtained 13 gene expression clusters.
Negative-positive network construction

To construct negative-positive (NP) network, we extracted

protein–protein interactions with confidence score of PPIs > 900

from HPRD (19), STRING database (20), and Wu’s parsed

protein interaction network (21). We constructed a protein–

protein interaction network between the IBT_Her2+_TNBC

module and the Her2+_TNBC module. In the network, we

only retained the interactions with the absolute value of the

correlation coefficient between gene expression greater than

0.22. In the NP network, we defined genes that were bounded

to genes in a different module as interface genes.
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Estimation of immune cell and
erythroid cell abundance

The LM22 signature CIBERSORT algorithm (22) was used to

estimate the proportion of immune infiltration of different

immune cell types in each sample. The LM22 signature includes

547 genes, which can distinguish 22 types of immune cells. The

correlation coefficient between genes and immune cell

characteristics in TCGA data was obtained through GEPIA2

(23). To assess the erythroid cell infiltration, we obtained

signature genes from published single-cell sequencing data (24).

In this study, the erythroid cells were further divided into seven

subtypes that were mature_RBCs, Transition_differentiating cells,

ACVR2B_type, F cells, Reticulocytes, HEMGN_type, and

NIX_type, respectively. We analyzed the infiltration of these

seven subtypes. Using CIBERSORT algorithm (22) to predict

the overall infiltration level of erythroid cells based on the

signature genes for these seven subtypes.
Functional enrichment analysis

The functional enrichment analysis of annotated terms from

Gene Oncology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) were performed with online tool DAVID (25)

and clusterProfiler (26).
Gene set variation analysis

Gene set variation analysis (GSVA) and graphing were done

by R package “GSVA” (27).
Statistical analysis

Comparisons of the ratio of immune cells between two

groups were performed by Student’s t-test. The correlation

between gene expression and samples was measured by

Pearson correlation coefficient. Chi-square test was used to test

the correlation between gene sets.
Survival analysis

Cox regression analysis was used to detect the influence of gene

expression value on survival rate. Cox regression and Kmplot

visualization used survival package and survminer package (28,

29). The expression profile and clinical data of breast cancer were

downloaded from the TCGA database.We divided the samples into

high expression groups and low expression groups according to the

median value of gene expression risk scores.
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Compliance and ethics

All breast tissue samples from 46 cases were collected from

patients admitted to the Fudan University Cancer Hospital. An

informed consent was obtained for all patients, and the study

was approved by the institution’s ethics committee (Fudan

University Shanghai Cancer Center Institutional Review

Board, 050432-4-1212B) (Shanghai, China). No potential

conflicts of interest need to be disclosed by the listed authors.
Results

Inflammatory breast tissues and ER−

breast tumors shared similar
transcriptional profile

To explore the relationship between inflammatory breast

tissues and breast tumors, we collected a total of 46 breast tissue

samples from patients admitted to the Fudan University Cancer

Hospital for transcriptome profiling by next-generation

sequencing technologies. The patients were examined by

professional clinicians, and the biopsy sample for each patient

was checked by professional pathologists. The phenotype

classification of samples was identified based on stained

subtype-specific molecular markers by these professional

pathologists. We carefully checked the clinical data for these

patients, especially for the five patients with inflammatory lesion

and found that none of these patients was in suckling period.

The samples fell into five categories: five normal breasts (NB),

five inflammatory breast tissues (IBT), five fibroadenoma

(Fibro), and five Ductal carcinomas in situ (DCIS), and 26

invasive ductal carcinoma (IDC) samples. The detailed clinical

information for these patients was listed in Supplementary

Table 1. On the basis of receptor molecular status, 26 IDC

samples were further divided: five Luminal A, 11 Luminal B, five

Her2+, and five TNBC subtype samples. Principal component

analysis of the expression profile of 46 samples showed that the

normal breast tissues (NB) and benign tumors (Fibro) were

clearly distinguishable from malignant tumors (DCIS and IDC)

(Figure 1A). By calculating correlation coefficients between

expression of the genes in each sample and the average

expressions of genes in IBT-type samples, we found that the

similarity between IBT and malignant tumors was higher than

that of fibroadenoma (Figure 1B). To further identify the

similarity between IBT and malignant tumors, we used the

GSVA method to estimate variation of signaling pathway

activity in NB, IBT, and invasive breast cancer samples.

Several metabolic pathways were specifically enriched in

normal samples, whereas replication-related signaling

pathways were mainly activated in invasive breast cancer. As

expected, immune-related signaling pathways including B cell

receptor signaling pathway and chemokine signaling pathway
Frontiers in Oncology 04
were activated in IBT, and we found that these pathways were

also activated in IDC (Figure 1C). In particular, in patients with

Her2+ breast cancer and TNBC, the proportion of immune-

related signal pathway activation was higher. PAM50 is a 50-

gene signature that is now commonly employed to identify

breast cancer intrinsic subtypes (4, 5). Therefore, we tested the

expression of the characteristic gene PAM50 in IBT to explore

the similarity of intrinsic gene expression between IBT and

invasive breast cancer. As displayed in Supplementary

Figure 1, two of the five IBT patients were classified as Basal-

like and three of the five IBT patients were classified as normal-

like. Furthermore, we also detected the mRNA expression of ER,

PR, and Her2 (ERBB2) in IBT and invasive breast cancer

(Supplementary Figure 1). We found that the receptor

transcription levels of different types of breast cancer diseases

were basically consistent with the results of IHC. Compared with

normal tissues, there was no statistically significant change in the

expression levels of PR and Her2 in IBT. Interestingly, the

expression of ESR1 in IBT was significantly downregulated,

which was consistent with the expression changes of Her2+

breast cancer and TNBC samples. Because the expression level of

ER in Her2+ breast cancer and TNBC are both negative, we

collectively merged and named Her2+ breast cancer and TNBC

as ER− breast cancer. On the basis of expression of characteristic

genes and activation of signaling pathways, we found that the

transcriptome of IBT was more similar to ER− breast cancer than

other types of breast cancer.
Immune response–related pathways
were specifically enriched in
IBT_Her2+_TNBC module

To better explore the possible conversion relationship between

IBT and ER− breast cancer (Her2+ and TNBC), we identified the

differentially expressed genes of different types of breast disease

relative to normal samples (IBT vs. NB, ER− vs. NB, Her2+ vs. NB,

and TNBC vs. NB). The number of differentially expressed genes in

ER− breast cancer was significantly more than that in IBT,

suggesting that the transcriptional dysregulation of genes in ER−

breast cancer was more pronounced than in IBT (Figure 2A). To

detect the potential dynamic changing modules of the transition

from inflammation to cancer, we performed k-means cluster

analysis based on the expression profiles of these differentially

expressed genes and finally obtained 13 gene expression clusters

(Supplementary Figure 2). We normalized the expression values of

all genes and used the average expression of cluster genes as the

expression value of each cluster. The expression trends of clusters

showed that most gene clusters were specifically and highly

expressed in a certain type of breast disease. Interestingly, genes

in cluster2 and cluster11 were highly expressed in IBT, Her2+ breast

cancer, and TNBC samples; thus, we defined these two clusters as

an IBT_Her2+_TNBC module (Figure 2B). Because genes in
frontiersin.org
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cluster3 and cluster12 were obviously highly expressed in Her2+

and TNBC breast cancer, they were defined as a Her2+_TNBC

module (Figure 2B). Gene ontology (GO) analysis showed that

genes in the IBT_Her2+_TNBC module were related with

neutrophil activation involved in immune response, neutrophil

degranulation, regulation of lymphocyte activation, and T cell

activation. The genes in the Her2+_TNBC module were mainly

enriched in chromosome segregation, nuclear division, protein–

DNA complex assembly, and DNA conformation change.
Chemokines and chemokine receptors
were enriched in inflammation-cancer
interface

Studies have shown that chronic inflammation can provide

a beneficial immune microenvironment for early cancer.

Therefore, those immune genes and pathways that highly

expressed in tumors and related with cell proliferation must
Frontiers in Oncology 05
be key for inflammation-cancer transformation. Previous

studies have found that the expression-based protein–protein

interaction network between feature modules in different states

could enrich key regulatory factors, which can drive state

changes in the network (30, 31). To find these key genes

involved in the transformation from inflammatory lesions to

cancer, we constructed a positive-negative–correlated protein–

protein interaction network (NP network) between the

IBT_Her2+_TNBC module and the Her2+_TNBC module.

We pointed out that the interactions between the

IBT_Her2+_TNBC module (highly expressed in IBT and ER

negative breast cancer) and the Her2+_TNBC module (high-

expressed in ER− breast cancer) can establish a link between

IBT and ER− breast cancer, so we named it “inflammation-

cancer interface”. In the NP network, we define genes that are

bounded to genes in a different module as interface genes

(Figure 3A). Finally, 133 and 278 interface genes were

i den t ified in the IBT_Her2+_TNBC modu l e and

Her2+_TNBC module, respectively.
B

C

A

FIGURE 1

Inflammatory breast tissues and ER− breast tumors shared similar transcriptional profile. (A) PCA analysis of gene expression profile among
different breast tissues. NB, normal breast tissue; IBT, inflammatory breast tissue; Fibro, fibroadenoma; DCIS, ductal carcinoma in situ; IDC,
invasive ductal carcinoma. (B) The Pearson correlation coefficient (PCC) of each sample’s transcriptome with the average gene expression
profiles of all genes in IBT samples. (C) Heatmap of differentially activated KEGG pathways in NB, IBT, and IDC. IDC: Luminal A (LuA), Luminal B
(LuB), Her2+, and TNBC.
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To identify the signaling pathways that play key roles in the

transformation from inflammatory to cancer, we performed a

KEGG signaling pathway enrichment analysis on interface genes.

Interface genes in the IBT_Her2+_TNBC module were mainly

related to immune signaling pathways, among which most

enriched signaling pathway is the chemokine signaling pathway

(Figure 3B). Multiple chemokines and chemokine receptors were

found in interface genes (CCR1, CCR5, CXCL5, CXCL9, and

CXCR4 in IBT_Her2+_TNBC module, and CXCL10 and

CXCL11 in Her2+_TNBC module). As the known cancer driving

factors, chemokines can recruit specific cytokines that promote

cancer progression to trigger the tumor initiation site and form

inflammatory microenvironment at the initial stage of cancer (10,

32, 33). At the same time, we also found that the signaling pathways

related to enteritis and hepatitis, which were classic inflammation-

cancer–transformed diseases, are also activated. It implied that

breast inflammation might increase the risk of transformation to

cancer. The interface genes in the Her2+_TNBC module were

mainly enriched in cell cycle and cancer-related signaling

pathways, such as the P53 signaling pathway (Figure 3B). It

indicated that the interface genes in the Her2+_TNBC module

may be related to cell expansion in early cancer.
Interface genes had a prognostic role in
inflammation-cancer transformation

A major goal of cancer research is to find those driver genes

that contribute to tumor progression due to acquired mutations.
Frontiers in Oncology 06
For this reason, many methods and databases have been

developed to analyze cancer data, such as COSMIC (34),

DriverDB (35), and the Cancer Gene Census (CGC) (36). By

integrating the CGC database and artificially screened genes,

Repana et al. obtained a set of 711 known cancer genes, which

included cancer suppressor genes and oncogenes and was

experimentally verified (37). Therefore, we detected the

expression of known cancer genes in the interface genes and

counted the numbers of known cancer-related genes in the

interface genes and in the different modules (Figure 4A). We

found that the interface genes in the IBT_Her2+_TNBC module

and the Her2+_TNBC module were significantly enriched for

known cancer-related genes (Figure 4B). Among the interface

genes in the IBT_Her2+_TNBC module, CXCR4 is a known

cancer-related chemokine receptor gene. CXCR4 promotes

breast cancer growth in three main ways: promoting

angiogenesis, participating in the signal pathway of cell

proliferation, and recruiting immune cells (38). The

chemokine receptor CXCR4 not only plays a key role in

tumorigenesis and cancer progression, but it is also an effective

prognostic factor for breast cancer. Overexpression of CXCR4

can increase the risk of distant metastasis of breast cancer and

reduce the overall survival rate and disease-free survival rate of

patients (39). Among the interface genes in the Her2+_TNBC

module, the known cancer-related genes are mostly DNA repair

genes, such as BARD1, BRIP1, BRCA1, BRCA2, FANCA,

FANCC, FANCD2, and FEN1. These interface genes should

be enriched with key genes related to inflammation and

cancer transformation.
B

A

FIGURE 2

Gene clusters expressed in normal, inflammation, and ER− breast cancer. (A) Differentially expressed genes in each breast diseases samples
compared with NB samples. Compared with normal samples, genes with upregulated expression are represented in red, genes with
downregulated expression are represented in blue, and NS represents other genes. (B) The expression clusters of differentially expressed genes
in IBT and ER-negative samples (Her2+ and TNBC). The main enriched functional items are listed on the right. The heatmap on the left showed
the normalized expression value of the differentially expressed genes.
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Cancer driver genes have a key prognostic role in breast

cancer and may serve as prognostic markers of breast cancer and

provide treatment strategies for clinical treatment (40). Therefore,

we tested the prognosis of all interface genes on DFS (disease-free

survival) of different types of patients in the TCGA database. We

found that, among the interface genes, the proportion of genes

with significance prognosis of DFS in ER− patients was

significantly increased (Figure 4C). Therefore, we used single-

factor Cox regression to detect the significance of all interface

genes on the prognosis of RFS and selected those genes whose

high expression would increase the risk of disease. By the

multivariate Cox regression analysis of these genes, we

established a disease occurrence prediction model consisting of

nine risk factors (Figure 4D). The concordance index of this

model is 0.7, which means that it has moderate predictive power.

According to this model, we calculated the risk scores of ER−

patients in the TCGA database and divided the patients into high-

risk groups and low-risk groups based on risk scores. According to

the survival analysis results of DFS (Figure 4E), we found that the

disease-free survival rate of the high-risk group was significantly

reduced, which implied that this risk model might predict an
Frontiers in Oncology 07
increase in the incidence of cancer. In addition, to explore the

related functions of risk factors, we extracted the related genes of

these nine risk factors from the established modular protein

interaction network (Supplementary Figure3). Through KEGG

and GO functional enrichment analysis, we found that 5.53% of

the functional items were related to the T cell receptor signaling

pathway, which suggested the potential role of immune cells,

especially T cells, for cancer (Figure S3).
Treg cell immune infiltration increased in
inflammation and ER− breast cancer
tissues

Because the interface genes in the IBT_Her2+_TNBC

module were enriched in immune signaling pathways, we

investigated the changes of the immune cells in different types

of samples. On the basis of the gene expression signatures of 22

immune cell types, we used the CIBERSORT (22) deconvolution

algorithm to infer the relative content of immune cell types in

each sample.
B

A

C

FIGURE 3

Interface genes were detected by protein interaction network. (A) A NP network generated between the four gene clusters from
IBT_Her2+_TNBC module (clusters 2 and 11) and Her2+_TNBC module (clusters 3 and 12). Nodes represent genes, red edges represent
positively correlated interactions between genes, and blue edges represent negatively correlated interactions. (B, C) KEGG terms enriched in
interface genes (IG) from IBT_Her2+_TNBC module and Her2+_TNBC module.
frontiersin.org

https://doi.org/10.3389/fonc.2022.932743
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chang et al. 10.3389/fonc.2022.932743
We calculated the average proportion of each type of immune

cells in different sample types (Figure 5A) and found that regulatory

T cells, activated NK cells, macrophages M1, follicular helper T cells,

andmacrophagesM0 have a higher proportion both in inflammation

breast tissues and ER− breast cancer than normal tissues (Figure 5B).

Among them, the ratios of regulatory T cells in IBT and ER− breast

cancer are statistically significant. Comparing the expression levels of

interface genes with immune cell infiltration, it could be found that

most of the interface genes from IBT_Her2+_TNBC are mainly

related to Treg cell infiltration, whereas the interface genes from

Her2+_TNBC are most related to the infiltration of macrophage M1

(Figure 5C). Because the interface genes from IBT_Her2+_TNBC

enriched the genes of the chemokine signaling pathway, we tested the

correlation between all the genes of the chemokine signaling pathway

in the interface genes and immune cell infiltration. Most of these

genes are positively correlated with Treg cells, indicating that the
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activation of chemokine signaling pathways may be related to Treg

cell infiltration (Figure 5D).

Furthermore, recent studies showed that the erythroid cells

played an important role in tumorigenesis (41, 42). To dissect

the role of erythroid cells during the inflammatory-cancer

transformation. We investigated the proportion of erythroid

cell infiltration by CIBERSORT algorithm (22). The signature

genes were retrieved from scRNA-seq for blood samples (24). In

this study, the erythroid cells were further divided into seven

groups including mature_RBCs, Transition_differentiating cells,

ACVR2B_type, F cells, Reticulocytes, HEMGN_type, and

NIX_type. We analyzed the infiltration of these seven groups

in each sample type. Only four groups—mature_RBCs,

Transition_differentiating cells, F cells, and NIX_type—were

detected in our datasets. There was no significant difference in

the infiltration of total erythroid cells among different stage
B

C

D

E

A

FIGURE 4

Interface genes were enriched in cancer-related genes. (A) The expression of known tumor-related genes in interface genes from
IBT_Her2+_TNBC module and Her2+_TNBC module. (B) Enrichment of known tumor-related genes in different modules. (C) Proportion of
genes with prognostic significance. Cluster, genes in clusters 2, 11, 3, and 12; IG, interface genes; DFS, disease-free survival; all, all breast cancer
types; ER−, ER-negative breast cancer. (D) Forest plot of the hazard ratio (HR) for the association of risk factor gene expression with DFS. (E)
Disease-free survival curves of high- and low-risk score groups based on multivariate Cox regression analysis. *, p-value < 0.05; “**”, p-value <
0.01.
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(Supplementary Figure 4A). Among the different types of tissues,

we observed that the contents of mature_RBC and F_cells were

highest in the normal breast tissues. On the other hand, the

contents of Transition_differentiating cells and NIC_type were

highest in the TNBC (Supplementary Figure 4B). The opposite

cell content changes suggested that erythroid cells might be

involved in the inflammatory-cancer transformation and

different subtypes of erythroid cells might play an important

role in different stage of inflammatory-cancer transformation.
Chemokines might be key regulators in
inflammation-cancer transformation

Because the chemokine signaling pathway was enriched in the

interface genes in the IBT_Her2+_TNBC module, we wondered
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whether it is universal changes in other inflammation-cancer

transformation models. At present, some cancer types are

thought to have evolved from inflammatory lesions, including

HCC and CRC (12, 43). Although hepatitis B virus (HBV) and

hepatitis C virus (HCV) are still the main risk factors for HCC,

recently, non-alcoholic steatohepatitis (NASH) has become a

frequent HCC risk factor in the West (44). Chronic inflammation

of the intestinal mucosa may cause ulcerative colitis or Crohn’s

disease and other inflammatory bowel disease (IBD) and further

increase the risk of CRC in patients, which indicates that colon

cancer is a typical inflammation-dependent cancer (45). The

interface genes in the IBT_Her2+_TNBC module were enriched

in IBD and hepatitis B signaling pathways, suggesting that

inflammatory breast tissues might also contain similar factors

and mechanisms that promote the inflammation-cancer

transformation (Figure 3B).
B

C D

A

FIGURE 5

Treg cell immune infiltration was increased in inflammation and ER− breast cancer. (A) Relative contents of immune cells between normal,
inflammation, and cancer stages. (B) A heatmap showing average content of immune changes between normal, inflammation, and cancer
stages. “*”, p-value < 0.05; “**”, p-value < 0.01 and “***”, p-value < 0.001. (C) The correlation between interface genes and immune cell
infiltration. (D) The correlation between chemokine signaling pathway genes in interface genes and immune cell infiltration.
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Therefore, we downloaded public datasets of inflammation

and cancer samples from the Gene Expression Omnibus (GEO)

database, including two IBD dataset (GSE4183 and GSE83687)

and one liver dataset (GSE162694). Among them, the GSE4183

dataset contained samples of normal tissues, IBD tissues,

adenocarcinomas, and CRC, which were similar to our samples.

Therefore, we tested the differentially expressed upregulated genes

in inflammatory tissues and cancer tissues, and we divided

differentially upregulated genes into two groups according to the

expression levels. The group of genes whose expression was

obviously upregulated in inflammation and also tended to be

upregulated in cancer was called the IBD_ADE_CRC group, and

the other group of genes was more significantly upregulated in

cancer, called the ADE_CRC group (Figure 6A). We compared

the interface genes with different expression trends detected in

breast samples and found that these interface genes had similar

expression trends in IBD (Figure 6B).

By comparing with their own normal tissue samples, the

differentially expressed genes of inflammation samples from

other IBD and NASH datasets were also identified. We tested

the enrichment of signaling pathways in upregulated genes from

different inflammatory diseases and found that the Toll-like

signaling pathway and chemokine signaling pathway enriched in

interface genes in the IBT_Her2+_TNBC module were

significantly activated in NASH, IBD, and IBT samples

(Figure 6C). To find common genes in inflammatory cancer

transformation, we explored the overlap of interface genes and

upregulated genes in NASH and IBD (Figure 6D). In the end, we

found that 14 interface genes were consistently upregulated in

NASH, IBD, and IBT samples. We tested the correlation

between the expression of these 14 overlapped genes in breast

cancer and immune T cell characteristics, and we found that

more than half of the genes were positively correlated with Treg

cells infiltration (Figure 6E). In addition, we found that eight of

the 15 interface genes from the chemokine signaling pathway

were also upregulated in the three types of inflammation

samples, suggesting their potential role in inflammatory cancer

transformation (Figure 6F). For example, CXCL9, CXLC10, and

CXCL11/CXCR3 has two main functions: it activates the

immune response through the paracrine pathway and

promotes the proliferation and metastasis of cancer cells

through the autocrine pathway (46). As an autocrine signal,

CXCL9, CXCL10, or CXCL11 activates the chemokines

produced by the tumor through CXCR3A on cancer cells and

further recruits immune cells to create an immune

microenvironment that promotes tumors. In addition, we

found that APOBEC3G was highly expressed in all

inflammation tissues and was positively correlated with Treg

cell immune infiltration in breast tumors (Figure 6E). APOBEC3

family members are cytidine deaminases that can increase the

probability of DNA mutations, indicating that the high

expression of APOBGE3C in inflammatory lesions may be one

of the reasons that inflammation increases the risk of cancer.
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Discussion

It has been confirmed that chronic inflammation is an

important cause of many malignant tumors, but its effect on the

occurrence and development of breast cancer is still poorly

understood (47). A variety of chronic inflammatory factors have

been found to increase the risk of breast cancer, suggesting that

chronic inflammation may play a role in the initiation and

development of breast cancer (13). Here, we compared the

transcriptional expression profiles of normal tissues, inflammatory

lesions of the breast, benign breast tumors, and malignant breast

tumors. We found that inflammatory lesions of the breast shared

many similarities with ER− malignant tumors, such as low ER

expression levels, and similar immune signaling pathway activation.

Previous studies have found that the degree of immune infiltration

is positively correlated with ER−, including lymphocyte infiltration,

plasma cell infiltration, macrophage infiltration, and other

inflammatory cell infiltration (48). Our data showed that

macrophages M1 and macrophages M0 had a higher proportion

both in inflammation and ER− cancer than normal tissues. All these

make us state that there is a closer connection between

inflammatory breast tissues.

Because of the similarities between inflammatory lesions of the

breast and ER− breast cancer, we focused our attention on the

relationship between them. On the basis of the gene expression

trend in the sample, we identified the IBT_Her2+_TNBC module

and Her2+_TNBC module. By constructing the protein–protein

interaction network between the IBT_Her2+_TNBC module and

the Her2+_TNBC module, we found the “inflammation cancer

interface” and identified 133 and 278 interface genes for each

module, respectively. Interface genes had a significant enrichment

effect on cancer-related genes, suggesting that interface genes might

be involved in the process of cancer occurrence and tumor

formation. KEGG signaling pathway analysis showed that

interface genes were enriched in immune-related signaling

pathways, for example, chemokine signal pathway, and NF-kB
signal pathway. Chronic activation of NF-kB can lead to the

development of various autoimmune, inflammation-related

diseases and solid tumors (49). Chemokines are a class of small

secretory molecules that regulate the migration of immune cells by

binding to receptors. In IBD and non-alcoholic steatohepatitis

(NASH), two types of inflammatory diseases that may cause

cancer, we found that all chemokines and chemokine receptors in

interface genes had higher expression compared with normal

tissues. In many cancer types, chemokines can regulate the

composition of leukocyte infiltration (50). There is evidence that

CCR5, one of interface genes in IBT_Her2+_TNBC, interacts with

CCl5 to promote tumorigenesis at the beginning of cancer (51).

Among them, CXCL9, CXCL10, and CXCL11 have been reported

to promote cancer cell proliferation by combining with CXCR3A

(46). The interface gene set was highly expressed and enriched in

IBD and NASH, indicating the promotion of the interface gene in

the transformation of inflammatory cancer.
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In addition, it has also been seen that Epstein–Barr virus

(EBV) infection, viral myocarditis, and pathogenic Escherichia

coli infection were enriched in interface genes. Now, breast tissue

is considered to have this specific microbiome rather than a

sterile environment. The microbiome in breast cancer adjacent

tissues is significantly different from normal breast tissue,

suggesting its possible role in breast cancer (52). Studies have

found that the genera Fusobacterium is more abundant in breast

cancer adjacent tissues than in normal breast tissues, and it may

cause cancer by releasing factors and providing a pro-
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inflammatory environment. In addition, early studies have

shown that human papillomavirus (HPV) exhibits an

association with breast cancer, which may promote the

progression of inflammatory response in breast tissue and thus

benefit the process of breast cancer (53, 54). Lymphotropic

viruses, such as EBV, can continuously activate JAK-STAT

and NF-kB pathways (49). The long-term STAT and NF-kB
activation of these viruses leads to the induction of chronic

inflammation, which can support the persistence of these viruses

and promote virus-mediated cancer (49). This suggests that
B

C D

E F

A

FIGURE 6

The expression of interface genes in other inflammatory diseases. (A) A heatmap of differentially expressed upregulated genes in the GSE4183
dataset. (B) The overlap between interface genes and differentially upregulated gene groups in IBD. “*”, p-value < 0.05. (C) Enrichment of
signaling pathways in different inflammatory tissues. NASH (non-alcoholic steatohepatitis) and IBD (inflammatory bowel disease). IBT,
inflammatory breast tissue; IG, interface genes. IBD_1, GSE4183; IBD_2, GSE83687; NASH, GSE162694; IG_IBT_Her2+_TNBC, interface genes in
IBT_Her2+_TNBC module; IG_Her2+_TNBC, interface genes in Her2+_TNBC module. (D) Venn plot presents overlaps of interface genes and
differentially expressed genes among NASH (non-alcoholic steatohepatitis) and IBD (Inflammatory Bowel Disease). IBT, inflammatory breast
tissue; IG, interface genes. IBD_1, GSE4183; IBD_2, GSE83687; NASH, GSE162694. (E) The correlation between overlapped Genes and immune
T cells infiltration in breast cancer samples. (F) Venn diagram of the interface genes from the chemokine signaling pathway and 14 overlapped
genes. IG_Chemokine, interface genes involved in chemokine signaling pathway; IG_inflammation, interface genes that were highly expressed
in other inflammations.
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viruses and microbiomes may become a source of inflammation

in tissues and increase the risk of cancer.

In summary, we found the similarity between inflammatory

lesions of the breast and ER− breast cancer and analyzed their

transcriptome. Through comprehensive protein network

analysis, we identified the interface genes and signaling

pathways that have the potential to promote inflammatory

cancer transformation. We speculate that, in inflammation

lesions, which might be caused by changes of the virus and

microbial populations, constantly highly expressed APOBGE3C

would increase the probability of DNA mutations and increase

the risk of cancer; on the other hand, inflammation recruits

immune cells, such as Treg cells, and Treg cells secreted

chemokines and activated chemokine signaling pathways to

promote cancer cells proliferation. These interface genes can

be used as a risk factor to provide a certain basis for the clinical

early detection and treatment of breast cancer. The correlation

analysis between inflammatory lesions of the breast and ER−

breast cancer provides a basis for the continued analysis of

inflammatory cancer transformation analysis.
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SUPPLEMENTARY FIGURE 1

The performance characteristics of special genes in IBT. (A) Breast cancer
types predicted by the expression of PAM50 characteristic genes in IBT.

Expression of ESR1 (B), PGR (C) and ERBB2 (D) among different breast
tissues. “ns”, p-value > 0.05; “**”, p-value < 0.01.

SUPPLEMENTARY FIGURE 2

The expression clusters of differentially expressed genes in IBT and ER− breast
cancer samples (Her2+ and TNBC). The main enriched functional items are

listed on the right. The heatmap on the left showed the average expression

value of the cluster in each type of sample and trend graph on the right
showed normalized gene expression and the cluster expression values.

SUPPLEMENTARY FIGURE 3

NP network and function enrichment of risk factors. (A)NP network of risk
factors. The color of the node indicated genes from different groups, and

the color of the edge indicated the correlation coefficient of expression

between gene nodes. (B) Proportion of enriched KEGG and GO terms of
genes in the NP network of risk factors
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SUPPLEMENTARY FIGURE 4

erythroid cell infiltration in inflammation and ER− breast cancer. (A) The
absolute score of erythroid cells among different breast tissues. “ns”,
Frontiers in Oncology 13
p-value > 0.05. Absolute score reflected the absolute proportion of
blood cells in a mixture. (B) A heatmap showed the average content of

different erythroid cells among normal, inflammation, and cancer stages.
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