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Incremental value of radiomics
with machine learning to the
existing prognostic models for
predicting outcome in renal
cell carcinoma

Jiajun Xing1†, Yiyang Liu1, Zhongyuan Wang1†, Aiming Xu1,
Shifeng Su1*, Sipeng Shen2* and Zengjun Wang1*

1Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,
2Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing,
Jiangsu, China
Purpose: To systematically evaluate the potential of radiomics coupled with

machine-learning algorithms to improve the predictive power for overall survival

(OS) of renal cell carcinoma (RCC).

Methods: A total of 689 RCC patients (281 in the training cohort, 225 in the

validation cohort 1 and 183 in the validation cohort 2) who underwent

preoperative contrast-enhanced CT and surgical treatment were recruited

from three independent databases and one institution. 851 radiomics features

were screened using machine-learning algorithm, including Random Forest and

Lasso-COX Regression, to establish radiomics signature. The clinical and

radiomics nomogram were built by multivariate COX regression. The models

were further assessed by Time-dependent receiver operator characteristic,

concordance index, calibration curve, clinical impact curve and decision

curve analysis.

Result: The radiomics signature comprised 11 prognosis-related features and

was significantly correlated with OS in the training and two validation cohorts

(Hazard Ratios: 2.718 (2.246,3.291)). Based on radiomics signature, WHOISUP,

SSIGN, TNM Stage and clinical score, the radiomics nomogram has been

developed. Compared with the existing prognostic models, the AUCs of 5

years OS prediction of the radiomics nomogram were superior to the TNM,

WHOISUP and SSIGN model in the training cohort (0.841 vs 0.734, 0.707, 0.644)

and validation cohort2 (0.917 vs 0.707, 0.773, 0.771). Stratification analysis

suggested that the sensitivity of some drugs and pathways in cancer were

observed different for RCC patients with high-and low-radiomics scores.

Conclusion: This study showed the application of contrast-enhanced CT-based

radiomics in RCC patients, creating novel radiomics nomogram that could be

used to predict OS. Radiomics provided incremental prognostic value to the

existing models and significantly improved the predictive power. The radiomics

nomogram might be helpful for clinicians to evaluate the benefit of surgery or
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adjuvant therapy and make individualized therapeutic regimens for patients with

renal cell carcinoma.
KEYWORDS

renal cell carcinoma, radiomics, prognostic model, machine learning, computed
tomography running title, incremental value estimation
1 Introduction

The most common malignant tumor in the kidney is renal cell

carcinoma (RCC), which originates from the proximal tubular

epithelial system of the renal parenchyma, and more than 60,000

people worldwide suffer from it every year (1–3). According to

European Association of Urology Guidelines, surgical treatment is

the first choice for patients with RCC, of whom the overall 5-year

survival rate was in the range of 50–60% (4, 5).

RCC is recognized as having a highly variable natural history,

according to the previous reports (6). RCC patients have different

responses to surgical treatment and prognosis (7). Many prognostic

models for RCC have previously been developed to provide

prognostic assessment for patients and to inform clinical

management strategies and improve risk stratification for clinical

trials, including prognostic scores based on TNM stage, tumor size,

nuclear grade and necrosis (SSIGN), tumor-node-metastasis

(TNM) stage and WHOISUP (8). According to a report from a

retrospective study evaluating 358 patients with RCC, the predictive

efficiency of the SSIGN model was slightly better than that of the

TNM stage system (9).

According to the European Association of Urology guidelines,

among patients with stage I-II localized RCC, neoadjuvant therapy

is still experimental, and chemotherapy and targeted therapy are

not standard treatments for most patients (10). Especially for

resectable tumors, it should not be routinely presented outside of

clinical trials. However, despite following postoperative surveillance

guidelines, approximately 20% to 30% of patients with TNM stage I

and II RCC who were considered to have a better prognosis would

develop recurrence or metastasis after surgery (11, 12). Therefore,

existing prognostic models showed certain limitations in current

clinical practice, and the ability to accurately predict individual

patient outcomes remained limited. An accurate and simple RCC

prognostic tool is still urgently needed.

Tumor heterogeneity is defined as tumor cell with distinct

molecular and phenotypic characteristics. Recent evidence

suggested that the level of tumor heterogeneity could serve as a

prognostic biomarker (13). Tumor heterogeneity manifests at

multiple spatial dimensions, mainly including genetic, cellular,

histological, and radiological levels. The TNM stage and SSIGN

score system are mainly based on the anatomical and histological

features of tumors, which cannot reflect the heterogeneity of tumors

and may not be sufficient to provide accurate prognostic

information for RCC patients (14, 15). In current clinical practice,

the phenotypic heterogeneity of RCC was mainly assessed by
02
biopsy-based microscopy and gene expression analysis. However,

the capabilities of genomics, proteomics or histology were limited. It

was difficult to assess intratumor heterogeneity well with a random

sample alone.

Radiomics is a promising approach to automatically mine a lot

of quantitative image features that are difficult to identify with the

naked eye and reveal aspects of intratumor heterogeneity with

potential prognostic relevance (16, 17). The application of

machine learning in radiomics has emerged as a non-invasive and

low-cost method for accurate prognosis assessment.

The aim of this study was to identify radiomics features

associated with overall survival in RCC, to evaluate its

incremental value to clinical characteristics and other existing

prognostic models, to establish a visual nomogram for patients

with RCC and to provide reference for neoadjuvant therapy and

surgical plan.
2 Related work

Radiomics refers to the extraction of high-throughput

quantitative features from radiographic images, the in-depth non-

invasive analysis of tumor heterogeneity across the tumor volume,

and the establishment of predictive models that correlate imaging

features with genomic patterns and clinical outcomes. Recently,

radiomics has been widely applied in tumor imaging-based

diagnosis, prognosis prediction, and efficacy monitoring. Some of

the studies were presented below:

According to previous reports, among patients with stage I lung

adenocarcinoma, the radiomics signature was associated with overall

survival. The clinical-radiomics nomogram could accurately predict

Axillary lymph node metastasis (ALNM) (AUC: 0.92) (18). The model,

integrating clinical variables and radiomics features, had good

performance for predicting Microvascular invasion (MVI) and

clinical outcomes (19). Meanwhile, Ruizhi Gao et al. provided a

pred ic t ive nomogram tha t in tegra tes rad iomic and

clinicopathological characteristics for predicting the progression-free

interval (PFI) of kidney renal clear cell carcinoma patients (20).

Mostafa Nazari et al. developed a robust radiomics-based classifier

that was capable of accurately predicting overall survival of RCC

patients for prognosis of ccRCC patients (21).

In addition, Multiparametric MRI (mpMRI) allows assessment

of the anatomical and functional characteristics of the renal mass.

Using diffusion MRI, parenchymal wash index, and ADC ratio were

correlated with clear-cell RCC Fuhrman grade, with a pooled
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sensitivity and specificity of DWI to differentiate between high and

low grades of 78% and 86%, respectively (22, 23).

Most of the above studies have used texture analysis, meanwhile,

other studies have also used convolutional neural network (CNN). An

ensemble model based on residual convolutional neural network

(ResNet) was built combining clinical variables and T1C and T2WI

MR images using a bagging classifier to predict renal tumor pathology.

Stavropoulos et al. found that compared with all experts averaged, the

ensemble deep learning model had higher test accuracy (0.70 vs. 0.60,

P = 0.053), sensitivity (0.92 vs. 0.80, P = 0.017), and specificity (0.41 vs.

0.35, P = 0.450) (24).
3 Materials and methods

3.1 Study design and patients

A total of 689 patients with renal cell carcinoma confirmed by

histology were recruited in this study. 281 RCC patients came from

the First Affiliated Hospital of Nanjing Medical University (NJMU)

from 2010 to 2019. In addition, 408 patients were collected from

three external database (Clinical Proteomic Tumor Analysis

Consortium (CPTAC), Kidney Tumor Segmentation Challenge

(KITS) and The Cancer Imaging Archive (TCIA)). The criteria

for inclusion and exclusion are as follows: i) patients with complete

baseline and follow-up information; ii) patients with contrast-

enhanced CT imaging including arterial phase before surgical

resection; iii) patients histologically confirmed RCC; iv) no

imaging artifacts. The detailed flowchart summarizing patient

inclusion and exclusion in this study was presented in Figure S1.

In the phase of model development, we used the NJMU as the

training cohort (N=281) and the remaining datasets (CPTAC, TCIA,

and KITS) as the two independent validation cohorts (N1 = 225, N2 =

183). The validation cohort1 contained the patients in TCIA and

CPTAC (NCI) datasets while the validation cohort2 contained the

patients in KITS dataset. All relevant data was collected in July 2020,

and for patients who could not visit the hospital, a follow-up phone call

was conducted. The overall survival was calculated from the date of

pathological diagnosis to the time of death or the last follow-up.

Baseline data consisted of Age, Gender, Body Mass Index (BMI),

TNM stage, WHOISUP, Tumor size, Laterality, Location, Tumor

margin, SSIGN. The TNM stage is based on The Union for

International Cancer Control tumor node metastasis staging system

(8). In SSIGN, risk points are accumulated and added up to provide a

risk score (25).

The primary tool to assess frailty was the modified frailty index

of the Canadian Study of Health and Aging (11-CSHA), which is a

validated tool based on clinical data and consisting of eleven

elements. The sum score is divided by 11 and a cut-off of ≥ 0.27

has been defined to mirror frailty (26).
3.2 Radiomics feature extraction

In the training set, a total of two types of CT scanners are

involved, including Philips iCT 256 (Koninklijke Philips, Nevada,
Frontiers in Oncology 03
USA) and Somatom force CT A50A (Siemens Healthcare GmbH,

Erlangen, Germany). The detail CT scanning parameters are shown

in Table S1.

The workflow of the study was shown in Figure 1. The regions

of interest (ROIs) in the RCC were separately manually slice-by-

slice contoured and segmented using 3D Slicer (version 4.11.2) by

two urologists (Yiyang Liu and Shifeng Su), who were not

informed of the patients’ personal information. Each of them

with at least 10 years of clinical experience in kidney CT, took full

responsibility for the ROI delineation. The ROIs were evaluated by

experts following the medical imaging standards. After the ROIs

of the SRMs were delineated, the CT images were transferred to a

radiomics plugin for 3D Slicer (PyRadiomics). Then, the

extraction of in-house radiomics features was performed using

PyRadiomics package. Each ROI in contrast-enhanced CT

imaging (arterial phase) had eight sets of radiomics features.

The voxel-based features included shape 2D, shape 3D, first-

order, gray-level cooccurrence matrix (GLCM), gray-level size

zone matrix (GLSZM), gray-level dependence matrix (GLDM),

gray level run length matrix (GLRLM) and neighbouring gray tone

difference matrix (NGTDM), containing a total of 851

quantitative features. The Bland-Altman test was used for

assessment of interobserver variability.

The extracted radiomics features in each dataset were further

normalized with mean value=0 and standard deviation=1 to make

all the variables comparable across different dataset and applicable

easily in the future.
3.3 Unsupervised clustering and
subgroup discovery

Unsupervised hierarchical clustering, based on the raw

radiomics data scaled by mean and centered, was performed

using cutree package in R. Kaplan-Meier overall survival curves

were plotted using survival package in R. The statistical difference in

survival between the two patient subgroups was calculated with the

coxph function. The heatmap was plotted using the pheatmap

package in R.
3.4 Development of the
radiomics signature

Random Forest was performed using the ranger package. The

random forest feature importance was obtained from ranger-

package’s variable-importance-parameter on a trained random

forest model. In the training cohort, the radiomics features

associated with overall survival were screened by the least

absolute shrinkage and selection operator (LASSO) Cox

regression. The Radiomics signature was calculated with a linear

combination of the selected radiomics features multiplied by their

corresponding LASSO-Cox coefficients. Based on median radiomics

score, patients were classified as high-risk or low-risk group.

Kaplan-Meier overall survival analysis was performed between the

stratified subgroups.
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3.5 Development of the radiomics
nomogram

The association between clinical characteristics and overall

survival was separately evaluated by the univariable and

multivariable Cox regression analysis. The hazard ratio (HR) of

each predictor was obtained simultaneously. The clinical

nomogram and radiomics nomogram, which predicted 1-, 3- and

5-year overall survival, were separately constructed using the rms

and survival package in R. Based on TMN Stage, WHOISUP and

SSIGN, the prognosis model for OS Prediction has been developed

by survival package in R.
3.6 Identification of DEGs and functional
enrichment analysis

The differentially expressed genes (DEGs) were identified

between the high- and low-risk subgroups using the limma

package with criteria of |log2-fold change (FC)| ≥ 1 and p-value

< 0.05.

The KEGG enrichment analysis was performed using the

clusterProfiler package to obtain the results of gene set

enrichment. For Gene set enrichment analysis (GSEA), the GSEA

software was obtained from the GSEA website (http://

software.broadinstitute.org/gsea/index.jsp) to evaluate related

pathways and molecular mechanisms.
3.7 Mutation and drug sensitivity analysis

The mutational profiles of RCC patients between high and low

risk subgroups were identified using the maftools package. To

explore the sensitivity of antineoplastic drugs in RCC patients,

the semi-inhibitory concentration (IC50) values of common drugs

was calculated using the oncoPredict package.
Frontiers in Oncology 04
3.8 Statistical analysis

Statistical tests were performed with R statistical software. To

evaluate the performance of the prognosis model, we used calibration

curves constructed by rms package. The performance of the models

was evaluated by the time-dependent area under the curve (AUC) of

receiver operator characteristic (ROC). The decision curve analysis

(DCA) was performed with the rmda package. For all analyses, P <

0.05 was considered statistically significant.
4 Result

4.1 Basic characteristics

Table S2 showed the clinical characteristics of the entire cohort

(689 participants, median 58.8 years), training cohort (NJMU, 281

participants, median 57 years), validation cohort 1 (NCI, 225

participants, median 61 years) and validation cohort 2 (183

participants, median 58 years). The mean follow-up for patients

in the entire cohort was 41 months; and the 5-year OS rates were

86.9%, which was slightly higher than 71% reported in localized

RCC in the literature, which might well be attributable to loss of

some patients without surgery.
4.2 Overview of radiomics profile in RCC

To understand the radiomics features of RCC, the unsupervised

hierarchical clustering analysis was conducted in the entire cohort.

Based purely on the radiomics data, two distinct subgroups within RCC

patients were identified (Figure 2A). Subgroup 2 was significantly

associated with poor OS (p =0.004, log-rank test; Figure 2B).

Furthermore, in the forest plot of the entire cohort, the significant

Hazard Ratios were found for the subgroup, more specifically, in each

age level (<60 and >=60), each BMI level (<=24 and >24), and
FIGURE 1

Graphical abstract of radiomics analysis and model building.
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regardless of TMN Stage, SSIGN level and WHOISUP (Figure 2C). In

aggregate, unsupervised analysis suggested an intrinsic association

between radiomics features and clinical characteristics, warranting

further research.
4.3 Radiomics Signature for OS prediction
with machine learning

To construct the radiomics signature, we extracted the 851

radiomics features of contrast-enhanced CT images. These features

were screened in the random forest model to obtain the robust

predictive factors. Based on the importance scores of features from

the random forest model, the top five percent of the variables, 43

radiomics features were selected (Figure 3A; Table S3). Then, by

LASSO-Cox regression analysis, 11 potential predictors from the 43

candidate variables were selected in the training cohort (Figures 3B, C).

The calculation formula of radiomics signature was shown in the Table

S4. Accordingly, the patients with RCC were divided into low-risk and

high-risk groups. The high-risk group was significantly associated with

poor OS in the three cohorts (p <0.001, log-rank test; Figures 3D–F).
Frontiers in Oncology 05
The prognostic power of the radiomics signature was assessed

using time-dependent ROC analysis in the training cohort and two

validation cohorts (Figures 4A–C). The radiomics model resulted in

AUCs of 5-year OS prediction, 0.7409, 0.7947 and 0.830, respectively.
4.4 TNM stage, WHOISUP and SSIGN for
OS prediction

The TNM Stage, WHOISUP and SSIGN are relatively common

prognostic predictors. We put the three prognostic factors

separately into the COX regression to establish overall survival

prediction model. The above three prognostic predictors were

negatively correlated to OS (HR for TNM Stage: 2.563, 95% CI:

1.246-5.271; HR for WHOISUP: 5.096, 95% CI: 2.435-10.670; HR

for SSIGN: 1.2, 95% CI: 1.058-1.360).

The TNM Stage, WHOISUP and SSIGN models resulted in

AUCs of 5 years OS prediction, 0.7409,0.7947 and 0.830,

respectively, in the training cohort (Figure 4A) and 0.771,0.707

and 0.773 in validation cohort 2 (Figure 4C).
A

B

C

FIGURE 2

Unsupervised clustering analysis of radiomic data in RCC. (A) Unsupervised hierarchical clustering of radiomic profile from RCC identified two
distinct subgroups. The associations between radiomic subgroups with gender, subtype and TNM stage are indicated on the right. (B) Kaplan-Meier
analysis of the radiomic subgroups with OS in the entire cohort. (C) Hazard Ratios for radiomics grouping in each clinicopathological subgroup in
the entire cohort.
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4.5 Clinical nomogram and radiomics
nomogram for OS prediction

The results of univariate and multivariable COX regression

analyses in the training cohort were shown in Table S5. The age-

level, location and radio-diameter were significantly associated with

OS, and these factors as independent prognostic factors were used

to develop the clinical nomogram (Table S6). The clinical

nomogram could distinguish high-risk from low-risk patients in

the training cohort (p =0.0015, log-rank test) and the validation

cohorts (Figures 5A, C; S2D, S2I).

The radiomics nomogram was built with Radiomics signature,

TNM Stage, WHOISUP, SSIGN and Clinical score by the

multivariate Cox regression analysis (Figure 5B, Table S7). The

radiomics nomogram could distinguish high-risk from low-risk

patients in the training cohort (p<0.0001, log-rank test, Figure 5D)

and the validation cohort1 (p<0.001, Figure S2H). The clinical

nomogram and radiomics nomogram resulted in AUCs of 5 years

OS prediction, 0.676 and 0.841 in the training cohort, respectively,

and 0.567 and 0.917 in validation cohort 2 (Figures 4A, C).
4.6 Prediction performance of the models

The prediction performances of the six models (clinical

nomogram, radiomics nomogram, TNM Stage model, WHOISUP

model, SSIGN model and radiomics signature) were presented

in Table 1.
Frontiers in Oncology 06
Compared with the existing prognostic models, the AUC of 5 years

OS prediction of the radiomics nomogram was superior to the TNM,

WHOISUP and SSIGN model in the training cohort (0.841 vs 0.734,

0.707, 0.644) and validation cohort 2 (0.917 vs 0.707, 0.773, 0.771).

Radiomics provided incremental value to traditional models and

improved the power to predict prognosis. The risk plot of radiomics

nomogram suggested as risk score increased, overall survival time

decreased and mortality rose (Figures 4G, H). Moreover, the heatmap

of selected prognostic predictors was shown in Figure 4I.

The calibration curves of the radiomics nomogram for the

probability of 5 years OS were presented in Figure 6F. The

estimations with the radiomics nomogram were consistent with

actual observations in the training, and 2 validation cohorts. And,

the corresponding calibration curves of other models at 5 years were

shown in Figures 6; S3.

To evaluate clinical applicability of these prognostic models,

Clinical impact curve (CIC) analysis was conducted in Figures 6G–L

and Figure S3. CIC visually indicated that the radiomics nomogram

had a greater overall net benefit across a range of threshold

probabilities, suggesting that the radiomics nomogram possessed

significant prognostic value.

In the DCA analysis for the 6 prognostic models, the radiomics

signature and radiomics nomogram showed superior overall net

benefit over the existing prognostic models in predicting OS in the

training and validation cohorts (Figures 4D–F). If the threshold

probability of the traditional existing models was greater than 10%

for predicting OS, radiomics nomogram had more benefit than either

the SSISN, TNM Stage WHOISUP, or radiomics signature alone.
D

A B

E F

C

FIGURE 3

Development of the Radiomics Signature for OS Prediction with Machine Learning. (A) 43 radiomics feature importance from random-forest models.
(B) The 5-fold cross-validation for tuning parameter screening in the LASSO regression model. (C) LASSO coefficient profiles of the features at
different lambda values. (D–F) Kaplan–Meier curves for patients with High- and Low-Radiomics Score in the training and two validation cohorts.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1036734
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xing et al. 10.3389/fonc.2023.1036734
4.7 Biological interpretation and drug
sensitivity of the radiomics signature

To explore the radiomics-related biological characteristics of

renal cell carcinoma, based on their radiomics signatures, we

divided the NCI validation cohort1 into high- and low-risk

groups. We compared the transcriptome data of the two groups

to find out the DEGs (Figures 7A, C; S4A, S4C). Then, we evaluated

enrichments of KEGG pathways (Figures 7D and S4B); We found

that HIF-1 signaling pathways and TNF signaling pathways were

significantly enriched in the DEGs. Similarly, we identified that in

gene set enrichment analysis (GSEA), for RCC patient samples in

high-risk group, three signaling pathways were significantly

enriched: P53-Signaling Pathway, G2 Phase and Composition of

Lipid Particles (Figures 7E–G).

Additionally, the distribution differences of the somatic mutations

were investigated between high-risk and low-risk groups in the TCGA-

RCC dataset. As shown in Figure 7B, the VHL mutation incidence of

were higher than 20% in RCC patients in two groups. Interestingly,

compared with RCC in low-risk group, these tumor-related genes were

more likely to be mutated in the high-risk group.

Further, to determine the power of radiomics signature to

predict drug therapeutic response among RCC patients, the IC50

values of 198 drugs were evaluated in TCGA-RCC patients. We

found that RCC patients in low-risk group might positively respond
Frontiers in Oncology 07
to Axitinib, Cisplatin, Gemcitabine, PD173074 and Sorafenib

(Figure 7H). In summary, these findings suggested that radiomics

signature was correlated with drug sensitivity.
4.8 Sensitivity analysis for the consistency
of radiomics features

To evaluate the consistency and robustness of the extracted

radiomics features, we further reanalyzed the CT images of our study

using 3D Slicer by two urologists. The repeated radiomic features

showed a high consistency (Pearson r, median (IQR): 0.71 (0.43-

0.85)). 532 of 851 features (62.5%) had Pearson r > 0.6 (Figure S5A).

Additionally, we estimated the mean difference between 11 duplicate

radiomics features, and compared Bland-Altman plots of agreement

between two observers (Bland and Altman, 1986) (Figures S5B–L;

Table S8). There was high measurement agreement between two

observers using the Bland-Altman test.
5 Discussion

In this study, we evaluated the predictive performance of the

existing prognostic models for OS in RCC patients, and established

a radiomics signature by machine learning algorithms and a
D

A B

E F

G IH

C

FIGURE 4

Prediction performance of the six models in the training and validation cohorts. (A–C) Time-independent ROC curves comparing the predictive
accuracy of six models in the training and two validation cohorts. (D–F) Decision curves comparing six models among a series of risk thresholds in
the training and two validation cohorts. (G, H) Ranked dot and scatter plots showing the radiomics-nomogram score distribution and patient survival
status. (I) Component patterns of 5 selected prognostic factors in high- and low-risk groups for radiomics nomogram.
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radiomics nomogram by multivariate COX regression. We

demonstrated that the addition of the radiomics signature

significantly improved the predictive power of traditional

prognostic models, the model’s ability to significantly classify

patients into low- and high-risk groups, and its stability across

both training and validation cohorts. Finally, our preliminary

studies about genomics revealed a correlation between radiomics
Frontiers in Oncology 08
signature and the enrichment of certain pathways in tumors, as well

as drug sensitivity.

The Tumor, Node and Metastasis (TNM) staging system is a

method for stratifying cancer patients based on data from a large

multicenter study involving a large number of patients and has a

good level of evidence (15). TNM staging is also the most

commonly used prognostic system for renal cell carcinoma.
D

A B

C

FIGURE 5

Development of the Clinical Nomogram and Radiomics Nomogram. (A) Nomogram for predicting the ratio of RCC patients with a certain survival
time incorporating Age-level, Location and Radio-diameter in the training cohort. (B) Nomogram for predicting the ratio of RCC patients with a
certain survival time incorporating Clinical score, SSIGN, TNM Stage, WHOISUP and radiomics signature in the training cohort. (C, D) Kaplan–Meier
analysis of overall survival curves of High- and Low- Clinical or Radiomics nomogram in training group.
TABLE 1 Performance of six prognostic models in training and validation cohorts.

Cohort
Training Cohort Validation Cohort1 Validation Cohort2

Threshold
AUC at 5 years C index AUC at 5 years C index AUC at 5 years

Radiomics Signature 0.741 0.614(0.498,0.73) 0.795 0.707(0.625,0.789) 0.837 0.828(0.748,0.908) 0.275

Clinical Nomogram 0.676 0.709(0.627,0.791) 0.729 0.691(0.622,0.76) 0.567 0.719(0.617,0.821) -0.193

WHOISUP Model 0.734 0.73(0.63,0.83) – – 0.707 0.791(0.681,0.901) 1.87

SSIGN Model 0.707 0.675(0.575,0.775) – – 0.773 0.74(0.617,0.863) -0.183

TNM Stage Model 0.644 0.62(0.52,0.72) 0.707 0.741(0.665,0.817) 0.771 0.761(0.632,0.89) 0.9

Radiomics Nomogram 0.841 0.834(0.779,0.889) – – 0.917 0.923(0.878,0.968) 0.78
f
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However, patients with the same TNM stage often could have

various genetic and clinicopathological features and inconsistent

survival rates. WHOISUP is also an important standard for the

commonly used microscopic classification of renal cell carcinoma

(27). According to the World Health Organization/International

Society of Urological Pathology (WHO/ISUP) 4th edition grading

system, RCC is classified into grades I to IV. Among RCC patients

after surgery, including those with Partial nephrectomy (PN) and

Radical nephrectomy (RN), the SSIGN score is a valuable

prognostic tool (14). The existing prognostic models are widely
Frontiers in Oncology 09
recognized and used for post-operative management and clinical

trial design. For patients with good or moderate prognosis,

especially for patients with limited tumor burden and few

symptoms, regular follow-up observation is generally

recommended after surgery (28). Follow-up schedule for localized

renal cell carcinoma after surgery should depend on the possibility

of recurrence. CT scans of the chest and abdomen are routinely

performed at intervals depending on the prognostic risk rating. For

patients with poor prognosis, pembrolizumab combined with

axitinib, lenvatinib and other drugs can be considered after
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FIGURE 6

Comparative evaluation of various models in the training and validation cohorts. (A–F) Calibration plots describing the calibration of six models
based on the consistency between predicted and observed 5-year OS results. (G–L) Clinical Impact Curve (CIC) of six models in the training cohort.
The red curve (Number high Risk) represents the number of people classified as positive (high risk) by the model at each threshold probability; The
blue curve (Number high risk with outcome) is the Number of true positives at each threshold probability.
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surgery (29, 30). Therefore, accurate prediction of patient prognosis

and risk stratification of RCC patients is an urgent problem.

It has been reported that frailty put patients undergoing surgery

at a higher risk for developing poor healthcare outcomes (31). Besides

tumor characteristics, patient characteristics, such as frailty, seemed

to be the main aspects determining the postoperative outcome (32).

However, the mean frailty score based on 11-CSHA score for patients

was 0.18 ± 0.08 and 0.12 ± 0.06, respectively, in the training cohort

and in validation cohort 2. There were only 16 patients (frailty score≥

0.27) in the validation cohort2. This could be because frailty has been

an important factor for the therapeutic strategy patients and

clinicians choose as treatment for RCCs.

Although the above models took into account clinicopathological

variables, tumor heterogeneity, which was thought to be associated

with poorer patient outcomes, was not taken into account. It has been

reported that the predictive power of these existing prognostic models

might be significantly overestimated (33, 34). Although, tumor

heterogeneity reduced the value of histopathology based on cell
Frontiers in Oncology 10
morphology and gene expression, it provided an opportunity for

medical imaging to characterize whole tumors in a non-invasive and

reproducible manner. In traditional radiology practice, images were

typically evaluated visually or qualitatively, with the exception of a

few measurements such as dimensions and volumes. This approach

not only involved intra- and interobserver variability, but also left a

large amount of deep hidden data in medical images that were not

used, which limited the potential of precision medicine. In contrast,

radiomics provides important complementary data on imaging

phenotypes that may be informative (35).

Combining radiomic features, traditional staging systems, and

other clinicopathological risk factors can improve the predictive

power of tumor prognosis (36). In this study, a radiomics

nomogram, combining radiomics signature with Clinical score,

TNM stage, WHOISUP, and SSIGN prognostic factors, was

established. The nomogram outperformed models using either

radiomics or prognostic model alone (C index: 0.834 vs 0.62, 0.675,

0.73, 0.709). The radiomics nomogram combined multiple
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FIGURE 7

The relationship between radiomics and genomics in TCGA. (A) A volcano plot generated using the data of DEGs between high-risk and low-risk
groups from TCGA. (B) The waterfall plot of somatic genetic alteration features established with high- and low- radiomics score. (C) Hierarchical
clustering of 30 DEGs of RCC. (D) KEGG pathways analysis of DEGs associated with radiomics signature. (E–G) Gene Set Enrichment Analyses showed
three representative pathways enriched in the high-radiomics score group. (H) Relationships between radiomics signature and drug sensitivity.
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prognostic factors to accurately predict OS and stratify high and low-

risk groups in RCC patients. This result was not surprising, as

radiomics reflected higher-order imaging features that captured

more tumor heterogeneity than macroscopic-level histopathological

and clinical information. In this study, we included more patients

with combined clinical characteristics and radiomics features to

predict individualized survival with superior performance. Our

discovery would take a critical step in which predictive models

based on radiomics features could benefit physicians, patients and

caregivers in managing RCC and facilitating personalized treatment.

Meanwhile, some studies have demonstrated different results

due to the instability and low reproducibility of the radiomics

model. A meta-analysis has indicated that image biomarkers

based on the adjacent grey tone difference matrix and the size

zone matrix should not be used in multi-center study, because these

radiomics features were extremely sensitive to variations (37).

Furthermore, CT images obtained from different hospitals may

vary widely, thus leading to potential bias in multicenter studies.

Multicenter normalization of medical images is the key to improve

the predictive performance of radiomics-based applications. The

robustness of reliability and repeatability is a major issue for clinical

implementation of diagnosis and treatment prediction. In this

study, the performance on both the training cohort and two

independent validation cohorts was good (C index: 0.834 and

0.923), indicating that our prediction model was stable.

Compared with previous studies that lacked interpretation of

prognostic features, we comprehensively described biological and

clinical characteristics associated with radiomics features that would

help guide future clinical decision-making processes in a reliable

and reproducible manner. Among the 11 selected radiomics

features, GLCM, GLSZM and NGTDM measured the ROI array

heterogeneity, with greater values of these features representing

greater heterogeneity or a larger range of radiomics signature.

Additionally, in several previous studies, the prognostic models

based on genomic and transcriptomic information of tumor tissues,

such as gene expression, DNA methylation, CNAs, and non-coding

RNAs were developed. It has been reported that a nomogram which

was combined with six genes was able to accurately distinguish

patients with higher risk of cancer-specific death (38). Meanwhile,

Patrick et al. has established 13-gene signature whose expression

levels could predict distinct outcomes of patients with RCC (39).

But these molecular prediction models were difficult to translate

into routine clinical applications because of the timeliness of tumor

specimens and the large intratumor heterogeneity, resulting in

insufficient prognostic power and high detection costs. The

radiomics signature we proposed was simple and based solely on

information from routine preoperative CECT scans at the time of

patient onset. By observing the entire tumor area and extracting

high-dimensional features such as wavelets and features, radiomics

avoided tumor tissue features limited to a single site, and could

mine more prognostic information than genomics. Therefore, it

might serve as a surrogate biomarker for prognostic stratification of

RCC patients.

And even more interesting, according to the radiomics

hypothesis, intra-tumoral imaging heterogeneity might be an

expression of underlying genetic heterogeneity that might lead to
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treatment resistance and thus suggested poorer prognosis. Based on

DEGs between low-high radiomics score groups, some pathways in

cancer, such as HIF-1 signaling pathways and TNF signaling

pathways, were significantly enriched. The VHL regulated the

drug sensitivity of renal cell carcinoma via HIF-1 pathway (40).

The RNF26/CBX7 axis modulated the TNF pathway to promote

Renal cell carcinoma proliferation (41). The RCC patients in low

radiomics score group appeared to respond better to Axitinib,

Cisplatin, Gemcitabine, PD173074 and Sorafenib, which have

been approved for treatment of advanced renal cell carcinoma,

than patients in high radiomics score group. Image data is a high-

throughput macroscopic data. Based on macroscopic imaging data,

we have found connections to the microscopic world, which may be

a powerful tool for tumor prognosis and treatment prediction in

the future.

Nevertheless, there were several limitations to the present study.

First, in a retrospective study, bias was inevitable. Due to the

retrospective nature of the study, the heterogeneity of abdominal

enhanced CT versions and lack of algorithmic standardization

existed across and within centers. Second, we did not assess the

proportion of the patients died because of competing risks instead

of progressive RCC. Third, the TCGA data alone could not prove

that there was a difference between high- and low-radiomics score

groups in tumor microenvironment and drug sensitivity. Fourth,

RCC patients who did not undergo surgery for various reasons were

not included in the study cohort. The absence of this group of

patients might have caused selection bias in the study. Another

limitation was the lack of information on the WHOISUP and

SSIGN in validation cohort 1(NCI). Thus, to further validate

these findings, a prospective multi-center study is needed.

In conclusion, we developed multiple prognostic models for

RCC and evaluated their predictive performance, based on clinical

characteristics and radiomics features from CECT. Radiomics

signature provided statistically significant incremental value to the

existing prognosis models in predicting OS and have broad

clinical applications.
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Flow chart of the study population enrolment with inclusion and
exclusion criteria.

SUPPLEMENTARY FIGURE 2

Kaplan–Meier curves for overall survival in the training and validation cohorts.

SUPPLEMENTARY FIGURE 3

Comparative evaluation of various models in the validation cohorts. (A-J)
Calibration plots describing the calibration of six models based on the

consistency between predicted and observed 5-year OS results. (K-S)
Clinical Impact Curve (CIC) of six models in the validation cohort. The red

curve (Number high Risk) represents the number of people classified as
positive (high risk) by the model at each threshold probability; The blue

curve (Number high risk with outcome) is the Number of true positives at

each threshold probability.

SUPPLEMENTARY FIGURE 4

The relationship between radiomics and genomics in CPTAC. (A) Hierarchical
clustering of 30 DEGs of RCC. (B) KEGG pathways analysis of DEGs associated
with radiomics signature. (C) A volcano plot generated using the data of

differentially expressed genes (DEGs) between high-risk and low-risk groups

from CPTAC.

SUPPLEMENTARY FIGURE 5

Sensitivity analysis for the consistency of radiomics features. (A) Histogram of

Pearson r values calculated from the radiomic features between the initial
dataset and repeated dataset. (B-L) Bland-Altman plots were used to test the

potential agreement between two observers. Mean difference (dashed line) is

close to zero, showing no bias; solid black lines delimit limits of agreement
(95% CI).
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