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Background: The impact and utility of machine learning (ML)-based prediction

tools for cancer outcomes including assistive diagnosis, risk stratification, and

adjunctive decision-making have been largely described and realized in the

high income and upper-middle-income countries. However, statistical

projections have estimated higher cancer incidence and mortality risks in low

and lower-middle-income countries (LLMICs). Therefore, this review aimed to

evaluate the utilization, model construction methods, and degree of

implementation of ML-based models for cancer outcomes in LLMICs.

Methods: PubMed/Medline, Scopus, and Web of Science databases were

searched and articles describing the use of ML-based models for cancer

among local populations in LLMICs between 2002 and 2022 were included.

A total of 140 articles from 22,516 citations that met the eligibility criteria were

included in this study.

Results: ML-based models from LLMICs were often based on traditional ML

algorithms than deep or deep hybrid learning. We found that the construction

of ML-based models was skewed to particular LLMICs such as India, Iran,

Pakistan, and Egypt with a paucity of applications in sub-Saharan Africa.

Moreover, models for breast, head and neck, and brain cancer outcomes

were frequently explored. Many models were deemed suboptimal according

to the Prediction model Risk of Bias Assessment tool (PROBAST) due to sample

size constraints and technical flaws in ML modeling even though their

performance accuracy ranged from 0.65 to 1.00. While the development and

internal validation were described for all models included (n=137), only 4.4% (6/
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137) have been validated in independent cohorts and 0.7% (1/137) have been

assessed for clinical impact and efficacy.

Conclusion: Overall, the application of ML for modeling cancer outcomes in

LLMICs is increasing. However, model development is largely unsatisfactory.

We recommend model retraining using larger sample sizes, intensified

external validation practices, and increased impact assessment studies using

randomized controlled trial designs

Systematic review registration: https://www.crd.york.ac.uk/prospero/

display_record.php?RecordID=308345, identifier CRD42022308345.
KEYWORDS

artificial intelligence, cancer, machine learning, low-income countries, lower-
middle-income countries
Introduction

An estimated 20 million new cancer cases and 10 million

cancer-related deaths occur annually (1). By 2040, the incidence

rate is extrapolated to increase by 47% with the highest excess

relative risks (64 – 95%) to be observed in low- and middle-

income countries. Moreover, mortality estimates are expected to

parallel the increase in case occurrence (1). Precision prevention,

diagnosis, risk stratification, and treatment are now being

advocated as contemporaneous strategies to mitigate the

incidence, morbidity, and mortality of patients (2). This

involves ultramodern tools and approaches that uncover

personalized profiles of patients and tumors, ultimately,

assisting in tailoring specific interventions to patients while

avoiding the need to administer generic intervention strategies

to all individuals (3, 4).

Artificial intelligence (AI) plays a central role in the

administration of personalized medicine for cancer patients.

Digital systems based on AI can provide objective judgments

that simulate human intelligence while considering patient- or

tumor-related factors (5, 6). Applications of AI in oncological

management include medical/pathological image or video

analysis, natural language processing of free-full text electronic

health record (EHR) reports, robots, and chatbots as

intervention assistants and information resources, affective

computing for digital health assistants, automated treatment

planning and scheduling, and machine learning (ML) models for

the prediction of cancer-related outcomes (7–15). ML-based

models have been proposed or evaluated regarding their ability

to perform individualized diagnosis, risk stratification, tumor

profiling, assisted screening, treatment selection, and disease

prognosis prediction (7, 14–18). However, many of the

predictive intelligent models have been constructed for and
02
using populations in upper-middle and high-income countries

in line with the current distributions of cancer burden (19).

With the expected surge in cancer incidence and mortality

among low- and lower-middle-income countries (1), it is

imperative to assess the construction and utilization status of

ML-based models and platforms in readiness for their

implementation in precision cancer interventions in these

settings. As external validation of ML-based models available

in the Global North may not see fruition in many developing

countries owing to the disparities in ethnicity, variability in

clinical and molecular cancer subtypes and unavailability of

several high-precision advanced cancer predictors, indigenous

models developed specifically for these populations may take

precedence (19–21). Therefore, in this study, we evaluate the

utilization, methodology of model construction, and

implementation phases performed for ML-based models for

cancer outcomes in low- and lower-middle-income populations.
Methods

This scoping review sourced for studies between January

2002 and March 2022 that reported on ML-based models for

cancer-related outcomes in low- or lower-middle-income

countries (LLMICs). The composition of LLMICs was

according to the 2022 World Bank classification of countries

by income with 27 and 55 countries in the low and lower-middle

income groups respectively (Figure 1) (22). ML-based models

considered were those constructed on the backend of traditional

machine learning and deep learning algorithms. Also, cancer-

related outcomes cuts across risk stratification, screening,

diagnosis, treatment selection, treatment complications, and

prognosis of any malignancy which were assessed exclusively
frontiersin.org
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among LLMIC populations. Original retrospective or

prospective studies were included in the review provided: (i)

they were conducted exclusively among local populations in

LLMICs for all model implementation phases, (ii) the outcomes

were assessed among clinical patients or tumors linked to clinical

patients, (iii) they featured an ML-based model/platform/

software for which internal validation of models had been

performed upon development (Phases I and II studies) (23).

Studies reporting multinational cohorts (even if they

included LLMICs) or those that used LLMIC populations only

for external validation were excluded. Further excluded, were

studies featuring models constructed on public datasets or

studies for which the development of the models among

LLMICs was not described or referenced. However, for public

datasets obtained from LLMIC populations, we only included

the first study where the cohorts were initially recruited and

analyzed for model construction. Studies with suspected data

fabrication/falsification, incomplete reporting to assess

development/validation population and ML modeling, and

unclear stratification of malignant or high-risk classes (in the

case of screening and risk stratification) were not selected.

Duplicate studies (i.e., studies that used different models for

the same outcome on a particular patient cohort), in-vitro

studies, animal studies, commentaries, and editorials were also

excluded. For duplicate reports, only the study on the models

with the best performance was considered in this review.

Articles were sourced from PubMed, Medline, Web of

Science, and Scopus electronic databases using nonspecific but

pertinent combinations of search keywords for complete
Frontiers in Oncology 03
retrieval of related texts (Supplementary Table 1). Automated

and manual deduplication of citations were then performed. We

adopted a two-stage strategy for article selection. In one stage, we

removed articles unrelated to the review objectives, studies based

on inferential statistical associations, and those not comprising

LLMIC populations. Subsequently, full-length texts of screened

articles were obtained and assessed twice for each study

according to the inclusion and exclusion criteria. These

selection stages were performed by two independent authors

(JA and AA) and discrepancies were resolved by consensus

following discussions and agreement between both reviewers

was the basis for the final study selection. During the second-

stage selection, a complementary manual search of the

references and citations of studies was performed to facilitate

the inclusion of studies that may have been missed during

electronic database searching. The agreement between both

reviewers in selecting articles was near perfect with a k value

of 0.907 (p < 0.001) (19).

Data charting was done using full texts of selected articles. Items

sourced included the author names, publication year, study LLMIC,

study design, sample size, cancer types, outcomes, ML-model type,

model development approach, features, implementation phases

(23), and performance measures. For models with multiple

validation populations, the mean of their accuracies was

calculated and utilized in this study. Data collection was

performed independently and in duplicate with the original full

texts referred to for discordant entries.

Risk of bias assessment and quality rating of selected studies

were performed using the Prediction model Risk of Bias
FIGURE 1

Distribution of low- and lower-middle-income countries across the world.
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Assessment tool (PROBAST) (24). All four original risk of bias

domains were retained and scored as high, low, or unclear based

on the total signaling questions per domain. The overall risk of

bias ratings was given as ‘high’ if at least one domain was rated as

‘high/unclear’ and ‘low’ if all four domains were rated as ‘low’.

Qualitative synthesis was performed at the level of the

studies and models for all LLMICs found. Assumptions were

not made for missing data. Descriptive statistics were calculated

as median, interquartile range, and frequencies. Pearson’s Chi-

square test was used to determine significant differences for

categorical variables while Kruskal-Wallis and Mann-Whitney

U tests were used for continuous variables. Probability values

below 5% were considered statistically significant. SPSS v 27 was

used for all analyses. Reporting of this review was in line with the

Preferred Reporting Items for Systematic Reviews and Meta-

analysis extension for scoping reviews (PRISMA-ScR) (25)

guidelines and the protocol registered with the International

prospective register of systematic reviews (PROSPERO) with

registration number CRD42022308345.
Results

Upon removal of duplicates, 22,516 citations were screened

leaving 311 articles for full-text evaluation. Altogether, 171

articles were excluded for reasons presented in Figure 2 and

140 articles were included in this review. These articles emanated

from 133 studies as model development and validation were

reported in two separate articles by three studies while two

studies reported their model construction in three different

articles. Likewise, a total of 137 models for various cancer-
Frontiers in Oncology 04
related outcomes in LLMICs were extracted from these studies

(26–165). Citations of included articles are listed in

Supplementary Table 2.
General characteristics of studies

Studies were published between 2005 and 2022, and of

133 studies, 81.2% were published from 2018 onward

(Figure 3A) (26–165). Of the 82 countries that make up

LLMICs in this review, only 13 (15.8%) had at least a study

included in this review (Figure 3B). All but two studies from

Ethiopia and Sudan were conducted in lower-middle-

income countries. Majority of the studies were from Indian

(55.6%) and Iranian (17.3%) populations while four sub-

Saharan African countries and the Philippines had only one

study included. Irrespective of the number of centers

involved, retrospective cohorts were often used for model

constructions than prospective cohorts (68.4% vs 31.6%;

Figure 3C). At least, outcomes from 19 different cancer

types were modeled. However, five studies included patients

with different cancer types. Only two studies involved

patients with sarcomas (osteosarcoma and uterine sarcoma)

while other studies involved those with carcinomas,

leukemias, and lymphomas. Breast cancer (32.3%), head

and neck cancer (14.3%), and brain tumors (9%) were the

three most common malignancies by subtypes (Figure 3D).

Further, we noticed a strong agreement between common

malignancies used for ML modeling and the three most-

incident tumors [based on GLOBOCAN estimates 2020 (1)]

in each LLMIC represented (k = 0.833, p=0.003).
FIGURE 2

Flow chart of screening and study selection processes.
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Risk of bias assessment for studies
involving ML-based models in LLMICs

Only four studies (3.0%) had a low overall risk of bias across

all four domains of the PROBAST tool (Supplementary Table 3).
Frontiers in Oncology 05
Proportion of studies with high and low risk of bias in each

domain are plotted in Figure 4. More ML studies (93.2%) had a

low risk of bias in their evaluation of outcomes while a majority

of studies (85.7%) had a high risk of bias regarding the analytical

methodology and technical approach to model construction.
A

B

D

C

FIGURE 3

Characteristics of studies on ML-based models for cancer outcomes in LLMICs. (A) Bar plot showing the frequency of studies by publication year (B)
Geographic distribution of studies on ML-models for cancer in LLMICs by country (C) Bar plot showing the study design and number of centers
involved during model construction (D) Plot showing the frequency of cancers for which models were developed in the LLMIC population.
frontiersin.org

https://doi.org/10.3389/fonc.2022.976168
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Adeoye et al. 10.3389/fonc.2022.976168
Of the 114 studies with a high risk of bias in the ‘analysis’

domain, most studies did not have an event-per-variable (EPV) of

at least 20 during training or at least 100 patients in each outcome

category during model validation (n = 96). Moreover, other studies

did not perform any data resampling methods (cross-validation,

bootstrapping, or jackknife) using the training cohort to assess

model stability or did not implement imbalanced class correction

for model outcomes when necessitated. Due to the retrospective
Frontiers in Oncology 06
cohort design of many ML studies for cancers, predictors for cross-

sectional outcomes such as diagnosis and treatment selection were

selected while the outcome of the patients was known leading to

their high risk of bias rating in the ‘predictors’ domain. Of note,

35.3% of studies had an unclear risk of bias in the ‘participants’

domain due to gross under-reporting of the inclusion and exclusion

criteria used in the selection of patients for which outcomes

were evaluated.
FIGURE 4

Distribution of studies by the PROBAST domains.
A B

DC

FIGURE 5

Plot showing the different techniques used for ML-based model construction for cancer patients in LLMICs (A) Model types (B) Novelty of
backend algorithm used for model construction (C) Patient cohort size for model construction (D) Functions of the ML-based models.
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Evaluating the methods of ML-based
model construction for cancer outcomes
in LLMIC populations

Of 137 models, 74 (54%) were developed on the backend of

traditional machine learning algorithms while 53 (38.6%) were

based on deep learning (Figure 5A). Ten studies utilized both

methods as a deep hybrid learning platform. Novel architectures

were used for the development of 21 models (15.3%) which were

mostly deep learning (95.2%) than deep hybrid or traditional

machine learning models (Figure 5B; p<0.001). For studies that

reported datasets used by the number of patients (n = 102),

cohort sizes ranged from 10 to 5025 patients. A decreasing trend

in the proportion of studies was noted with an increase in the

number of patients used for model construction. More models

were based on predictive features obtained from and for <200

patients (72.6%) than 200 to 500 (13.7%) or 500 to 1000 patients

(9.8%). Only four models utilized 1000 patients or more.

Stratifying the cohort size by the different ML techniques, all

model types mostly involved < 200 patients (Figure 5C). Sample

size estimation for model training and validation was only

performed for 4 models (2.9%) (Supplementary Table 4).

Single cancer-related outcomes were considered in 134

models including cancer diagnosis (70.1%), overall prognosis/

treatment response (14.6%), screening (8.0%), and treatment

(5.1%). For the three models with multiple outcomes, two

considered both cancer screening and diagnosis while one was

used for tumor diagnosis and prognosis prediction

(Supplementary Table 4). Tasks for which models were

designed to perform included assisted diagnosis (70.8%), risk
Frontiers in Oncology 07
prediction/stratification (26.3%), and assisted treatment

selection (0.7%). These functions were significantly different

among the three types of ML techniques used for model

construction as more traditional ML models than deep

learning and deep hybrid learning (40% vs 14.8% vs 10%)

were developed for risk prediction/stratification (Figure 4D,

p = 0.003). Similarly, deep learning (85.2%) and deep hybrid

learning (90%) models were mostly fashioned to assist in

cancer diagnosis.

Features used for model development among LLMIC

populations were radiomics (40.2%), clinical (33.6%),

pathological (30.7%), and molecular (16.1%) in nature. Of the

radiomics datasets, 29 models used magnetic resonance imaging,

15 models utilized computed tomography scans, 10 models used

mammograms, and 5 models used ultrasound scans

(Supplementary Table 4). Also, biomarkers used as molecular

features were proteomic (n=16), genomic (n=3), or metabolomic

(n=3) in nature (Supplementary Table 4). Clinical and radiomic

features were commonly used for ML model construction for

cancer outcomes in LLMICs before 2018 while more recent years

have seen higher incorporation of pathological and molecular

features (Figure 6A). As realistic models for cancer outcomes

often involve multidimensional features, only 23 models (16.8%)

used at least two of the four feature categories with the

combinations of clinical, pathological, and molecular variables

being more common.

Comparison of different algorithms was often conducted

before optimal model selection (106 models [77.4%]) and many

models were evaluated alongside other ML models (75.2%) than

traditional statistical models (13.1%). Of 107 models in which
A B

D E F

C

FIGURE 6

Bar and violin plots evaluating the methods used for model development and summary model performances (A) Plot of features used for model
construction by publication year (B) Plot of ML technique by the rating of model development processes (C) Plot showing summary accuracy
estimates for the three different ML techniques (D) Plot showing summary accuracy for ML-based models for diagnosis according to the cancer
types (E) Plot showing summary accuracy for ML-based models for cancer screening according to the cancer types (F) Plot showing summary
accuracy for ML-based models for cancer prognosis according to the cancer types.
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performance comparisons were done, five studies (4.7%) found

that the models selected or optimized had an equivalent

performance compared to others employed while one ML-

based model was reported to have displayed no additional

benefit in predictive performance following model comparison

(Supplementary Table 4). Other ML-based models (93.5%) were

deemed to have positive findings which motivated their selection

for proposed tasks.

Considering the model development strategies underwent

during construction, 123 of 137 models (89.8%) were deemed

unsatisfactory in their approach. This was mostly due to a

combination of inadequate sampling and improper technique

(47.2%) than inadequate sampling (37.7%) or improper

techniques (14.8%) alone (Supplementary Table 4). Common

shortfalls in modeling techniques included the use of test-train

splitting without nested cross-validation or bootstrapping

during model training, not using feature selection even in the

event of a low EPV, and lack of data augmentation or imbalance

class correction when warranted. The lack of imbalanced class

correction points to a limitation in the outcome class parity

which may mean that the quality of data used for modeling is

low. Although not statistically significant, stratifying the models

based on the techniques showed that a higher proportion of deep

hybrid models were satisfactory than deep learning or traditional

ML models (20% vs 13.2% vs 6.8%, p=0.274) (Figure 6B). Also,

according to the publication year, 1 of 25 models (4%) published

before 2018 was satisfactory while for studies within the last five

years, 13 of 112 models (11.6%) were satisfactory.

Of 124 models that were constructed after the establishment

of the Transparent reporting of a multivariate prediction model

for individual prognosis or diagnosis (TRIPOD) guideline or

Standards for reporting diagnostic accuracy (STARD) guideline,

only one model (79) followed the STARD guideline for model

and performance reporting (Supplementary Table 4). None of

the other models alluded to have followed any established

guidelines during construction.
Status of implementation, performance,
and clinical impact of ML models
in LLMICs

Generally, 128 (93.4%) models have completed phase I (data

pre-preprocessing) and II (development and internal validation)

implementation strategies only. Further, only 6 models (4.4%)

constructed for cancer outcomes in LLMIC populations have

been externally validated (phase III implementation) all of which

were within the last five years. These included models for breast

cancer diagnosis (85, 86, 152), lung cancer diagnosis (51, 52),

head and neck cancer diagnosis (124), breast cancer metastasis

(47, 56, 128), liver cancer risk prediction (78), and treatment

response in colorectal cancer (148). Of these models, only two

(47, 56, 85, 152) sufficiently fulfilled the TRIPOD criteria for
Frontiers in Oncology 08
external validation based on the sample size. Also, none of the

deep learning or deep hybrid learning models found have been

assessed using external validation.

Software for end-user interactions (phase IV implementation)

has been designed for four ML-based models; however, three of

these models were not even validated in an independent population

before software development. Only one independently-validated

ML-based model for breast cancer diagnosis before software

development has also had a clinical impact assessment performed

(phase V implementation). However, this was conducted using an

observational study design (85).

The overall discriminatory performance (AUC/Accuracy)

of the ML-based cancer models in LLMICs ranged from 0.65 –

1.00 for 134 models with a median (IQR) discriminatory

performance of 0.94 (0.89 – 0.97). Both models based on

deep hybrid learning and deep learning had median

discrimination metrics (IQR) of 0.96 (0.90 – 0.99) and 0.96

(0.92 – 0.97) which was significantly higher than the median

discrimination metrics of traditional ML models 0.93 (0.86 -

0.97) (Figure 6C; p = 0.041). Median accuracies according to

the different cancer subtypes and outcomes (cancer screening,

diagnosis, and prognosis) from at least three different models

are shown in Figures 6D–F. For tumor diagnosis, while most

median discrimination metrics were high, performance was

highest for the use of ML models in leukemia diagnosis (0.96

[0.92 – 0.98]) than others. Summary discrimination for the

incorporation of ML in cancer screening was higher for breast

than cervical cancer screening while using ML-based models

among LLMIC populations for breast cancer and head and

neck cancer prognostication yielded an equivalent median

accuracy of 0.89.
Discussion

Utilization of ML-based models for
cancer outcomes in LLMICs

Assessing the methodology and implementation status of ML-

based models and platforms for cancer outcomes in LLMICs is

crucial to improving the prevention, diagnosis, and treatment of

cancer in developing nations considering a predicted rise in disease

incidence and mortality. This review found a recent increase in the

construction of ML-based models for cancers among LLMIC

populations that is in line with the general surge of ML

application worldwide (166–168). However, intelligent model

applications are chiefly limited to some lower-middle-income

countries like India, Iran, Pakistan, and Egypt than others. Our

study showed that ML-based models were not being applied for

cancer prediction among indigenous populations in about 70

countries with a majority of these found to be within sub-

Saharan Africa. This observation is likely inseparable from the

overall challenges in health information technology and data
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management that preclude effective medical data accrual of

indigenous populations within these countries (19, 169, 170). This

reason is further bolstered by the wide use of public databases for

MLmodeling of cancer outcomes from authors affiliated withmany

lower-middle-income countries (19). Other reasons for the low

popularity of ML-based models in many LLMICs may include the

lack of expertise, personnel, and resources required to generate ML-

based cancer models and a lack of awareness by stakeholders on the

optimal ability of AI tools in predictive and classification health

tasks compared to traditional methods (171, 172).
Evaluating data and ML model
construction for cancer outcomes
in LLMICs

While standard ML algorithms were mostly used for model

construction of cancer outcomes, the application of deep learning

and deep hybrid learning models were found to be increasing in

LLMICs. Of note, the quality of techniques performed during ML

model development as well as the overall risk of bias for the studies

was largely unsatisfactory. Though many models had excellent

discriminatory performance in this study, this translates that

many of these models are not currently streamlined enough to be

considered for pivotal evaluation of their clinical impact in cancer

management in LLMICs. The suboptimal models in this review

were found to be a culmination of one of the following challenges:

model overfitting, reduced cohort size, not incorporating methods

to augment data or correct outcome imbalance, lack of model

stability assessment, and cessation of further model validity

assessment using external cohorts (23, 24, 173, 174). It is

recommended that future studies involving ML-based models for

cancer outcomes in LLMICs consider estimating sufficient cohort

sizes for model development and validation while considering

dimensionality reduction as well as data augmentation/balancing

techniques in the event of reduced patient availability (175–177).

Furthermore, other shortfalls may be addressed by compliance with

standard guidelines for reporting protocols and studies for clinical

models and their performances including the IJMEDI (173),

TRIPOD (174, 178), STARD (179), SPIRIT-AI (180), and

CONSORT-AI (181) statements.

Data quality assessments such as label parity, noisy data

identification, outlier detection, and multicollinearity were

sparsely assessed by the ML models. However, assessment of class

parity based on the need for correction of imbalanced data which

could be deduced from themodeling approach showed that this was

infrequently performed when needed in the models. Considering

the cohort sizes and the lack of class imbalance correction, this

suggests that the quality of data used forMLmodeling in LLMICs is

low. However, this cannot be verified in the models given that other

measures of data quality were not intentionally assessed in this

study. This represents an additional task to be conducted in future

ML models for cancer outcomes in LLMICs. For structured data,
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authors of ML-based models should consider the using of

opensource quality assessment APIs such as the Data Quality

Toolkit (182).
Degree of Implementation of ML-based
models for cancer outcomes in LLMICs

Regarding the cancer types for which outcomes were

modeled using ML algorithms, breast cancer and head and

neck cancer (mostly oral cancer) were the most common in

line with the majority of LLMICs represented in this review (1).

However, outcomes for some cancers uniformly common in

many developing countries and have infectious causes related to

poverty and awareness such as Kaposi’s sarcoma, Burkitt’s

lymphoma, and gastric cancer have not been considered (1,

183–185). Hopefully, with an increase in cancer ML-based

model development among more LLMICs in the future,

outcomes for these specific malignancies will be further

explored for indigenous patients. Likewise, the future should

see an increasing application of ML-based models for other

cancers associated with low socioeconomic status like cervical

and liver cancer (1).

Only a few models in this review have been optimized for

software development and even rare was the impact assessment of

this software. Of note, none of the models developed for cancer

outcomes among LLMIC populations have been evaluated for

clinical efficacy and impact in a randomized controlled trial. This

is unsurprising given the recency in which model development and

performance were performed. However, stakeholders in LLMICs

should ensure that ML-based models for cancer outcomes undergo

rigorous evaluation in this manner before clinical implementation if

applicable (19, 23, 186). Also, challenges to implementation other

than model performance including settings for applications, exact

application in cancer care, data standardization, and availability of

features for prediction should be assessed during these

rigorous evaluations.
Limitations

The findings of this review should be interpreted while

considering the following limitations: (i) Our search strategy

may have missed studies not indexed in the popular electronic

databases used in this study. However, the search was limited to

these databases to ensure the inclusion of mostly high-quality

studies which were not presented in predatory journals (ii)

Articles from LLMICs in satisfactory indigenous journals only

available in print forms or reported in national languages other

than English may have also been missed (iii) Due to the large

number of studies included in the scoping review, the

characteristics of individual studies was not provided within

the main text but presented in Supplementary Table 4 (iv) This
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study recognizes that the challenges identified regarding the

application of ML-based models for cancer outcomes in LLMICs

may not be specific to these areas. Therefore, future studies

should focus on comparing the objectives of this review across

regions and settings of different income categories.
Conclusions

A recent increase in the application of ML-based prevention

and intervention for cancer in LLMICs was observed in this study.

This surge was also associated with only little improvement in the

implementation progress of ML-based models in a few of these

countries. Generally, ML-based models were mostly generated

among certain lower-middle-income countries like India, Iran,

Pakistan, and Egypt than others and were chiefly employed for

diagnostic outcomes. This showcases the need to intensify model

development and/or external validation endeavors in all low-

income countries and many lower-middle-income countries,

especially within sub-Saharan Africa. Overall, given the

suboptimal methods used for the development of existing models,

their lack of external validation and clinical impact assessments, and

the lack of adherence to standard guidelines, many ML-based

models for cancer outcomes among indigenous patients in

LLMICs are not presently streamlined enough for pivotal

evaluation and clinical application. We recommend model

retraining using larger sample sizes and intensified external

validation practices for ML-based models developed for cancer

among LLMIC populations.
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