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Clear cell renal cell carcinoma (ccRCC) is a prevalent urinary malignancy.

Despite the recent development of better diagnostic tools and therapy, the

five-year survival rate for individuals with advanced and metastatic ccRCC

remains dismal. Unfortunately, ccRCC is less susceptible to radiation and

chemotherapy. Consequently, targeted therapy and immunotherapy play a

crucial role in the treatment of ccRCC. Enhancer RNAs (eRNAs) are noncoding

RNAs transcribed by enhancers. Extensive research has shown that eRNAs are

implicated in a variety of cancer signaling pathways. However, the biological

functions of eRNAs have not been systematically investigated in ccRCC. In this

study, we conducted a comprehensive investigation of the role of eRNAs in the

onset and management of ccRCC. Patient prognosis-influencing eRNAs and

target genes were chosen to construct a predictive signature. On the basis of

the median riskscore, ccRCC patients were split into high- and low-risk

subgroups. The prediction efficiency was assessed in several cohorts, and

multi-omics analysis was carried out to investigate the differences and

underlying mechanisms between the high- and low-risk groups. In addition,

we investigated its potential to facilitate clinical treatment choices. The

riskscore might be used to forecast a patient’s response to immunotherapy

and targeted therapy, giving a revolutionary method for selecting treatment

regimens with pinpoint accuracy.
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Introduction

Renal cancer is one of the most common malignant

tumors, and the estimated numbers of new deaths and new

cases of renal cancer in the United States in 2021 were 13,780

and 76,080, respectively (1). Renal cell carcinoma (RCC)

represents 90% of renal malignancies, with clear cell renal

cell carcinoma (ccRCC) being the most prevalent subtype (2).

Currently, the most effective therapy for ccRCC is surgery.

However, following surgery, relapses and metastases are

prevalent (3). Over 30% of ccRCC patients are reportedly

affected by metastatic disease (4). Despite advancements in

cancer detection and treatment, the 5-year survival rate for

individuals with metastatic ccRCC remains around 20% (5).

Since ccRCC does not respond well to radiation and

chemotherapy, targeted therapy and immunotherapy become

particularly important in the treatment of ccRCC (6, 7).

Evidently, a customized strategy is crucial. On the basis of

both the features of carcinomas and the situations of patients,

the treatment regimen should be developed comprehensively.

Immunotherapies, particularly immune checkpoint

blockade (ICB), have changed cancer therapy in recent years

(8). Certain individuals with ccRCC exhibit astonishing clinical

improvements when immune suppression is eliminated by ICB,

and in the treatment of advanced ccRCC, checkpoint blockade in

combination with other anticancer drugs is presently the first-

line therapy (9). However, a substantial proportion of patients

do not qualify for checkpoint blockade. This necessitates the use

of reliable biomarkers to determine the optimal therapy strategy.

Enhancers are short clusters of regulatory DNA elements

with transcription factor recognition sequences. They are either

close to or far from the promoters of the target genes and control

their expression (10, 11). Enhancers have been shown to play

crucial roles in cancer formation and tumor response (12–14).

Beyond their typical role of recruiting transcription factors to

gene promoters, enhancer elements are also transcribed into

noncoding RNAs known as enhancer RNAs (eRNAs) (15).

eRNAs appear to be engaged in several cancer signaling

pathways by modulating the expression of their target genes,

including clinically actionable genes and immune checkpoints

(16). By interacting with transcription factors, eRNAs may

actually boost therapeutic anticancer therapies (16–18). eRNAs

may serve as diagnostic indicators and tissue-specific treatment

targets due to their tissue-specific expression across various

cancer types. The risk model has been constructed in glioma

(19), prostate cancer (20), and hepatocellular carcinoma (21).

However, to the best of our knowledge, how eRNAs affect

immune function and influence survival outcomes in ccRCC

patients remains to be investigated.

In this study, we conducted an integrated analysis to

investigate the functions of eRNAs in the development and

management of ccRCC. Patient prognosis-influencing eRNAs
Frontiers in Oncology 02
and target genes were chosen to generate a predictive signature.

Multi-omics analysis was performed to evaluate the differences

and underlying processes between the high- and low-risk

groups. Prediction accuracy was assessed in several cohorts. In

addition, we explored the correlations of patient responsiveness

to immunotherapy and targeted therapies with riskscore to

evaluate its potentiality to facilitate treatment choices in

clinical practice.
Materials and methods

Data collection and preprocessing

From the TCGA database, transcriptional data, somatic

mutation data, and clinical features were obtained (Table S1).

Then, we obtained the following datasets from the GEO

database: GSE53757 (22) (N=144), GSE46699 (23) (N=130),

GSE36895 (24) (N=76), and GSE22541 (25) (N=68). By using

the “ComBat” algorithm of the “sva” package (26), we eliminated

the batch effect and pooled the four datasets as a validation

cohort. As further confirmation, we also retrieved RNA-seq data

from the ICGC-RECA-EU database. The E-MTAB-1980 cohort

(27) from the ArrayExpress database was also used to verify the

predictive value.
Identification of prognostic eRNAs
in ccRCC

PreSTIGE (Predicting Specific Tissue Interactions of Genes

and Enhancers) was used to investigate lncRNAs produced from

active tissue-specific enhancers and their putative target genes.

We obtained lncRNA−target gene association data from a

previous study for further analysis (28). To recognize the

prognostic eRNAs, univariate Cox regression was used to

determine candidate eRNAs and their respective target genes.

After analysing the connection between eRNAs and target genes

(Cor > 0.30, P-value< 0.01), we applied LASSO regression

analysis for further screening. Finally, a multivariate Cox

regression analysis (P-value< 0.05) was utilized to further

identify eRNAs playing important roles in the prognosis

of patients.
Establishment and evaluation of the
prognostic signature

The prognostic model was constructed according to the

results of multivariate Cox regression analysis. The riskscore

for each patient was calculated by applying the following

formula:
frontiersin.org
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Riskscore ¼on
i=1bi*expi

*b represents the regression coefficient, exp represents the

expression value of each eRNA

On the basis of the median riskscore, ccRCC patients in the

TCGA and E-MTAB-1980 cohorts were split into high- and low-

risk subgroups. Using Kaplan-Meier curves, survival disparities

between the high- and low-risk groups were displayed.

Moreover, the “timeROC” package (29) was applied to assess

the prognostic efficacy of the signature. To uncover the

differences between the high- and low-risk groups, differential

expression analysis was performed with the parameters of |

logFC| > 1 and P< 0.05. Furthermore, GO and KEGG

enrichment analyses were carried out by the R package

“clusterProfiler” (30) to unearth the potential mechanism

(FDR< 0.05 and q value< 0.05).
Correlation between riskscore and
clinical parameters

To elucidate the influence of the riskscore on cancer

development, the difference in riskscore across patients

stratified by clinical parameters was calculated. We examined

the percentage of patients in various stages between the high-

and low-risk groups and investigated the predictive validity of

the riskscore in early-stage and late ccRCC patients, given that

pathologic stage is crucial for therapy selection. In addition,

univariate and multivariate Cox regression analyses were

conducted to assess the independence of the prognostic model

from other clinicopathological characteristics.
Tumor mutation burden analysis

Tumor mutation burden (TMB) has been shown to be a

predictive biomarker for determining whether cancer patients

would react favorably to immune checkpoint inhibitors (31).

Therefore, we investigated the relationship between TMB and

riskscore in this study. Furthermore, patients were separated

into four categories based on the median riskscore and TMB.

The Kaplan-Meier method was used to evaluate differences in

the survival distributions between groups.
Correlation between immune infiltration
and riskscore

Using the “GSVA” R package, we compared the infiltration

levels of 28 immune cells and immunological functioning across

high- and low-risk groups (32). The Immune score and Stromal

score of each sample were calculated by the “ESTIMATE”

package (33). The correlations between immune infiltration
Frontiers in Oncology 03
and riskscore were then calculated after downloading the

infiltration estimate data predicted by CIBERSORT, TIMER,

xCell, quanTIseq, MCP-counter, and EPIC from TIMER 2.0

(34). In addition, the immunological subtypes of patients in the

high- and low-risk groups were compared. Finally, a comparison

was made between the riskscore and the human leukocyte

antigen (HLA) gene family.
Benefits of the riskscore to aid
treatment decision

Immunotherapy for cancer has altered the standard of

treatment for certain patients with advanced disease (35). ICB

has received attention in ccRCC patients as a promising

anticancer treatment. Here, we first evaluated the differential

expression of several immune checkpoint genes across high- and

low-risk groups. Furthermore, we evaluated the correlations

between CTLA4 and PD-1 expression and riskscore in

d i ff e r en t s t a g e s . Add i t i ona l l y , we r e t r i e v ed the

immunophenoscore (IPS) from The Cancer Immunome

Database (TCIA) for ccRCC patients. The patient’s IPS was

determined objectively by taking into account the four categories

of immunogenicity-determining genes: effector cells,

immunosuppressor cells, MHC molecules, and immune

modulators (36). Immunogenicity is positively linked with

higher IPS scores (37). In addition, we downloaded TCGA

patient analysis findings from the Tumor Immune

Dysfunction and Exclusion (TIDE). Three cell types believed

to inhibit T-cell infiltration in tumors were studied across high-

and low-risk groups: cancer-associated fibroblasts (CAFs),

myeloid-derived suppressor cells (MDSCs), and the M2

subtype of tumor-associated macrophages (TAMs). Due to the

absence of publicly available data on ccRCC cohorts adopting

immunotherapy, we employed an immunotherapeutic cohort

(IMvigor210 cohort) as a validation cohort (38). Comparisons of

riskscore were made between patients with various clinical states

after therapy.

Given that VEGFR-targeted therapy remains the first-line

therapeutic choice for advanced ccRCC, we compared the

susceptibility to sorafenib, sunitinib, pazopanib, and axitinib

across high- and low-risk groups. The half maximal inhibitory

concentrations (IC50) of these drugs were compared by applying

the pRRophetic (39) package. In addition to the TCGA cohort,

the findings were verified in the GEO and ICGC cohorts as well.
Statistical analysis

All of the analyses were conducted using RStudio 4.0.4. The

Spearman method was used to calculate correlations. Two

groups were compared using Student’s t test (mean with SD)

and the Wilcoxon test. Multiple groups were analyzed using the
frontiersin.org
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Kruskal–Wallis test and one-way ANOVA. Statistical

significance was defined as P-value< 0.05.
Results

Identification of prognosis-associated
eRNAs and target genes in ccRCC

Figure 1A illustrates the research design for this study. We

obtained 10066 regulatory relationships of eRNA and its target

gene from previous research (28). After univariate Cox

regression analysis and correlation analysis, 85 paired eRNAs

and their target genes were identified (Table S2), including 69

eRNAs and 80 target genes. The corresponding relationship

between the top 20 eRNAs associated with survival and their

target genes is shown in Figure 1B. Moreover, we displayed the
Frontiers in Oncology 04
top 20 eRNAs or target genes with the highest mutation

frequency (Figure 1C).
Construction of the predictive signature
and the prognostic value

The 69 eRNAs were filtered by using LASSO regression

analysis (Figures 2A, B). The number of potential eRNAs was

reduced to eight. After multivariate Cox regression analysis, five

eRNAs (EMX2OS, GNG12-AS1, ZFHX4-AS1, AFG3L1P,

LINC01271) remained to construct the predictive signature.

The correlations between the five eRNAs are shown in Figure

S1. The survival analysis and differential analysis between tumor

and normal tissues performed well in terms of the prognostic

genes (Figures 2C, D). Thus, we calculated the riskscore of each

patient as follows: riskscore = (-0.1284 × EMX2OS expression) +
A B

C

FIGURE 1

Flow chart and identification of prognostic eRNAs: (A) Diagram showing the methodology of this study. (B) Top 20 correlated eRNAs and their
target genes relevant to survival. (C) The top 20 mutated eRNAs or target genes associated with patient prognosis.
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(0.3209 × AFG3L1P expression) + (0.3546 × ZFHX4-AS1

expression) + (-0.8311 × GNG12-AS1 expression) + (0.9646 ×

LINC01271 expression) (Table 1).

After generating the riskscore, we conducted assessment and

validation analyses. First, ccRCC patients from the TCGA-KIRC
Frontiers in Oncology 05
and E-MTAB-1980 cohorts were separated into high- and low-

risk groups (Table S3), and the survival status of each patient in

the cohort assessed by riskscore is shown in Figure 3A, B. The

high-risk group had a greater mortality rate than the low-risk

group, and Kaplan-Meier analysis indicated substantial
A B

D

E F

C

FIGURE 2

Identification of prognosis-associated eRNAs: (A, B) LASSO regression analysis of the eRNAs correlated with OS in univariate Cox regression
analysis. Survival analysis (C) and differential expression analysis (D) of the five eRNAs constructing the predictive signature. (E, F) GO and KEGG
analyses between the high- and low-risk groups. (**p < 0.0, ****p < 0.0001).
TABLE 1 Multivariate Cox regression analysis to identify prognosis-related eRNAs.

eRNA coef exp (coef) se (coef) z Pr(>|z|)

EMX2OS -0.1284 0.8795 0.0560 -2.2939 0.0218

AFG3L1P 0.3209 1.3784 0.1203 2.6677 0.0076

ZFHX4-AS1 0.3546 1.4256 0.1550 2.2884 0.0221

GNG12-AS1 -0.8311 0.4356 0.2264 -3.6711 0.0002

LINC01271 0.9646 2.6237 0.3853 2.5036 0.0123
front
Coef, coefficient.
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differences in overall survival between the high-risk and low-risk

groups (Figure 3C, D). Additionally, the predicted signature’s

accuracy was also assessed using a time-dependent receiver

operating characteristic curve analysis. The AUCs for 1-year,

2-year, 3-year, 4-year, and 5-year survival in the TCGA-KIRC

dataset were 0.766, 0.714, 0.719, 0.710, and 0.743, respectively

(Figure 3E). The E-MTAB-1980 cohort had AUCs of 0.732,

0.771, 0.730, 0.708, and 0.714, respectively, for survival rates at

one, two, three, four, and five years (Figure 3F).

To investigate the biological differences between the high-

and low-risk groups. GO and KEGG enrichment analyses were

carried out to identify the biological functions of differentially

expressed genes (Figures 2E, F). We discovered that the majority

of the biological processes were immune system functions, such

as humoral immune response, complement activation, and

phagocytosis. Analysis of KEGG pathways indicated that

differentially expressed genes were mostly engaged in
Frontiers in Oncology 06
neuroactive ligand-receptor interaction and cytokine-cytokine

receptor interaction.
Correlation between the predictive
signature and clinical parameters

To investigate the link between the predictive signature and

clinical parameters, we evaluated the riskscore verified by clinical

parameters, and the results indicated that the riskscore was

markedly increased in patients with advanced pathologic stage,

histologic grade and TNM stage (Figure 4A). Due to the

importance of the pathologic stage in determining the optimal

therapy, we examined the percentage of patients at various stages

between the high- and low-risk groups. We discovered that the

percentage of advanced patients in the high-risk category was

dramatically increased (Figure 4B). (Figure 4B). We also
A B

D

E F

C

FIGURE 3

Validation of the predictive signature and performance analysis: (A, B) The riskscore distribution, survival status, and the expression of five eRNAs
of patients in the TCGA cohort and E-MTAB-1980 cohort. (C, D) Kaplan-Meier survival curves of OS and the proportion of the survival rate
between the high- and low-risk groups of the two datasets. (E, F) Time-dependent receiver operating characteristic analysis of the two datasets.
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evaluated the predictive validity of the riskscore in patients with

early and advanced ccRCC (Figure 4C). We observed that the

predictive signature could differentiate patient prognosis in both

early and advanced stages well.

To determine whether the predictive signature was an

independent prognostic indicator in ccRCC, univariate and

multivariate analyses were performed. The HR of the riskscore
Frontiers in Oncology 07
was 3.09 (95% CI: 2.51-3.81) and 2.24 (95% CI: 1.64-3.06)

(Figures 4D, E), respectively, indicating that the riskscore was

an independent prognostic factor in ccRCC. Interestingly, in the

multivariate analyses, pathologic stage, histologic grade and

TNM stage showed no significant differences when combined

with riskscore, which also demonstrated a tight correlation

between the predictive signature and clinical parameters.
A

B

D E

C

FIGURE 4

Association between the predictive signature and clinical parameters: (A) Correlations between riskscore and progression of ccRCC. (B) The
proportion of patients in different stages between the high- and low-risk groups. (C) Kaplan-Meier survival curves of OS in early and advanced
patients. (D) Univariate and (E) multivariate Cox regression analyses of correlations between the riskscore and clinical parameters.
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Relationship between riskscore and TMB

TMB is emerging as a promising biomarker for predicting

patients’ immune checkpoint inhibitor responses (40). Here, we

assessed the relationship between riskscore and TMB. Patients in

the high-risk group had a higher TMB than those in the low-risk

group (Figure 5C), and patients with a higher TMB had a shorter

PFS (Figure 5D). In addition, the correlation analysis revealed

that the riskscore was positively related to TMB (Figure 5E).

Then, patients were separated into four groups based on the

riskscore and TMB. Patients in riskscorehighTMBhigh had the

shortest median PFS, whereas those in riskscorelowTMBlow had

the best prognosis (Figure 5F). Finally, a graphic representation
Frontiers in Oncology 08
of the mutation status of genes that had high mutation rates in

the high- and low-risk categories was visualized (Figures 5A, B).
Riskscore was associated with ccRCC
immune infiltration

We then explored the possible association between the

riskscore and the tumor immunity of patients. In the high-risk

and low-risk groups, there was a significant difference between

the levels of most immune cells infiltrated (Figure S2) and the

functions of these cells (Figure S3). Furthermore, we compared

the levels of immune cell infiltration with the riskscore, and the
A B

D

E F

C

FIGURE 5

The correlation between TMB and riskscore: Genomic mutation status in the low-risk (A) and high-risk (B) groups is shown via a waterfall graphic.
(C) The difference in TMB between groups with high- and low-risk. (D) The PFS survival curve between the high- and low-TMB groups. (E)
Correlation analysis of riskscore and TMB. (F) Graphs showing Kaplan-Meier survival curves for four subgroups stratified by risk scores and TMB.
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findings indicated that the riskscore was closely associated with

the majority of the immune cells (Figure 6B). Immune subtypes

are characteristics of the tumor microenvironment (TME) that

cut beyond conventional cancer classifications to generate

groups and imply that some therapeutic methods may be

independent of histologic type. We retrieved immune subtypes

of TCGA from a previous work (41) and compared the

prevalence of various immunological subtypes in high- and

low-risk groups. The findings demonstrated striking changes

in immunological properties between the high- and low-risk

groups (Figure 6A). As shown in Figure 6C, the Immune Score

of the high-risk patients was significantly higher than that of the
Frontiers in Oncology 09
low-risk patients. In addition, the expression levels of the

majority of HLA-related genes were elevated in the high-risk

groups (Figure 6D).
Riskscore predicts therapeutic benefits

Anticancer immunotherapies using inhibitors of immune

checkpoints have been developed as novel treatment regimens

(42). The tumor microenvironment (TME) has been shown to

be closely connected to tumor growth and metastasis (43) and

may dampen the treatment response, hence influencing the
A

B

D

C

FIGURE 6

Relationship between immune infiltration and riskscore: (A) The proportion of patients with different immune subtypes between the high- and
low-risk groups. (B) The correlation of the riskscore and immune cell infiltration levels. (C) Comparison of Immune score and Stromal score
between the high- and low-risk subgroups. (D) The expression of the HLA gene family between the high- and low-risk groups. (*p < 0.05, **p <
0.01, ***p < 0.001). ns, no significance.
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clinical outcome (44). To further investigate the relationships

between immunotherapy response and riskscore, we analyzed

the association between riskscore and immune checkpoint

inhibitor genes. The expression of ICI genes, including CTLA4

and PD-1, was elevated in the high-risk groups relative to the

low-risk groups (Figure 7C). The correlation analysis also

suggested that the riskscore was positively correlated with

immune checkpoint gene expression (Figure 7D). Considering

that immunotherapies are typically prescribed to patients with

advanced ccRCC, we also estimated the correlation between

riskscore and immune checkpoint gene expression across
Frontiers in Oncology 10
different stages. It was observed that the correlation coefficient

was increased in advanced status, especially in stage iv

(Figure 7E) . IPS analys is was used to assess the

immunogenicity of the two prognostic groupings. Patients in

the high-risk group had higher IPS, IPS-CTLA4, IPS-PD1, and

IPS-PD1-CTLA4 scores, suggesting that immunotherapy may

have a greater response in this group (Figure 7B). CAFs, MDSCs

and M2-TAMs have been shown to inhibit T-cell infiltration

into cancers, and we calculated their prevalence in prostate

cancer. High-risk individuals had considerably fewer CAFs

and M2-TAMs (Figure 7A). However, the high-risk group had
A

B

D

E F

C

FIGURE 7

Predictive value of riskscore for immunotherapy: (A) The infiltration levels of CAFs, MDSCs, and M2-TAMs between the high- and low-risk
groups. (B) The correlation between IPS and riskscore. (C) The expression of immune checkpoint genes in subgroups with high- and low-risk.
(D) The association between riskscore and immune checkpoint gene expression. (E) The correlation between CTLA4, PD-1 expression and the
riskscore in different pathologic stages. (F) The difference in riskscore among individuals in the IMvigor210 cohort performing different responses
to immunotherapy. (*p < 0.05, **p < 0.01, ***p < 0.001). ns, no significance.
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a larger percentage of MDSCs. Finally, we examined the

riskscore performance in the IMvigor210 cohort. We

compared the riskscore of pat ients with different

immunotherapy responses. Patients with the greatest riskscore

were those who had a complete response (Figure 7F). According

to these findings, patients in the high-risk category may benefit

from immunotherapy.

Given that VEGFR-targeted therapy remains the first-line

therapeutic choice for advanced ccRCC, we compared the

sensitivity of sorafenib, sunitinib, pazopanib, and axitinib

across high- and low-risk groups. In the TCGA cohort, we

discovered that the high-risk group was more likely to respond

to sunitinib and axitinib, while the low-risk group responded

better to sorafenib and pazopanib (Figure 8A). The validation

cohort was subsequently used to verify these findings. The GEO

cohort confirmed the sensitivities to sunitinib and axitinib for

patients with a high riskscore (Figure 8B), while the ICGC

cohort validated the sensitivities to sunitinib and resistance to

sorafenib (Figure 8C) (Table S4).
Frontiers in Oncology 11
Discussion

The most prevalent type of kidney cancer is ccRCC. Due to

the absence of accurate diagnostic biomarkers and the

constraints of efficient screening detection, about 30% of RCC

patients first present with metastatic disease (45). Recurrence

occurs in around 30% of individuals after full excision of the

initial tumor (46). Traditional chemotherapy and radiation

therapy are generally unsuccessful against all subtypes of RCC

(47). Lack of susceptibility to chemotherapy and radiation

therapy has motivated study into other therapeutic methods.

In recent years, the introduction of targeted therapies, such as

multi-targeted tyrosine kinase inhibitors and mTOR inhibitors,

has been a significant advancement in ccRCC treatment (7).

Recent studies indicates that the immune microenvironment

generated by tumor immune cells may control the development

of cancer (48–50). Immune checkpoint inhibitors have emerged

as viable therapy choices for advanced ccRCC in recent years

(51–53). Immunotherapies such as nivolumab have already been
A

B

C

FIGURE 8

Riskscore predicts therapeutic benefits of targeted therapies: The estimated IC50 values of sunitinib, axitinib, sorafenib and pazopanib in the
TGCA cohort (A), GEO cohort (B), and ICGC cohort (C). (*p < 0.05, **p < 0.01, ***p < 0.001). ns, no significance.
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included in metastatic ccRCC therapy regimens (2). However, in

the setting of high tumor heterogeneity in terms of cell biological

characteristics and genetics, metastatic or advanced RCC

patients still have a poor prognosis due to the absence of

effective therapeutic approaches that may produce long-lasting

responses (54, 55). Therefore, identifying and validating

biomarkers are essential for enhancing first-line selection and

treatment sequences (56).

Recent breakthroughs in genome-wide investigations have

shown that the dysregulation of distal gene regulatory elements,

such as enhancers, occurs in a number of pathophysiological

diseases (57). They generate eRNAs, which directly contribute to

tumorigenesis (58, 59). Through their ability to resolve

intratumor heterogeneity with specificity of cell-type

enhancers, eRNAs provide additional explanations for cancer

phenotypes beyond those provided by mRNA expression (60).

In addition to regulating gene expression in cancer, eRNAs also

maintain genome stability, which is associated with

chromosome rearrangements and genome instability (61).

Moreover, it has been shown that eRNAs are expressed across

human cancer tissues, indicating that they could be useful as

biomarkers and therapeutic targets (62). Cancer resistance is a

well-defined phenomenon that arises when cancer cells develop

tolerance to a certain therapeutic dosage. Several molecular

pathways, including genetic or epigenetic changes and

enhanced drug efflux, contribute to therapeutic resistance (57).

Deregulation of enhancer transcription has been linked to

various malignancies and their treatments during the last

decade (63, 64). However, the prognostic significance of

eRNAs in ccRCC is yet unknown.

In this study, active tissue-specific enhancers and their

predicted potential target genes were obtained from previous

research. The prognostic eRNA and its target gene were filtered

using univariate Cox regression analysis and correlation

analysis. Next, LASSO regression analysis and multivariate

Cox regression analysis were used to build the predictive

signature. Finally, five eRNAs (EMX2OS, GNG12-AS1,

ZFHX4-AS1, AFG3L1P, and LINC01271) remained to

construct the predictive signature. The prognostic value of

riskscore was demonstrated in both the TCGA and E-MTAB-

1980 cohorts. In addition, the clinical correlation study revealed

a positive association between the riskscore and T stage, N stage,

M stage, histologic grade, and pathologic stage. In the high-risk

group, the percentage of advanced patients was much higher.

GO and KEGG analyses were carried out to identify the likely

underlying mechanism. We observed that the biological

processes enriched by differentially expressed genes were

highly connected with the immune response, suggesting that

there may be substantial variations between the high- and low-

risk groups in terms of immunological features.

Multiple recent studies have shown that TMB correlates with

immunotherapy response because it reflects the total neoantigen

load (65, 66). Low TMB is a good prognostic marker but predicts
Frontiers in Oncology 12
the adverse predictive effectiveness of ICI therapy (65). Herein,

we discovered a substantial positive association between the

riskscore and TMB. Patients in the high-risk group had a higher

TMB, indicating a more favorable treatment response. In

addition, the expression levels of the majority of HLA-related

and immune checkpoint genes were considerably elevated in the

high-risk groups. Interestingly, we found that the correlation

coefficient was higher in individuals with advanced disease,

particularly those diagnosed with stage IV. Therefore, high-

risk individuals with advanced disease may have a higher

expression of CTLA4 and PD-1. Higher scores on the IPS are

related to increased immunogenicity (36). In the high-risk

group, the IPS, IPS-CTLA4, IPS-PD1, and IPS-PD1-CTLA4

values were considerably higher. Thus, patients in the high-

risk group may exhibit a stronger immunotherapy response. Due

to the rarity of open-access data on ccRCC cohorts receiving

immunotherapy, we utilized IMvigor210 cohort patients for

preliminary validation. Consistent with the aforementioned

hypotheses, we discovered that patients who had a complete

response had the highest risk score.

Given the importance of targeted therapy for patients with

advanced or metastatic ccRCC, we compared the IC50 values of

the first-line agents between the high- and low-risk groups. In

the TCGA cohort, we found that the high-risk group was more

likely to be responsive to sunitinib and axitinib, while the low-

risk group was more sensitive to sorafenib and pazopanib. These

findings were confirmed in the GEO and ICGC cohorts.

Obviously, the combination of targeted therapies and

personalized immunotherapy is more suited for patients with

advanced ccRCC, since it is unreasonable to expect that a single

treatment can significantly improve their prognosis. In fact,

according to the recommendations of the European

Association of Urology, the combination of nivolumab and

ipilimumab or pembrolizumab and axitinib are the new first-

line therapy for patients at intermediate and poor risk (67). It has

been observed that pembrolizumab plus axitinib therapy

resulted in substantially higher overall survival and

progression-free survival than sunitinib treatment among

patients with advanced renal-cell carcinoma who had not been

treated before (68). Another trial also recognized that

progression-free survival was considerably longer with

avelumab plus axitinib compared to sunitinib in patients with

advanced renal cell carcinoma (69). Actually, targeted metastatic

RCC treatments have been demonstrated to have

immunomodulatory effects, such as raising tumor cell

antigenicity and encouraging T-cell infiltration (70). These

results sparked an interest in exploring the possibility of

combining targeted antiangiogenic medicines with

immunotherapies to maximize any potential synergies (71). In

this study, it was shown that high-risk individuals respond better

to immunotherapy and are more sensitive to sunitinib and

axitinib. On the basis of these results, we hypothesize that the

riskscore might be used to aid in the selection of treatment
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regimens in practical practice. The combination of sunitinib,

axitinib, and immunotherapy may be beneficial for high-risk

individuals, while sorafenib and pazopanib are more effective for

low-risk patients.

Although we constructed a predictive signature to aid

treatment decision in ccRCC, several limitations to this study

need to be acknowledged. First, eRNA is a subtype of noncoding

RNA produced by enhancers, and it is not or is rarely detected in

many RNA-seq datasets. Therefore, validation in the GEO

cohort and E-MTAB-1980 cohort could not include all the

eRNAs in the signature, which may reduce the efficiency of the

signature. In addition, due to the paucity of open-access

immunotherapy cohort data for ccRCC, a preliminary

validation was conducted in the IMvigor210 cohort of bladder

cancer. The potential of this signature to predict the

immunotherapy response of patients in ccRCC groups

receiving treatment requires additional confirmation.
Conclusions

In summary, we conducted an exhaustive investigation of

the involvement of eRNAs in the development and treatment of

ccRCC. The prognosis-influencing eRNAs and target genes were

chosen to generate a predictive signature. Multi-omics analysis

was performed to examine the differences and underlying

mechanisms between the high- and low-risk groups, and the

predictive accuracy was assessed in multiple cohorts. In addition,

relationships between patient response to immunotherapy,

targeted therapies, and riskscore were assessed. Our findings

indicated that the combination of sunitinib, axitinib, and

immunotherapy may be beneficial for high-risk individuals,

while sorafenib and pazopanib are more effective for low-

risk patients.
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