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Ferroptosis is a regulatory form of iron-dependent cell death caused by the

accumulation of lipid-based reactive oxygen species (ROS) and differs from

apoptosis, pyroptosis, and necrosis. Especially in neoplastic diseases, the

susceptibility of tumor cells to ferroptosis affects prognosis and is associated

with complex effects. Gliomas are the most common primary intracranial

tumors, accounting for disease in 81% of patients with malignant brain

tumors. An increasing number of studies have revealed the particular

characteristics of iron metabolism in glioma cells. Therefore, agents that

target a wide range of molecules involved in ferroptosis may regulate this

process and enhance glioma treatment. Here, we review the underlying

mechanisms of ferroptosis and summarize the potential therapeutic options

for targeting ferroptosis in glioma.
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Introduction

Glioma is the most common malignancy of the central nervous system (CNS) and

manifests with highly invasive growth, neovascularization, and resistance to various

combination therapies (1). Despite advanced therapeutic strategies, including aggressive

surgery, radiotherapy, and chemotherapy, glioblastoma (GBM) patients still show poor

prognosis and a median overall survival of less than 16 months (2). Despite aggressive

treatment measures, including maximal safe surgical resection followed by external

irradiation therapy accompanied with adjuvant temozolomide (TMZ) treatment,

approximately 90% of grade WHO IV gliomas recur locally within 2 years (3). Gross
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total resection (GTR), defined as complete radiectomy of the

contrast-enhanced region of high-grade glioma (HGG) and T2-

weighted/fluid attenuated inversion recovery (T2/FLAIR) MRI-

indicated hyperintensive nonenhancing lesions, almost always

fails to completely remove all microscopic residual tumor cells

(4). Similar to other malignancies, GBM exhibits a distinct anti-

DNA-damage phenotype, which leads to chemoresistance (5).

Hence, therapies targeted to gliomas have not been

considered sufficiently effective (6). However, ferroptosis has

recently attracted considerable interest, especially because the

mechanism involves downregulation and silencing of genes

involved in the initiation and execution of cancer necroptosis

(7). Ferroptosis is a unique iron-dependent form of

nonapoptotic cell death in which the affected cells are

morphologically, biochemically, and genetically distinct from

apoptotic, necrotic, and autophagic cells (8). Ferroptosis is

driven by the lost lipid repair enzymatic activity of glutathione

peroxidase 4 (GPX4) and subsequent accumulation of lipid-

based reactive oxygen species (ROS), particularly lipid

hydroperoxides (9). As a common recognition feature,

ferroptotic cells appear as clear and transparent round cells

under the microscope, mainly composed of empty cytosol,

which is called the “ballooning phenotype”. In addition,

ferroptotic cells also have ultrastructural changes in

mitochondria such as volume decreased, bilayer membrane

density increased, outer mitochondrial membrane (OMM)

destroyed, and mitochondrial cristae disappeared.

To promote tumor growth, cancer cells exhibit a higher iron

demand than normal cells. This iron dependence makes cancer

cells more susceptible to ferroptosis (10). Therefore, induced

ferroptosis induction may offer the unique possibility of

effectively eradicating certain tumor cells, especially those in a

highly mesenchymal state (11) and those that evade drug

treatment (12). Furthermore, ferroptosis plays a pivotal role in

suppressing tumorigenesis by eliminating cells in environments

that lack key nutrients or produce cellular stress or that are

infected with pathogens (13). The ferroptotic sensitivity of

cancer cells may be related to the activation of Ras-mitogen-

activated protein kinase (MEK) (14), which contributes to the

upregulation of transferrin receptor 1 and increased intracellular

iron levels, as well as to the additional formation of ROS via

inhibited cystine-based reactions (15). Many other molecules in

different pathways have been found to be involved in ferroptosis

in glioma (16), and the related content is summarized in

this review.
Focused overview of
ferroptosis pathways

An overview of ferroptosis pathways is shown in Figure 1.
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Iron metabolism in ferroptosis

The regulatory mechanism that coordinates intracellular

iron homeostasis is centered on iron regulatory proteins

(IRPs), which exerts effects by binding to iron-responsive

elements (IREs) (17, 18). Under physiological conditions,

cellular iron absorption is controlled mainly by the plasma

membrane protein transferrin receptor 1 (TFR1), and

therefore, knocking down TFR1 expression can block

transferrin-bound iron entry into a cell (19, 20), preventing

ferroptosis caused by erastin or cystine deprivation (21).

Diminishing ferritin expression (22) or FPN1 or ceruloplasmin

depletion increases the cell sensitivity to ferroptosis (23, 24). In

addition, reduced IRP2 activity, increased expression of

transferrin (Tf) and the transferrin receptor (TFR) (19), and

recognition of FTH1 by a specific cargo receptor (nuclear

coactivator 4, NCOA4), which leads to formation of a complex

that fuses with lysosomes (25), cause an abnormal increase in

unstable intracellular iron stores, a critical factor in ferroptosis.

Other iron metabolism-related proteins also affect cell sensitivity

to ferroptosis (26), and certain genes exert the same effects.

Recently, the critical role played by STEAP3 in cancer has been

extensively investigated, and STEAP3 has thus been found to be

a key regulator of ferroptosis by mediating iron metabolism (27,

28). Overexpression of STEAP3 contributes to iron uptake and

maintains iron stores (29), supporting the proliferation of

multiple types of cancer cells (30–32). Hence, dysregulation of

iron metabolism is an important contributing factor

to ferroptosis.
Lipid peroxidation in ferroptosis

Lipids are critical for maintaining the membrane integrity of

a cell, and extensive peroxidation of lipids changes the assembly,

composition, structure, and dynamics of lipid membranes (33).

Polyunsaturated fatty acids (PUFAs) containing phospholipids

(PLs; PUFA PLs) are substrates for lipid peroxidation (34). ROS

are free radicals and/or oxygen derivatives, including superoxide

anions, hydrogen peroxide, hydroxyl radicals, lipid

hydroperoxides, peroxy radicals, and peroxynitrite (35).

Membranes containing high levels of PUFAs are extremely

sensitive to ROS effects and highly vulnerable to lipid

peroxidation (36, 37). Lipid undergo peroxidation through two

routes: nonenzymatic autoxidation and enzymatic PL

peroxidation; the former pathway is known as “nonenzymatic

PL autoxidation”.

Nonenzymatic peroxidation of lipids is mediated by carbon-

and oxygen-based radicals and can be divided into three discrete

stages: initiation, proliferation, and termination (33). The initial

phase involves a series of reactions collectively known as “Fenton
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chemistry” in which labile iron reacts with endogenous

hydrogen peroxide or superoxide to form oxygen-based

radicals (38). Radical compounds produce new radicals, which

are markers of the proliferative phase. The hydroxyl and

peroxide radicals produced through a Fenton reaction can

form a resonant stable carbon-based radical by extracting

hydrogen from the bis allylic methylene of a membrane

PUFA, which can react with molecular oxygen in solution to

form the lipid peroxide radical ROO−, which can remove a

hydrogen from a different bis allylic methylene to generate

peroxidized lipid (ROOH) and another carbon-based radical

that can react with oxygen (33, 39, 40). Finally, antioxidants

terminate radical propagation (41).

Enzymatic PL peroxidation is mainly mediated by

cyclooxygenases (COXs), cytochrome p450 species (CYPs),

NADPH oxidase (NOX), and, especially, lipoxygenases

(LOXs) (42). Arachidonic acid (C20:4) and linoleic acid

(LA; C18:2) are substrates for LOX (43), and ferric iron is a

cofactor of LOX (44, 45). In contrast to 5-lipoxygenases, 12-

and 15-lipoxygenases exhibit incomplete regional selectivity

in producing lipid peroxides (46) and are thought to respond

to intact phospholipids and do not promote hydrolysis for

peroxidation (47, 48). Lipid hydroperoxides (LOOHs) and

the autoxidation products of PUFAs are currently markers of

ferroptosis (49, 50).
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Antioxidant systems in ferroptosis

In addition to lipid peroxidation, the cellular antioxidant

system contributes to ferroptosis by decomposing ROS. GPX4 is

a central factor in anti-ferroptosis reactions (51). This protein is

expressed as several isoenzymes with different subcellular

locations and distinct tissue-specific expression patterns (52, 53).

GSH is a cofactor of GPX4, and GSH synthesis is maintained by

the amino acid antiporter SLC7A11/xCT/system (54). Some

small-molecule compounds can regulate the activity of

glutamate-cysteine ligase (GCL) and xCT (8) and thus affect

GSH synthesis, eventually leading to ferroptosis. Several other

small-molecule compounds can directly inhibit GPX4 activity or

cause GPX4 protein degradation (55, 56). Nonoxidized dopamine

and activated heat shock protein family A member 5 (HSPA5)

prevent GPX4 degradation (57, 58), whereas heat shock protein 90

(HSP90)-dependent chaperone-mediated autophagy promotes

erastin-induced GPX4 degradation (59). Furthermore, GPX4-

independent ferroptosis pathways have been identified.

Ferroptosis inhibitory protein (FSP1) and CoQ10 facilitate a

shuttle of reducing equivalents derived from NAD(P)H to the

lipid bilayer (60). In addition, POR is involved in ML210-induced

ferroptosis (61), and P53 can affect ferroptosis without GPX4

inhibition (62). The main regulatory factors are described in detail

in the next section.
FIGURE 1

The overview of ferroptosis pathways. (A): the iron metabolism pathway; (B): the lipid peroxidation pathway; (C): the antioxidant systems
pathway; (D): the GPX4-mediated pathway. The green line means the substance acts across pathways.
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Critical factors of ferroptosis
in glioma

Ferroptosis follows multiple pathways and involves pivotal

factors that are regulated by many different regulators. Certain

regulators exert valuable regulatory effects and metabolic

changes in glioma cells. In this section, the regulators best

characterized to date are described, and additional regulators

are presented in Table 1.
GPX4

GPX4, a core factor in the antioxidant system, regulates

certain LOX activities by controlling cellular peroxide formation

(82). LOX binds to molecular oxygen when iron is oxidized into

trivalent iron and adds this molecular oxygen to a PUFA after

proton extraction from the bis-allylic positions of the PUFA,

leading to the enzymatic peroxidation of the PUFA (43). The

GPX4-mediated antioxidant system can reduce the peroxide

concentration, which may affect LOX activity, reducing the

peroxidation rate of PUFAs and ultimately inhibiting

ferroptosis (63). Studies have pointed out that 15-LOX and its

linoleic acid (LA)-derived metabolites exerted protumorigenic

effects on GBM cells in vitro (83). This report may imply that

GPX4 affects ferroptosis by regulating LOX activity and can be

exploited for glioma treatment.
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GSH is a reducing substrate for GPX4, and its interaction

with SCL7A11 plays a crucial regulatory role in ferroptosis.

However, both GSH and SCLA11 activities are intricately

regulated by p53 and NRF2, among other proteins., as

described in detail in a subsequent section (64).

Western blot and immunohistochemistry (IHC) analyses

showed relatively high expression levels of Gpx4 in glioma

tissues and cell lines, and its expression was found to be

augmented as the glioma grade increased. In addition,

experiments showed that knocking down GPX4 expression

inhibited the proliferation and migration of glioma cells (84).

Previously, inhibition of GPX4 activity was thought to induce

apoptosis (85), and combined with the aforementioned findings,

it can be concluded that GPX4 inhibition can also induce

ferroptosis, which may become a new research target.
Nrf2

Under normoxic conditions, Nrf2, a transcription factor,

binds to Kelch-like ECH-associated protein 1 (Keap1) and is

inactivated by proteasome degradation after ubiquitination (86).

After cells contact a large number of electrophiles or cytotoxic

agents or enter into an oxidative stress state, Nrf2 dissociates

from Keap1 and rapidly transfers to the nucleus where interacts

with antioxidant response elements (AREs) to ultimately

maintain intracellular redox homeostasis (65). Nrf2 regulates
TABLE 1 Critical factors of ferroptosis in glioma.

Factors Targets Mechanism Reference

GPX4 peroxide↓ affect LOX activity, reducing to peroxidation of PUFAs, inhibit ferroptosis Seibt et al. (63)

GSH reduce LOOH, inhibit LPO, inhibit ferroptosis Ursini et al. (64)

Nrf2 Keap1 dissociates from Keap1, interacts with ARE, maintain intracellular redox homeostasis Zhang et al. (65)

MRP1↑ prevents GSH efflux from the cells, strongly restrains ferroptosis Cao et al. (66)

xCT↑ reduced ROS formation, prevents ferroptosis Fan et al. (67)

P53 xCT↓ combination with response elements in the xCT promoter region, inhibit its expression Jiang et al. (68)

USP7 promotes nuclear translocation of USP7, removes H2Bub1, reduces the expression of xCT Wang et al. (69)

SAT1 induces elevated ALOX15 levels, causes ferroptosis via oxidation of PUFA Ou et al. (70)

BAP1 xCT↓ decrease H2Aub occupancy on the promoter and gene body of xCT Zhang et al. (71)

OTUB1 p53 regulate the p53 pathway by regulating the activities of Mdm2 and Mdmx Sun et al. (72)

Chen et al. (73)

xCT Inactivation of OTUB1 lead to a substantial reduction in xCT levels Liu et al. (74)

ATF4 xCT ATF4 knockout will reduced xCT transporter activity Dixon et al. (75)

Chen et al. (76)

ROS ATF4 deficiency increases ROS levels Angeli et al. (77)

NCOA4 iron homeostasis iron-bound NCOA4 interacts with the ubiquitin E3 ligase HERC2, reduce the ferritinophagy Mancias et al. (78)

FTH1↓ decreased FTH1 levels would cause cells to respond to several ferroptosis-inducing agents Hayashima et al. (79)

YAP/TAZ Nuclear translocation YAP/TAZ be phosphorylated by MOB1 Masliantsev et al. (80)

autophagy↑ activated YAP/TAZ promotes autophagy, affects ferroptosis Sun et al. (81)
The symbol ↓ means target factor level reduced, the symbol ↑ means target factor level rises.
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ferroptosis by regulating the expression of genes related to GSH

regulation (genes that encode proteins involved in

GSH synthesis and, supply cysteine mediated by xCT, GSH

reductase, GPX4), iron regulation (including export and storage

of iron, heme synthesis, and catabolism), and NADPH

regeneration (87–89). Considering recent research, we

speculated that Nrf2 partially targets xCT to regulate GPX4

synthesis and function, thus regulating ferroptosis. When Keap1

activity is inhibited, Nrf2 activity increases, leading to the

upregulated expression of the ATP-binding cassette (ABC)-

family transporter multidrug resistance protein 1 (MRP1),

which prevents GSH efflux from the cells and profoundly

inhibits ferroptosis (66). The expression of Nrf2 was increased

3-fold in human GBM compared to that in normal brain tissue

(67). Both the low expression of Keap1 and the overexpression of

Nrf2 led to a significant increase in xCT mRNA levels (up to a 5-

fold increase), which subsequently reduced ROS formation. In

contrast, both the overexpression of Keap1 and the low

expression of Nrf2 eventually led to a substantial increase in

ROS levels (67). Thus, the levels of NRF2 are directly related to

ferroptosis sensitivity, as increased NRF2 expression prevents

ferroptosis, and decreased NRF2 expression enhances the

sensitivity of cancer cells to ferroptosis (67, 90).
P53

The tumor suppressor p53 is a transcription factor that

regulates various cellular responses through selective

transcriptional regulation of various target genes or interaction

with other proteins. Studies have shown that xCT is a target of

p53 and that p53 sensitizes cells to ferroptosis through

transcriptional inhibition of xCT expression (68). The

combination of p53 with response elements in the xCT

promoter region inhibited xCT expression and increased the

sensitivity of cancer cells to ferroptosis inducers such as erastin;

however, p533RK failed to induce cell cycle arrest, senescence, or

modulation and inhibited xCT expression, ultimately promoting

the response to stress induced by ROS (68). However, another

acetylation-defective mutant of p53, p534KR98 (with a lysine

K98 substitution), showed no ability to reduce xCT expression

(91). As recently reported, p53 sensitized cells to erastin-induced

ferroptosis through a comprehensive pathway. P53 promotes

nuclear translocation of USP7 (a deubiquitinase) that removes

the H2Bub1 mark (monoubiquitinated histone H2B on lysine

120) from the regulatory region of the xCT gene. Loss of the

H2Bub1 mark inhibited the expression of xCT, leading to

ferroptosis (69).

Low-molecular-weight polyamines such as putrescine,

spermidine, and spermine are amino acid-derived polycationic

alkylamines involved in the regulation of cell growth,

proliferation, and differentiation (92). Spermidine/spermine

N1-acetyltransferase 1 (SAT1) is a rate-limiting enzyme that
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controls polyamine catabolism in cells by acetylating spermidine

and spermine mediated through acetyl-coenzyme A (93).

Overexpression of SAT1 causes a rapid depletion of

spermidine and spermidine levels and an increase in

putrescine abundance, which causes significant cellular growth

inhibition and mitochondrial pathway apoptosis (94). SAT1 has

been confirmed to be a transcriptional target of p53, and only the

ferroptosis inhibitor ferrostatin-1 was able to inhibit ROS-

induced cell death in SAT1-overexpressing cells. In contrast to

its effect on conventional pathways, SAT1 exerted no effect on

xCT or GPX4 expression or activity but induced an increase in

ALOX15 level, which in turn led to ferroptosis mediated via the

oxidation of PUFAs (70).

Glutamine metabolism affects ferroptosis and exerts a

particularly high effect on serum-dependent pathways after

amino acid deficiency (19). GSL2 (glutaminase 2) in

mitochondria is a transcriptional target of p53 and is the core

glutaminase in the glutamine-to-glutamate metabolic pathway

(95). the GSL2 is transcribed by p53 and mediates the generation

of GSH in LN-2024 cells (a human glioblastoma cell line) to

enhance their antioxidant capacity (96).

In addition to the aforementioned effects, p53 inhibited

ferroptosis in some tumor cells. For example, studies showed

that binding of p53 to dipeptidyl peptidase-4 (DPP4) inhibited

ferroptosis in colorectal cancer cells, and certain DPP4 inhibitors

completely blocked erastin-induced cell death in p53-deficient

colorectal cancer cells (97). These studies suggest that the

inhibition of p53 activity is specific to ferroptosis inducers

(98). The tumor suppressor CDKN1A/p21 induces cell cycle

arrest and senescence (99, 100). Although the cell cycle arrest

mediated by CDKN1A is insufficient to inhibit ferroptosis (101),

the induction of p53 increases GSH synthesis and thus inhibits

ferroptosis (102).

According to The Cancer Genome Atlas (TCGA) data, 78%

of GBM cases present with mutations in the p53 pathway (103),

including direct mutations in the p53 gene (in secondary GBM)

and a loss of the INK4A/ARF (CDKN2A) gene locus, PTEN

mutations and EGFR amplification/loss (in primary GBM)

(104). Since p53 is involved in various cellular responses

involving the cell cycle or leading to apoptosis, differentiation

and DNA damage, the regulatory effect of p53 on ferroptosis

needs to be assessed on the basis of the situation, and further

research is required (105).
BAP1

BRCA1-associated protein 1 (BAP1) is a tumor suppressor

with functions such as tumor suppression, cell cycle control,

DNA damage repair, and differentiation (106–109) that is widely

recognized as a deubiquitinating enzyme (DUB) (110). Study

results have suggested that wild-type (WT) BAP1 significantly

decreased H2Aub occupancy on the promoter and gene body of
frontiersin.org
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xCT, but the C91A mutant did not exert this effect (71). Because

WT BAP1 exhibited DUB activity and BAP1 C91A did not in

this experiment, WT BAP1 was the clear cause of inhibited xCT

expression (71). Therefore, BAP1 may be recruited by other

proteins in the PR-DUB complex, such as ASXL1, which also

strongly bind to the xCT promoter (111). BAP1 has been

frequently shown to inactivate the expression of genes with

mutations or deletions in tumor cells (77), but its behavior in

glioma is abnormal. For example, although BAP1 is generally

considered to be a chromatin-associated protein and thus to

reside within the nucleus (112), recent studies have found it in

both the nucleus and cytoplasm of glioma cells, suggesting BAP1

protein is differentially distributed in glioma cells (113, 114).

Notably, high cytoplasmic abundance of BAP1 was significantly

associated with low overall survival, and nuclear abundance of

BAP1 cells was not correlated with overall survival (114). Since

BAP1 shows aberrant cytosolic abundance in glioma and

because the BAP1-related pathway inhibiting ferroptosis is

located in the nucleus, the abnormal distribution of BAP1 in

glioma cells, compared to that in other cancer cells, and the

BAP1 regulatory pathway in the nucleus can be new

research targets.
OTUB1

The ubiquitin hydrolase OTUB1 was previously thought to

regulate the p53 pathway by regulating the activities of Mdm2

and Mdmx (72, 73), but OTUB1 has been found to interact

directly with xCT to regulate xCT independent of p53 (74). The

expression of OTUB1 in glioma compared to adjacent tissues

and its expression level was correlated with the low survival of

glioma patients (115). Coimmunoprecipitation assays showed

that the endogenous OTUB1 protein was coprecipitated with an

anti-xCT-specific antibody, and endogenous xCT was

coprecipitated with an anti-OTUB1-specific antibody. In vitro

GST pull-down assays confirmed that OTUB1 is a binding

partner of xCT (74). Inactivation of OTUB1 directly led to a

substantial reduction in the xCT level, and this effect was

confirmed to sensitize cells to erastin and the ferroptosis

inhibitor ferrostatin-1 (8, 74). However, the sensitization effect

caused by OTUB1 knockdown, which affected both cysteine and

glutathione levels in glioma, was rescued by the overexpression

of xCT (115). Notably, the ectopic overexpression of xCT is

evident occurs in many cancers (68, 116–118). Hence, xCT levels

may be stabilized by the absence of OTUB1, promoting

ferroptosis and ultimately inhibiting tumor growth (74).
ATF4

Activating transcription factor 4 (ATF4) is another key

transcriptional regulator and mediator of metabolism and
Frontiers in Oncology 06
oxidative homeostasis (76, 119) that can be activated by

several stress signals, such as those triggered by anoxia,

hypoxia, endoplasmic reticulum (ER) stress, oxidative stress

and amino acid deprivation (120). ATF4 expression is

s ignificant ly higher in mal ignant g l iomas than in

untransformed human brain tissue; moreover, ATF4 can

promote the proliferation and migration of glioma cells, and

patients with high ATF4 expression exhibit a relatively short

overall survival time (76). ATF4 expression resulted in a

significant increase in xCT mRNA levels in human glioma

specimens compared to that in normal brain tissue (a 5-fold

increase in gliomas with a WHO° II classification and 19-fold in

gliomas with a WHO° IV classification), and xCT protein levels

were increased with AFT4 levels. xCT antiporter activity is

determined on the basis of extracellular glutamate levels, and

ATF4 knockout significantly reduced glutamate release and

cystine uptake, which in turn significantly reduced xCT

transporter activity (75, 76). These data suggest that ATF4

deficiency increases ROS levels in cells, but the accumulation

of ROS has been shown to prevented by chelation of the iron

internalized by cells, and the effects produced by ATF4

overexpression can be inhibited by sorafenib and erastin (76,

77). In addition, the growth-promoting effect of ATF4 on cells is

mediated by xCT.

Pa tho log i ca l v e s s e l s cons t i tu t e a the spec ific

microenvironmental niche in primary brain tumors (121, 122).

The expression level of ATF4 affected the growth of tumor

vessels; specifically, ATF4 overexpression increased the number

and length of tumor vessels, and ATF4 knockdown led to the

opposite effect (76). The effects of ATF4 activity on tumor vessels

were regulated by ferroptosis; moreover, erastin and RSL3

inhibited angiogenesis in glioma, and this inhibitory effect was

attenuated with increased expression of ATF4 expression,

although the outcome was not notable (76). ATF4 is thought

to interact with components associated with ER stress (123) and

to prevent cellular resistance to partial ferroptosis inducers, such

as TMZ and dihydroartemisinin (124). Therefore, ATF4 is

involved in multiple pathways and thus presents possibilities

for ferroptosis regulation, which may lead to new

research prospects.
NCOA4

Nuclear receptor coactivator 4 (NCOA4) is a selective cargo

receptor for autophagic turnover that binds to ferritin to mediate

its delivery to autophagosomes and subsequently to the

lysosome for ferritin degradation and concomitant iron release

(78, 125, 126). When the cellular iron content is high, iron-

bound NCOA4 interacts with the ubiquitin E3 ligase HERC2 to

target NCOA4 for proteasomal degradation, which subsequently

reduces ferritinophagy. However, when the cellular iron content

is low, this interaction is inhibited, stabilizing NCOA4, which in
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turn increases ferritinophagic flux and iron release in lysosomes

(78). This mechanism enables NCOA4 to regulate cellular iron

homeostasis, determine the ferritin energy flux, and affect the

sensitivity of ferroptosis-inducing agents (127–129).

Previous studies reported that NCOA4 activity led to

inhibited FTH1 activity levels and that decreased FTH1 levels

caused cells to respond to several ferroptosis-inducing agents,

such as erastin (79, 130). Cystine deprivation led to ferroptosis,

which decreased FTH1 protein levels in control glioblastoma

cells (carrying NCOA4 T98G). In NCOA4-deficient GBM cells

(NCOA4-knockout [KO] cells), cystine deprivation exerted little

effect on the FTH1 level, and therefore, cystine removal did not

cause cell death (79). Furthermore, cystine deprivation caused

increases in the amount of microtubule-associated protein light

chain 3 (LC3)-II (which is related to autophagosome formation)

in NCOA4 T98G-mutant cells (79, 131, 132). This finding

suggests that cystine deprivation induces NCOA4-mediated

ferritin iron release, which in turn leads to the ferroptosis of

GBM cells (79).
YAP/TAZ

Yes-associated protein 1 (YAP) and transcriptional

coactivator with PDZ-binding motif (TAZ) are two dominant

effectors of the Hippo pathway. The Hippo pathway is a potent

tumor suppression pathway, and its core kinases include

mammalian STE20-like protein kinase 1/2 (MST1/2) and large

tumor suppressor ½ (LATS1/2), which inhibit proliferation by

inhibiting YAP and TAZ (133, 134). After receiving an

activation signal, MST1/2 associates with Salvador 1 (SAV1) to

activate the Hippo pathway and to phosphorylate LATS1/2 and

its coenzyme factor MOB1. The latter then phosphorylates the

transcription cofactor YAP/TAZ, and phosphorylated YAP/

TAZ is isolated in the cytoplasm and not translocated to the

nucleus (80) . Moreover , ce l l dens i ty and cel lu lar

communications can influence the regulation of ferroptosis

induced by YAP/TAZ (81). For example, Yang et al. showed

that TAZ, but not YAP, was abundantly expressed in several

cancer cell lines and underwent density-dependent nuclear

translocation (135, 136). TAZ depletion led to cell resistance

to various ferroptosis inducers, while overexpression of the

constitutively active form of TAZ, TAZS89A, sensitized cells to

ferroptosis (137).

Additionally, YAP/TAZ regulates autophagy, and

overexpression of MST1/2 or contact inhibition caused by

high cell density inactivates YAP/TAZ activity, suppressing the

transport of autophagosome components mediated by actin-

myosin complexes and reducing LC3 levels (134). In contrast,

knocking down LATS1/2 activities promotes YAP/TAZ activity

and autophagy, which in turn induces ferroptosis (81).

Compared to that of TAZ knockdown, the inhibitory effect of

YAP knockdown on ferroptosis inducers (erastin, etc.) was more
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significant, and the knockdown of both YAP and TAZ induced

the most significant inhibitory effect (138). The expression of

both YAP and TAZ was elevated in multiple tumor types,

including glioma cells, and was associated with the grade of

malignancy, which was highest in GBM patients (139). YAP is

also regarded as an independent prognostic factor for low-grade

gliomas, and studies have shown that YAP/TAZ can control

GBM cell plasticity (140), which may indicate a high value for

YAP and TAZ in glioma and ferroptosis research.
Therapeutic drugs for glioma based
on targeting ferroptosis

Compared with widely used ferroptosis drugs, particularly

the few drugs used to treat glioma, many drugs are used to treat

other malignancies, but these drugs induce drug resistance and

fail to cross the blood–brain barrier, making them ineffective

g l ioma t rea tments (150) . TMZ is a wide ly used

chemotherapeutic drug, but the resistance it causes is a very

serious problem. Recently, research has been focused on

weakening the resistance of malignant tumor cells to TMZ,

and to this end, combinations of drugs and molecular

hybridizat ion are being tested (151). In addit ion,

photodynamic therapies for ferroptosis may be used to

overcome the blood–brain barrier in glioma treatment (152).

Some newly tested drugs, such as dihydroartemisinin (DHA)

and sulfasalazine (SAS), have shown obvious ferroptosis-

inducing effects on glioma cells, and most of these drugs have

been previously used to treat other malignancies. In this section,

we provide an overview of the dominant therapeutic drugs used

for glioma treatment that target ferroptosis. A list of these drugs

is also provided in Table 2.
Dihydroartemisinin (DHA)

Artemisinin (ART) is the active component extracted from

Artemisia annua, and DHA, its main active derivative, has been

shown to exert desired cytotoxic effects on various human

malignancies (153–156).

Studies showed that the DHA-activiated pathway consumed

the reduced form of glutathione (GSH) and that the oxidized

form (GSSG) accumulated in glioma cells, leading to increasing

levels of lipid ROS and malondialdehyde (MDA, the end product

of lipid peroxidation) in glioma cells (124). In addition,

transmission electron microscopy showed that the size of

mitochondria was decreased, the number of mitochondrial

ridges was decreased, and the bilayer membrane density was

increased in DHA-treated cells, which was consistent with the

ultramorphological features of cells undergoing ferroptosis (63,

157, 158). These observations also prove that DHA induced
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ferroptosis in glioma cells (159). To determine the targets of

regulated by DHA in ferroptosis, the expression of GPX4, xCT

and ACSL-4 was determined. GPX4 expression was

downregulated and decreased with increasing DHA

concentrations in DHA-treated groups compared to controls,

while the levels of xCT and ACSL-4 were unchanged (159).

The effect of DHA on the induction of ferroptosis depended

on multiple factors. Inhibition of the PERK/ATF4 signaling

pathway enhanced the ferroptosis rate in DHA-induced

glioma cells, and ATF4-induced HSPA5 expression was

induced by increasing the GPX4 level in glioma cells

undergoing DHA-induced ferroptosis (124). Thus, HSPA5

inhibitors synergistically enhanced the antitumor effects of

DHA. Both the iron chelator deferoxamine (DFO) and lipid

peroxidation were shown to inhibit ferrostatin-1 (Fer-1) activity,

and liproxstatin-1 (Lip-1) inhibited the DHA-induced

production of ROS, lipid ROS and MDA (159). Thus, both

Fer-1 and Lip-1 reversed DHA-induced ferroptosis. Because

DHA affects many high-impact targets and since these effects

are regulated by multiple factors, studies into its selective killing

effect on glioma cells are promising research directions.
Temozolomide (TMZ)

TMZ is widely used as the first-line treatment of malignant

gliomas, but its antitumor effects have not been clearly identified.

Ferroptosis is considered one of the pathways targeted by TMZ,

and TMZ affects ferroptosis in glioma cells in several ways. The
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efficacy of TMZ in human glioma depends on xCT expression,

and xCT expression in cells is increased after TMZ treatment

(141). TMZ induced toxicity in both xCT-silenced and xCT-

overexpressing glioma cells, and the toxicity increased with

increasing TMZ concentration. Significantly fewer TMZ-

treated cells were found to be in the G1 or prolonged G2

phase, and xCT-silenced cells were more sensitive to TMZ

than xCT-overexpressing cells (141). Astrocytes and neurons

were less susceptible than glioma cells to TMZ, suggesting

special implications for TMZ treatment of glioma. Moreover,

the effect of TMZ was enhanced when it was combined with

erastin or sorafenib (141).

TMZ induces ferroptosis through the divalent metal

transporter DMT1, which regulates iron levels and maintains

iron homeostasis (8, 142). Both DMT1 mRNA and protein

expression levels were significantly increased in glioma cells

treated with TMZ (143). When DMT1 activity was inhibited,

GPX4, Nrf2, and HO-1 activity was also inhibited, and the ability

of TMZ to reduce cell viability was diminished (143). These

results suggest that TMZ induces the ferroptosis of glioma cells

and that this effect was associated with xCT and

DMT1 expression.
Sulfasalazine (SAS)

SAS has been shown to scavenge ROS (144), induce cancer

apoptosis (160), and attenuate glioma-induced epilepsy (161,

162). Recent studies showed that SAS significantly increased
TABLE 2 Therapeutic Drugs towards Glioma Treatment by targeting Ferroptosis.

Drugs Targets Mechanism Reference

DHA GSH↓ consumes the reduced form GSH, oxidized GSSG accumulates, increases lipid ROS and MDA,
inactivates GPX4 indirectly

Chen et al.
(124)

TMZ xCT↑ significantly reduced G1 phase and prolonged G2 phase Sehm et al.
(141)

DMT1↑ broke iron homeostasis Xue et al. (142)

synergistically mediate the inhibition of cell activity with GPX4, Nrf2, and HO-1 Song et al. (143)

SAS ROS↓ scavenge ROS Aruoma et al.
(144)

ATF4↑ increase ATF4 expression, induce ER stress, decreased cell viability Sehm et al.
(145)

xCT↓ inhibited the xCT antiporter activity hallmarked Sehm et al.
(145)

Pseudolaric acid B
(PAB)

NOX4↑ activated Nox4 contributed to intracellular H2O2 and lipid peroxide and glioma cell death Wang et al.
(146)

p53 induce GSH depletion, result in xCT inhibition Wang et al.
(146)

Ibuprofen Nrf2↓ inhibit system xCT, inactivate GPX4 indirectly Gao et al. (147)

Amentoflavone (AF) FTH↓ block intracellular iron trafficking and storage to break iron homeostasis via modulating FTH Chen et al.
(148)

ALZ003(a curcumin
analog)

AR(Androgen
receptor)

induces FBXL2-mediated AR ubiquitination, leading to AR degradation then degrade GPX4 Chen et al.
(149)
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ATF4 expression in glioma cells and induced ER stress,

decreasing cell viability (145). Cell death was prevented by

treatment with iron chelators and ferroptosis inhibitors, and

high concentrations of SAS specifically inhibited the expression

of an xCT antiporter activity marker (145), confirming that high

concentrations of SAS inhibited xCT activity and induced

ferroptosis in glioma cells. In experiments with a rat model,

SAS significantly reduced glioma cell proliferation, exerted no

significant toxic effects on normal neurons (163) and mild

toxicity on astrocytes, and did not affect brain cell viability

(145). However, due to low brain penetration, SAS showed poor

efficacy in newly diagnosed and recurrent malignant glioma

(150, 164). This problem is expected to be improved by

convection-enhanced delivery (CED) (163).

In addition, SAS is likely to be used in several drug

combinations. For example, molecular hybridization product

of SAS and DHA, called AC254, showed significantly higher

effects on glioma cells than either drug administered separately

or in other drug combinations (165). AC254 led to changes in

glioma cell shape and activity and terminated cell division,

which were significantly better outcomes than those induced

by the parent drugs and their mixture with other drugs (165).

SAS enhanced the ability of TMZ to reduce human GBM cell

activity (151), which may solve the problem of TMZ resistance.
Conclusions and perspectives

As a recently discovered form of cell death, ferroptosis shows

many potential applications to glioma treatment. Recent studies

have revealed three major pathways of ferroptosis, namely, iron

metabolism, lipid peroxidation, and antioxidant system

pathways (26). Ferroptosis is primarily regulated by the

inhibition of xCT, accumulation of ROS, inhibition of GPX

and GSH, which are mediators of many secondary regulatory

pathways. In addition to these findings, increasing evidence links

ferroptosis with autophagy, which has led to multiple research

directions (166). The regulatory pathways of ferroptosis and the

relationship of these pathways between ferroptosis and other

forms of cell death remain to be further investigated.

Glioma cells show sensitivity to multiple types of specific

ferroptosis inducers. Several critical factors inducing ferroptosis

show different degrees of abnormal manifestation in glioma cells;

for example, GPX4, Nrf2 and ATF4 show high expression

compared with normal cells, and p53 shows complex regulatory

effects. These findings provide therapeutic targets for glioma.

However, few studies have focused on the specific activities of

ferroptosis-related factors in glioma, and to identify more factors

and their complex roles, more experiments need to be conducted.
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Ferroptosis provides potential targets for further glioma

treatment. Due to the complex regulatory mechanism of

ferroptosis, many drugs show completely different effects in

vivo than in vitro or show varying degrees of antagonistic

effects in different pathways. In summary, the specific

mechanism of ferroptosis remains unclear, and the indicators

of ferroptosis are not obvious. Therefore, research on

ferroptosis-related drugs needs to be conducted based on

information obtained through additional detailed studies.
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