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Ultrasound-based radiomics
analysis for differentiating
benign and malignant breast
lesions: From static images to
CEUS video analysis

Jun-Yan Zhu1*, Han-Lu He1*, Zi-Mei Lin2, Jian-Qiang Zhao3,
Xiao-Chun Jiang1, Zhe-Hao Liang1, Xiao-Ping Huang1,
Hai-Wei Bao1, Pin-Tong Huang2 and Fen Chen1*

1Department of Ultrasound, The First Affiliated Hospital of Zhejiang Chinese Medical University,
Hangzhou, China, 2Ultrasound in Medicine, The Second Affiliated Hospital, Zhejiang University
School of Medicine, Hangzhou, China, 3Technology Department, XENIRO, Shanghai, China
Background: Continuous contrast-enhanced ultrasound (CEUS) video is a

challenging direction for radiomics research. We aimed to evaluate machine

learning (ML) approaches with radiomics combined with the XGBoost model

and a convolutional neural network (CNN) for discriminating between benign

and malignant lesions in CEUS videos with a duration of more than 1 min.

Methods: We gathered breast CEUS videos of 109 benign and 81 malignant

tumors from two centers. Radiomics combined with the XGBoost model and a

CNN was used to classify the breast lesions on the CEUS videos. The lesions

were manually segmented by one radiologist. Radiomics combined with the

XGBoost model was conducted with a variety of data sampling methods. The

CNN used pretrained 3D residual network (ResNet) models with 18, 34, 50, and

101 layers. The machine interpretations were compared with prospective

interpretations by two radiologists. Breast biopsies or pathological

examinations were used as the reference standard. Areas under the receiver

operating curves (AUCs) were used to compare the diagnostic performance of

the models.

Results: The CNNmodel achieved the best AUC of 0.84 on the test cohort with

the 3D-ResNet-50 model. The radiomics model obtained AUCs between 0.65

and 0.75. Radiologists 1 and 2 had AUCs of 0.75 and 0.70, respectively.

Conclusions: The 3D-ResNet-50 model was superior to the radiomics

combined with the XGBoost model in classifying enhanced lesions as benign

or malignant on CEUS videos. The CNNmodel was superior to the radiologists,
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and the radiomics model performance was close to the performance of the

radiologists.
KEYWORDS

breast cancer, contrast enhanced ultrasonography (CEUS), machine learning,
convolutional neural network (CNN), radiomics
Introduction

Contrast-enhanced ultrasound (CEUS) is the latest and most

important technology in the field of ultrasound imaging (1). Using

microbubbles, it obtains detailed information about the tumor

blood supply and provides dynamic perfusion information in real

time with few application limitations (2, 3). Different from the

relatively mature static image radiomics studies, there are

technical difficulties in applying static image radiomics analysis

methods to video analysis with a length of more than 1 min (4).

Given that the practice of medicine is constantly evolving in

response to new technology, there is interest in using the latest

imaging methods to obtain data for radiomics learning (5, 6).

CEUS is one of the most advanced techniques in clinical

tumor treatments, ranging from early screening and differential

diagnosis to treatment response evaluation (7). It is particularly

useful for the detection and characterization of lesions and has

been used in breast cancer diagnosis as a feasible alternative

screening modality (1, 8). Breast cancer is the most common

malignant cancer in women, and it has a high mortality rate; there

were over 1.6 million cases in 2010, and 2.1 million cases are

projected by 2030 (9–12). Therefore, early detection and

treatment play important roles in reducing mortality rates.

Several studies have reported training a radiomics or

convolutional neural network (CNN) architecture to

automatically extract features from CEUS cine images. Among

them, the application of deep neural networks that can extract

continuous spatiotemporal information is quite rare. In this context,

we extracted the spatiotemporal information of dynamic CEUS by

using 3D-CNN models. We aimed to compare the diagnostic

performance of radiomics combined with the ML model, the 3D-

CNNmodel, and human-read interpretations based on CEUS video

for the differentiation of benign and malignant breast lesions.
Materials and methods

Study design and patients

The study was approved by the ethical committee of the local

institutional board and complied with the Declaration of
02
Helsinki. Informed consent was waived for this retrospective

research. Written informed consent was obtained from each

participant. From April 2021 to November 2021, 123 patients

with breast tumors who underwent CEUS examination were

enrolled from The First Affiliated Hospital of Zhejiang Chinese

Medical University in Hangzhou, China. From August 2018 to

August 2021, 92 patients with breast tumors who underwent

CEUS examination were enrolled from The Second Affiliated

Hospital, Zhejiang University School of Medicine in

Hangzhou, China.

The two centers used the same patient inclusion and

exclusion criteria. The inclusion criteria were as follows: (a)

each patient underwent pathological examination; (b) CEUS

examinations were performed before surgery and prior to any

treatment, including biopsy or neoadjuvant therapies; and (c)

each patient had complete demographic information and clinical

data. The exclusion criteria were as follows: (a) poor-quality

CEUS cine (e.g., the entire tumor and surrounding breast

parenchyma were not clearly displayed on the ultrasound

image at the same time) and (b) extreme motion existed

during CEUS examination. Finally, the CEUS cines of 190

patients acquired before treatment were analyzed.

There were 190 patient CEUS videos in our dataset, the

tumors were classified as benign or malignant, and the dataset

included 109 benign and 81 malignant lesions. A detailed

flowchart of patient selection for the study is shown in Figure 1.
CEUS data acquisition

CEUS was performed by two experienced radiologists (X-CJ

and Z-ML). There were two different ultrasound instruments

used in this study (Esaote MyLabTM Twice, Mindray

Resona R9).

During the examination, breast tumors were imaged in the

transverse plane of the largest tumor dimension. A single focus

was always placed at the bottom of the image, and the selected

plane remained unchanged. The probe was stabilized manually

to ensure that no pressure was exerted to avoid weakening the

contrast-enhanced signals. Patient movement was also avoided.

One-minute minimum continuous cine images were

acquired after injecting 4.8 ml of the second-generation
frontiersin.org
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contrast agent (SonoVue, Bracco Imaging, Milan, Italy) via the

elbow, followed by a 5-ml saline flush. Time was activated

promptly from the beginning of the SonoVue injection.

The selected imaging plane remained unchanged during the

examination. The whole CEUS cine process was recorded in an

ultrasound workstation by using digital imaging and

communication in medicine (DICOM) format. The recorded

CEUS videos were used for further analysis.
Tumor segmentation and preprocessing

Tumors were manually segmented by a single radiologist

(FC, with more than 20 years of experience in breast CEUS

interpretation). For segmentation, the radiologist first reviewed

the complete video to identify tumor boundaries. Then, we

extracted a rectangular image with a fixed length–width ratio

enclosing the nodule and its surrounding tissues, saved it in

JSON format, kept it unchanged in the sequence, adjusted the

image size to 160 × 160 pixels, and preprocessed it.

FFmpeg was used to cut the first 10 s and the last 5 s from the

dynamic 1.0- to 2.0-min video data. The frame rate of the

original data was between 15 and 30 frames/s. We tried to

unify it into (15, 18, 21, 24, and 25) different frame rates. After

selecting the 18 frames/s video, which had better results, we

uniformly converted it into frame pictures.
Frontiers in Oncology 03
We used a total of 107 CEUS for the training cohort and 26

CEUS for the validation cohort. A total of 57 CEUS videos were

used for the test cohort. We split the dataset using sklearn

(version 1.0.2) (13). The train_test_split function with parameter

stratifies so that the benign/malignant proportion of training,

validation, and test cohorts remains the same as the overall data.

The data used in the test cohort were independent and were not

used in the training and validation cohorts.
Radiomics feature extraction and model
building

Features were extracted from the ROI using PyRadiomics

(version 3.0.1) (14–16). Extracted texture features were

calculated on the first-order statistics (19 features), gray-level

cooccurrence matrix (24 features), gray-level run-length matrix

(16 features), gray-level size-zone matrix (16 features),

neighboring gray tone difference matrix (5 features), and gray-

level dependence matrix (14 features). A detailed definition of all

image features can be found online (http://pyradiomics.

readthedocs.io/en/latest/features.html).

The minimum analysis time of a CEUS video is 1 min; a rate

of 18 frames/s was applied for a total of 1,080 images. The

difference between each picture is small and changes over time.

According to expert experience, the degree of change over time

should be more valuable for diagnosis. We have tried a variety of
FIGURE 1

Flowchart of patient enrollment.
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data sampling methods: all 60 s of data enter the follow-up; the

mean value is taken every 10 s; the mean value is taken every 20

s; one frame is taken every 10 s; one frame is taken every 20 s; the

differences between the above values and the 30th second frame

are taken; and the differences between the above values and the

60th second frame are taken.

The XGBoost algorithm implements decision trees with a

boosted gradient, enhanced performance, and a faster speed. It

was applied to the super parameter setting process

of gridsearchcv.
CNN model building

In the training cohort, data augmentation was performed by

using random cropping, random rotations, flipping vertically or

horizontally, and color jitter (17, 18).

To efficiently utilize the dynamic characteristics of the CEUS

modality, multichannel convolution models that can learn the

spatiotemporal characteristics of different enhancement models

were considered. 3D-ResNet is a subgroup of CNN methods and

is widely used in video analysis because it has good performance

in dealing with both spatial and temporal features at the same

time (19).

Pretrained 3D-ResNet on Kinetics-400 (https://arxiv.org/

abs/1705.06950) is used for classification via transfer learning

(20). To find the most suitable model for benign and malignant

discrimination, 18-layer, 34-layer, 50-layer, and 101-layer

ResNet models were fine-tuned. Clinical features and lesion

size were not included as radiomics and CNN model

parameters. The ResNet models were trained by performing

Repeat-Stratified K-Fold validation (n_repeats = 10; K = 5) on

the dataset to obtain more reliable generalization errors. The

dataset was shuffled and equally divided into three cohorts. One
Frontiers in Oncology 04
was used as the test cohort to evaluate the trained model.

Another cohort was further divided into a training set and a

validation set according to 80%:20%.

The details of ROI segmentation and the flowchart of

radiomics and CNN are shown in Figure 2. The following link

can be accessed for additional code details: https://github.com/

kenshohara/3D-ResNets-PyTorch.
Reader study

All the digital cine clips of the study population were

retrospectively reviewed by two different readers (X-PH and

Z-HL, with 8 and 15 years of clinical experience, respectively).

The readers were blinded to each other’s interpretations, to the

original radiologist’s interpretations, and to the model’s

assessment. None of the readers were involved in the CEUS

examinations, and both were blinded to the clinical and other

imaging information of the patients.

The two readers assessed the possibility of malignancy in

CEUS cines based on the Breast Imaging Reporting and Data

System (BI-RADS) and the reported BI-RADS categories per

patient, which were 3, 4a, 4b, 4c, and 5. Then, the readers

combined CEUS, grayscale US, and color Doppler flow imaging

(CDFI) for classification in the same way.
Statistical analysis

All statistical analyses were performed using SPSS (Version

26.0, IBM Corporation, Armonk, USA) and R software (Version

3.4.1, R Foundation for Statistical Computing, Vienna, Austria).

Student’s t-tests or the Mann–Whitney test, as appropriate, was

used to compare continuous variables. The chi-square test was
B

C

D

EA

FIGURE 2

Illustration of ROI annotation in CEUS videos and the design of Radiomics and 3D-Resnet-50 models. (A) CEUS examinations were performed
for each breast tumor. (B) An example of the yellow bounding box ROI drawn in one CEUS frame. (C) Schematic of radiomics combined with
the XGBoost model. (D) A three-dimensional ROI (2D in space and 1D in time) of CEUS videos was fed into the 3D-Resnet-50 model to obtain
the discriminative features by automatic feature learning. (E) The features obtained from the radiomics and 3D-Resnet-50 models are used to
calculate the prediction probability. ROI, region of interest; CEUS, contrast-enhanced ultrasound; ResNet, residual network.
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used to compare categorical variables. A p-value less than 0.05

was considered statistically significant.

To evaluate the predictions of the three different methods

(the radiomics, CNN, and radiologist methods), receiver

operating characteristic (ROC) curves were constructed. The

areas under the ROC curve (AUCs) with 95% confidence

intervals (CIs), sensitivity, specificity, accuracy, and F1 score

were investigated.
Results

Clinical characteristics

A total of 190 female patients with breast tumors were

enrolled for analysis, namely, 109 with benign breast tumors

and 81 with malignant tumors, and were divided into two

groups. The baseline characteristics of all patients and breast

tumors (including age, pathological findings, and US BI-RADS

category) are presented in Table 1.

The final diagnosis included 109 (57.4%) benign and 81

(42.6%) malignant breast lesions (Table 2). Malignant lesions

were larger than benign lesions on US, and patients with

malignant lesions were significantly older than those with

benign lesions. The results showed that the differences

between all clinical factors (including age, size, and BI-RADS

category) of the patients with benign and malignant tumors were

statistically significant (p < 0.05).
Radiologist diagnosis results

The ROC curves (Figure 3) showed that the prediction

performance of the senior radiologist (radiologist 1) was better

than that of the junior radiologist (radiologist 2), and the AUC

values were 0.75 and 0.70, respectively (Table 3). Comparing
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radiologist diagnoses before and after combining CEUS with

grayscale US and CDFI, p-values for AUC were not statistically

significant (p > 0.05).
Performance of the radiomics models

The best XGBoost algorithm had the following parameters:

learning_rate = 0.02, subsample = 1, min_child_weight = 1,

n_estimators = 148, gamma = 0.1, max_depth = 3, and

colsample_bytree = 1.

In the radiomics model of XGBoost Group e4c2, the

difference between the frames every 20 s and the frame at the

60th second is taken by using RepeatS Stratified 5-Fold

validation in the training and validation cohorts. In the

training cohort, after 28 epochs, the max mean AUC was 1.00

(Figure 4A). In the validation cohort, after 28 epochs, the max

mean AUC was 0.74 (Figure 4B).

Among various data packets, the best result is obtained when

the differences between the frames at every 10 s and the frame at

the 30th second are taken (group e3d, test cohort sensitivity:

77.4%, specificity: 66.7%, accuracy: 65.5%, F1 score: 0.68, AUC:

0.75). The worst result is obtained when the difference between

the frames every 20 s and the frame at the 60th second is taken

(group e4c2, test cohort sensitivity: 54.8%, specificity: 75.0%,

accuracy: 60.0%, F1 score: 0.66, AUC 0.61) (Table 2).
Performance of the 3D-ResNet models

The 3D-ResNet-50 with the best classification effect is

selected. The hyperparameters of 3D-ResNet-50 were

learning_rate = 1e-4, weight_decay = 1e-5, momentum = 0.9,

ft_begin_module = layer1, sample_size = 136, sample_duration

= 108, n_epochs = 30, and batch_size = 8. Details of the network

architecture are provided in https://github.com/kenshohara/3D-

ResNets-PyTorch.

In the 3D-ResNet-50 model, repeat-stratified fivefold

validation was used in the training and validation cohorts. In

the training cohort, after 30 epochs, the max mean AUC was

0.85 (Figure 4C). In the validation cohort, after 29 epochs, the

max mean AUC was 0.82 (Figure 4D).

In the test cohort, the 3D-ResNet-50 algorithm achieved

sensitivity, specificity, accuracy, F1 score, and AUC values of

70.8%, 85.9%, 76.0%, 0.72, and 0.84, respectively. The AUC of

the test cohort was the same as that of the training cohort.
AI system performance compared with
the performance of the radiologists

The ROC curves of radiomics, 3D-ResNet-50, and

radiologists in the test cohort are shown in Figure 3. The AUC
TABLE 1 Characteristics of patients and images.

Characteristics Benign Malignant p

Patient number (n) 109 (57.4%) 81 (42.6%)

Age (years) 24–78 35–82 <0.05

Range/mean ± SD 45.1 ± 11.2 56.0 ± 10.1

Size of lesions (cm) 0.32–4.47 0.34–4.54 <0.05

Range/mean ± SD 1.28 ± 0.78 1.97 ± 0.88

BI-RADS (n) <0.05

3 41 (37.5%) 0 (0.0%)

4a 49 (45.0%) 13 (16.0%)

4b 10 (9.2%) 21 (26.0%)

4c 5 (4.5%) 18 (22.2%)

5 4 (3.7%) 29 (35.8%)
SD, standard deviation; BI-RADS, Breast Imaging Reporting and Data System.
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of the 3D-ResNet-50 model was 0.84, which was significantly

higher than that of both the radiomics and radiologist

approaches. The NRI (Net Reclassification Index) of the 3D-

ResNet-50 model compared with the radiomics models and

radiologists was >0.

The best sensitivity and specificity results for the radiomics

model were 77.4% and 66.7%, respectively. The sensitivity and

specificity for senior radiologists were 74.3% and 74.1%,

respectively. The sensitivity and specificity results for the

junior radiologist were 66.0% and 71.6%, respectively (Table

2). The NRIs of the best radiomics model compared with the

senior radiologist and junior radiologist were <0 and

>0, respectively.
Frontiers in Oncology 06
Decision curve analysis (DCA) was used to assess the clinical

usefulness of the 3D-ResNet-50 model, radiomics model, and

radiologists’ diagnosis in the test cohort (Figure 5). If the

threshold probability was more than 7%, using the 3D-

ResNet-50 model to predict malignancy added more benefit

than either the treat-all scheme (assuming that all lesions were

malignant) or the treat-none scheme (assuming that all lesions

were benign). In addition, using the 3D-ResNet-50 model to

predict malignancy added more benefit than using either

radiomics or radiologists.
Discussion

The diameters, volumes, shapes, and contrast-enhanced

models of lesions usually described by radiologists based on

diagnosis are called semantic features. They can be generated by

algorithms that capture imaging data patterns, such as first-

order, second-order, and high-order statistical determinants,

shape-based features, and fractal features, which are called

radiomics features. At present, the research hotspot of image

analysis uses CNNs to extract the so-called “deep” feature phase

in the training process, which is a very powerful nonlinear

mapping. To distinguish CNNs from radiomics algorithms,

the medical image task that uses CNNs to extract features is

called deep learning radiomics (DL-radiomics) by some scholars.

Most radiomics studies use less than 10 images per case, and 1-

min CEUS videos have three times more data than static

ultrasound images. To our knowledge, this is the first study to

attempt to use the above three methods to interpret breast CEUS
FIGURE 3

Receiver operating characteristic (ROC) curves of the two radiologists compared with the 3D-Resnet-50 model and radiomics combined with
the XGBoost model with three different data sampling methods in the test cohort.
TABLE 2 Histopathology of breast lesions.

Lesion type No. of lesions

Benign lesions 109 (57.4%)

Adenosis 32 (29.4%)

Fibroadenoma 28 (25.7%)

Papilloma 15 (13.8%)

Inflammatory process 13 (11.9%)

Other* 21 (19.2%)

Malignant lesions 81 (42.6%)

Invasive 67 (82.7%)

Ductal carcinoma in situ 14 (17.3%)
There were a total of 190 lesions. Unless otherwise indicated, data in parentheses are
percentage.
*The “other” category included enhancement around fat necrosis, fresh scar tissue,
pseudo angiomatous stromal hyperplasia, and other benign-appearing enhancement
because of focal or regional background enhancement.
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and evaluate whether CEUS can be used to classify benign and

malignant breast lesions.

For the three different methods, we chose a relatively

mainstream method combined with the analyzed data.
Frontiers in Oncology 07
Sufficient time was provided for the semantic analysis of the

experts in reading the CEUS. The experts were invited to classify

benign and malignant lesions and perform BI-RADS scoring.

When processing video for more than 1 min, the conventional
B

C D

A

FIGURE 4

Radiomics (A) and 3D-Resnet-50 (C) Repeated Stratified 5-Fold AUC in the training cohort; Radiomics (B) and 3D-Resnet-50 (D) Repeated
Stratified 5-Fold AUC in the validation cohort. The epochs are depicted on the x-axis, each representing the process of training all training
samples once. The thick blue curve represents the mean AUC value. The blue area represents the 95% confidence interval (CI). The red fork
represents the maximum mean of the AUC value after repeating multiple epochs.
TABLE 3 Comparison of the predictive performance in 3D-Resnet 50, radiomics, and radiologists in the training, validation and test cohort.

Models Datasets Sensitivity (%) Specificity (%) Accuracy (%) F1 score AUC

3D-Resnet 50 Training 83.4 75.7 76.6 0.75 0.84

Validation 83.4 75.7 75.5 0.74 0.82

Test 70.8 85.9 76.0 0.72 0.84

XGBoost Group e1c2 Training 72.8 77.6 92.2 0.85 0.98

Validation 61.8 67.8 69.3 0.92 0.75

Test 67.7 58.3 54.6 0.55 0.65

XGBoost Group e3d Training 84.2 79.8 96.7 0.92 0.99

Validation 65.7 69.5 67.0 0.61 0.74

Test 77.4 66.7 65.5 0.68 0.75

XGBoost Group e4c2 Training 83.5 84.8 98.7 0.98 1.00

Validation 64.0 70.9 67.7 0.68 0.74

Test 54.8 75.0 60.0 0.66 0.61

Radiologist 1 All data 74.3 74.1 74.2 0.77 0.75

Radiologist 2 All data 66.0 71.6 68.4 0.71 0.70
frontiers
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radiomics information extraction combined with machine

learning classification method must contend with extracting

effective information from more than 1,000 times the amount

of data from static images. To extract effective information from

the massive radiomics data in a video, we referred to the clinical

significance (biological underpinnings) and attempted to analyze

the difference in the radiomics data at different time points. Data

combinations were selected from a variety of time differences.

XGBoost, a classical and effective machine learning classification

method, was selected, as CNNs can handle a large number of

images. We transformed 1 min of video (18 frames/s) into 1,080

pictures, all of which were entered into the follow-up analysis.

To obtain the spatiotemporal information of dynamic CEUS and

the total amount of data used in this study, we chose to use the

3D-ResNet model for transfer learning.

Our department performs a large number of traditional

breast ultrasonography examinations; thus, these radiologists

have gained rich experience in interpreting breast

ultrasonography images. However, the diagnostic accuracy of

radiologists in CEUS video diagnosis is relatively low, with poor

CEUS diagnosis consistency among different radiologists,

indicating that the human eye has low specificity when

observing contrast images in breast lesions (21, 22). Making

accurate qualitative cancer diagnoses using ultrasound is still a

challenge for radiologists.

The same situation appears in radiomics analysis, which

shows that careful selection of image types is very important for

obtaining meaningful results. The AUC value we obtained was

between 0.65 and 0.75, which is similar to that of human experts.

The optimal radiomics analysis in our study involved the expert

knowledge of radiologists and data scientists.
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Our study with the 3D-ResNet-50 model for predicting

breast cancer yielded satisfactory performance, obtaining an

AUC of 0.84 on the test cohort. The CEUS-based 3D-ResNet-

50 model had excellent performance in identifying benign and

malignant breast lesions. Consistent with computer vision

trends, CNN spatiotemporal features can help better process

video data from CEUS.

In this study, we analyzed the performance of the ML-

radiomics method on CEUS videos and found that it exceeded

the recognition ability of the human-eye approach. The

promising results in this study were attributed to the

advantages of the standardized CEUS acquisition criteria and

the acquisition of samples from a multicenter database, which

created good conditions for our follow-up analysis and made our

results more authentic and reliable.

Our work has several limitations.

First, comparing radiologist diagnoses before and after

combining CEUS with grayscale US and CDFI, the p-values

for the AUC were not statistically significant. However, given the

scientific nature of research, we should repeat this process for the

radiomics and CNN models.

Additionally, a larger cohort of subjects should be included

to ensure that the varying perfusion patterns of specific breast

lesions can be captured, thus further improving the prediction

accuracy and reducing the risk of overfitting.
Conclusion

Our 3D-ResNet-50 model showed excellent diagnostic

performance in differentiating between benign and malignant
FIGURE 5

Decision curve analysis (DCA) of the models and radiologists from the test cohort. The net benefit measured on the y-axis is determined by
calculating the difference between the expected benefit and the expected harm associated with each proposed model. The red curve, green
curve, orange curve, and blue curve represent the performance of the 3D-Resnet-50 model, the best XGBoost model, radiologist 1, and
radiologist 2, respectively. The gray line represents the assumption that all lesions were malignant (the treat-all scheme). The black line
represents the assumption that all lesions were benign (the treat-none scheme). If the threshold probability was more than 7%, using the 3D-
Resnet-50 model to predict malignancy added more benefit than either the treat-all scheme or the treat-none scheme (dark black line).
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breast lesions compared with the radiomics combined with the

XGBoost model and human readers on CEUS. DL-radiomics

may have better results than mathematic-radiomics in the

analysis of ultrasonic dynamic images.
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