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The heterogeneous species of tRNA-derived fragments (tRFs) with specific

biological functions was recently identified. Distinct roles of tRFs in tumor

development and viral infection, mediated through transcriptional and post-

transcriptional regulation, has been demonstrated. In this review, we briefly

summarize the current literatures on the classification of tRFs and the effects of

tRNA modification on tRF biogenesis. Moreover, we highlight the tRF repertoire of

biological roles such as gene silencing, and regulation of translation, cell apoptosis,

and epigenetics. We also summarize the biological roles of various tRFs in cancer

development and viral infection, their potential value as diagnostic and prognostic

biomarkers for different types of cancers, and their potential use in cancer therapy.
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1 Introduction

Over the past few decades, non-coding RNAs including tRNA-derived fragments (tRFs)

(also named as tRNA-derived small RNAs (tsRNAs) have been verified to play crucial roles in

the pathophysiological processes of cancer (1–3). Challenging the older paradigm that tRFs

are merely random products of tRNAs, tRF complementarity to specific locations of pre-

tRNAs or mature tRNAs demonstrates that tRFs are purposeful products of tRNAs (4). The

biogenesis of tRFs is strictly controlled by a set of precise ribonucleases that produce 14–50

nucleotide-long small RNAs (5).

Evidence indicates that tRFs participate in biological processes such as gene

destabilization (6, 7), mRNA processing (8), translation (9), and epigenetic regulation (10).

An increasing number of studies verify that tRFs play indispensable roles in diverse diseases

including cancer and viral infection (11). Here, we outline tRF biogenesis, classification, and

the role of tRNA modifications on the tRF production. We also delineate the major biological

functions of tRFs and the roles of tRFs in various types of cancers and viral infections. In

addition, we summarize the possible usage of tRFs for cancer diagnostic and prognostic
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biomarkers, and as therapeutic targets. Lastly, we explore the

mechanism of tRF biology that may be involved in chemoresistance.
2 Biogenesis and classification of tRFs

In the 1970s, researchers discovered tRFs by examining the urine

of cancer patients (12). However, they did not realize that these small

RNAs had biological functions. After a few decades, researchers found

that tRFs are not useless debris derived from tRNAs, as they have

precise sequence structures and are involved in various biological

processes (13). Pre-tRNAs are produced by RNA polymerase III

(RNA Pol III) located in the eukaryotic nucleus. During the

maturation process of pre-tRNAs, 5′-leader and 3′-poly U

nucleotides are removed by endoribonuclease P (RNase P) and

ribonuclease Z (RNase Z)/cytoplasmic homolog ribonuclease Z2

(ELAC2), respectively (14, 15). The 3′-CCA tail is attached to the

3′-acceptor stem of tRNAs with the assistance of a specific tRNA

nucleotide transferase (16). During the process of enzymatic splicing

and chemical modifications of pre-tRNAs and mature tRNAs, tRFs

are created (17). Based on the disparate cleavage sites, tRFs are

classified into various distinct categories (18) (Figure 1): 1) 3′ U
tRFs (tRF-1s), which are 16–27 nucleotides long, and are released by

RNase Z or ELAC2 in the 3′-trailer sequences of pre-tRNA (19); 2) 5′-
tRFs start from the 5′-termini of parental tRNAs and end at the D-

loop or around the anticodon-loop; 3) tRF-3s span the 3′-termini and

progress to the TYC loop of parental tRNAs and are 18 nucleotides or

22 nucleotides in length; 4) i-tRFs (also known as tRF-2s) originate

from the internal region of mature tRNAs spanning anticodons and

contain D-loop and T-loop sequences, with the sequences being

variable in length (13). Numerous studies have verified that the vast

majority of tRFs are exclusively produced by Dicer (20, 21), while the

specific ribonuclease involved in the cutting process of i-tRFs needs

further elucidation; 5) tRNA halves (tiRNAs or tRHs), including 5′-
tiRNAs and 3′-tiRNAs (30–40 nucleotides in length) correspond to

half of a mature tRNA (22, 23). Substantial evidence has

demonstrated that most tiRNAs are produced by angiogenin
Frontiers in Oncology 02
(ANG) under stress, such as ischemia, oxidative injury, ultraviolet

exposure, arsenite exposure, or infection diseases (13, 24–27). In non-

stress conditions, ANG is confined to the nucleus and exists in an

inhibited state associated with the ribonuclease inhibitor RNH1. Once

exposed to stress stimuli, ANG dissociates from RNH1 and

translocates to the cytoplasm for tRNA processing. Sex hormone-

dependent tRNA-derived RNAs are found to be abnormally

expressed in non-stress conditions such as breast cancers (BCAs)

with estrogen receptors (ERs) or prostate cancers (PCAs) with

androgen receptors (ARs) (28). It is worth noting that ANG-

dependent tiRNAs may be limited to a few tRNAs. A study

identified that ANG specifically produces tiRNAGly, tiRNAGlu,

tiRNALys, tiRNAVal, tiRNAHis, tiRNAAsp, and tiRNASec (22).

Surprisingly, the small RNA sequences from ANG-knockout cells

revealed that only the abundance of tiRNAHis and tiRNAAsp changed,

suggesting that there are other ribonucleases associated with the

generation of tiRNAs (29). In the ciliate Tetrahymena and

Saccharomyces cerevisiae, tiRNAs are produced from the cleavage of

RNase T2 family members named RNT2 and Rny1p, respectively (30,

31). All these findings have indicated the sophistication and

complexity of tRFs biogenesis.

Hanada’s team discovered an atypical type of tRF that accumulate

in mice with spinal motor neuron degenerative disease (32). These

novel tRFs were derived from pre-tRNAtyr after the aberrant removal

of introns. RNA sequencing indicated that these novel tRFs

encompass 5′ leader sequences starting with PPP-nucleotide and

followed by 5′ exon sequences (Figure 1).
3 Effects of tRNA modification on the
biogenesis of tRFs

Modified nucleotides account for 17% of all residues, and tRNAs

are the most extensively modified RNAs in eukaryotes (33). Some

modifications are essential for translation efficiency and the accuracy

of translation through ensuring the correct wobble base pairing (34,

35), and for maintaining the stability and folding of tRNAs (36).
FIGURE 1

Biogenesis and classification of tRNA-derived fragments (tRFs). Pre-tRNA is transcribed by RNA Pol III in the nucleus and undergoes 5′-leader, 3′-polyU
removal and 3′ CCA addition, based on disparate cleavage sites on pre-tRNA or mature tRNA. tRFs can be divided into different types including 3′U tRFs
(tRF-1s), 5′-tRFs, 3′-tRFs, i′-tRFs, 5′-tRNA halves (5′-tRHs) and 3′-tRHs.
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Recently, numerous studies have shown the significance of tRNA

modification in the production of tRFs (37–40).

5-methylcytosine modification is one of the important determiners

in the stability of tRNAs, and can prevent tRNAs from ANG-mediated

cleavage. As a result, the loss of modification leads to the degradation of

tRNAs (40). Blanco et al. identified that NSun2-mediated cytosine-5

RNA methylation at the variable loop can lead to an increased affinity of

tRNA and ANG, which gives rise to an accumulation of 5′-tRFs and the

subsequent attenuation of protein translation rates (41). Similarly, Tuorto

et al. revealed a quantitative loss of cytosine-C5 tRNA methylation in

mice with DNMT2 and NSUN2 deficiencies, which led to a substantial

decrease in abundance of tRNAAsp-GTC and tRNAGly-GCC and reduced

efficiency of overall protein synthesis (42). However, specific tRFs were

not revealed by the authors. Analogously, Chen et al. developed a mouse

strain with demethylase a-ketoglutarate-dependent dioxygenase alkB

homolog 3 (ALKBH3) knockdown and found that ALKBH3 potently

and selectively demethylated the m1A and m3C residues on tRNA.

However, the expression level of the most targeted tRNAs, aside from

tRNAGlyGCC, were not significantly changed in HeLa cells with ALKBH3

deletion (38). However, tRNAGlyGCC had low levels in epididymis, testis

and lung samples from mice with ALKBH3 knockdown.

Pseudouridylation also plays critical roles in regulating the

abundance and species of tRFs (43). A family of pseudouridine

synthases (PUS7) were reported to catalyze pseudouridylation of

RNAs (44). Guzzi’s team indicated that the deficiency of PUS7

results in reduced levels of ~18 nucleotide-long 5′-tRFs but

increased levels of 5′-tiRNAs, suggesting that the pseuduridylated

modification on tRNAs are correlated with their differentiated

endonuclease affinity and subsequent processing products (43).

Queuosine modification is uniquely detected on eukaryotic

tRNA anticodon-loop containing G34U35N36 sequences (45). In

the process of queuosine modification, guanine is substituted by

queuine with the assistance of queuine tRNA-ribosyl transferase

catalytic subunit 1 (QTRT1) (46). Wang et al. revealed that

queuosine modification significantly protects tRNAHis and

tRNAAsn from ANG-mediated cleavage (37). These data provide

new insights into how tRNA modifications affect small RNA pools.

However, it is unclear how these modifications enhance tRNA

stability. Thus, a detailed understanding of the biogenesis of tRFs

requires more research.
4 Distinct biological roles of tRFs

tRFs are ubiquitous in all domains of organisms and are

associated with the pathophysiological processes of various diseases

(26, 47, 48). The biological functions of tRFs have been reported in

recent years. Here, we summarize the main biological roles of tRFs

such as in gene silencing, RNA processing, and translational,

apoptotic, and epigenetic regulation in different types of diseases.
4.1 Gene silencing in AGO-dependent and
AGO-independent mechanisms

Researchers previously treated tRFs as a distinctive type of

microRNA (miRNA). It is logical to speculate that tRFs function
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similarly to miRNAs. For example, Green’s group detailed that tRF-

3003a (derived from tRNACysGCA) confers gene silencing of Janus

Kinase 3 (JAK3) by ‘seed sequence’ complementarity in osteoarthritis

chondrocytes (49). They further verified that tRF-3003a associated

with AGO2 and GW182, and forms RNA-induced silencing complex

by performing AGO2 and GW182 RNA immunoprecipitation assays.

Another study found that the C-terminus of AGO2 was indispensable

for functionality, but the N-terminus was not indispensable for

interacting with GW182 (50). The effects of GW182 were suggested

to be quite important in AGO2-mediated gene silencing. However,

more research is needed to uncover the details of tRFs in AGO-

dependent gene silencing.

Several studies have indicated that disparate tRFs show distinct

affinities with various AGO subtypes. An earlier meta-analysis

revealed that several tRFs have a stronger affinity to AGO1, AGO3

and AGO4 in comparison with AGO2, indicating that tRFs possess

other mechanisms of action beyond binding to AGO2, unlike

miRNAs (51). A tRF named CU1276 suppresses the endogenous

expression of Replication Protein1 (RPA1) by sequence

complementarity, while the RNA-induced silencing complex is

composed of AGO3, AGO4 and AGO1 rather than AGO2 (4, 52).

Likewise, Zhong et al. identified that Gly-tRF (5′-tRF, with the length

of 29–34 nucleotides) is upregulated in both ethanol-fed mice and

alcoholic fatty liver disease patients. Further research has indicated

that alcohol consumption can result in the activation of oxidative

stress and the subsequent upregulation of Gly-tRFs (53). Gly-tRFs

interact with AGO3, but not with other types of AGOs, to silence

sirtuin1 (Sirt1) expression by targeting its 3′-UTR. This leads to the

disruption of lipid metabolism pathways and liver injury (Figure 2A).

However, the potential mechanism of discrepant affinity of tRFs to

AGO needs further study.
4.2 Post transcriptional regulation with RNA
binding proteins

In comparison to the studies described above, other studies support

that tRFs play a role in gene silencing by interacting with RNA binding

proteins (RBPs). A previous study verified that a series of i-tRFs

(derived from tRNAGluYTC, tRNAAspGTC, tRNAGlyTCC, and

tRNATyrGTA) competitively bind to Y-box binding protein 1 (YBX1),

known to stabilize oncogenic transcripts. The upregulation of i-tRFs

sequesters YBX1 away from oncogenic mRNAs, leading to the

degradation of oncogenic transcripts. Krishna et al. reported that a

series of 5′-tsRNAs (including tsRNA-GlnCTG, tsRNA-GlyGCC,

tsRNA-GluTTC, and tsRNA-ValCCC) modulate the states of mouse

embryonic stem cells by influencing the abundance of stemness-marker

c-Myc (7). Based on RNA pulldown assays and mass spectrometry, it

has been verified that 5′-tsRNAs preferentially bind to RBP IGF2BP1.

IGF2BP1 is known to maintain the stability of c-Myc mRNA by

interacting with the coding region instability determinant. This

association results in the instability of c-Myc mRNA and lowers c-

Myc expression (Figure 2B). The study provides new insights in gene

silencing at the post-transcriptional level.

A recent study identified that tiRNA-Gly promotes the

proliferation and migration of papillary thyroid cancer cells by

binding to RNA binding motif protein 17 (RBM17) (8), a
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spliceosome protein that can selectively splice mRNAs. The study

revealed that the interaction of tiRNA-Gly and RBM17 suppresses

ubiquitin-dependent degradation of RBM17, and facilitates the

translocation of RBM17 from the cytoplasm to the nucleus. RBM17

mediates alternative exon splicing of Mitogen-Activated Protein 4

Kinase 4 (MAP4K4) pre-mRNA. Increased tiRNA-Gly induced

higher levels of truncated MAP4K4 mRNA and lower levels of long

variant MAP4K4 mRNA. MAP4K4 was known as a protein kinase to

activate the MAPK pathway (54), though it was revealed that the two

variants of MAP4K4 substantially phosphorylated the downstream

proteins of the MAPK pathway, and the truncated variant showed a

stronger effect than that of the long variant (Figure 2C). These data

revealed the significance of alternative splicing in altering signal

pathways mediated by tiRNA-Gly. This study provides novel

insights into the role of tiRNAs in post-transcriptional gene

expression regulation.
4.3 Regulation of translation

It has been demonstrated that the overall translation speed can be

decreased by about 10% by tRFs (25). However, the underlying

mechanism of the inhibitory effect of tRFs on protein translation is

unclear. Ivanovet et al. reported that 5′-tiRNAAla and 5′-tiRNACys

promotes the synthesis of stress granules in a phospho-eIF2a-

independent way, and disturbs the formation of the translation

initiation complex by replacing the eukaryotic initiation factors

from m7G-capped mRNAs (55). Further studies have clarified that

the G-quadruplex-like structure (G4-motif) at the 5′-end of 5′-
tiRNAs contribute to the formation of intermolecular RNA G-

quadruplexes (9). These complexes can interact with the cold shock

domain of translational silencer protein YBX1 (also referred as YB-1),

which facilitates the assembly of stress granules and strengthens the

resistance against stress (56). Mechanistic studies have indicated that

RNA G-quadruplexes are necessary for replacing translational

initiation factors (eIF4G/A) from mRNAs. However, YBX1 protein

is not indispensable for interfering with translation-initiation

complexes, but it is required in facilitating the assembly of stress

granules (57). In addition, another study provided deep insights into

how pseudouridylated tRFs affect translational initiation in

embryogenesis and hematopoietic lineage manifestation (43). It was

identified that tRF-5s are abundant in human embryonic stem cells

(43). Pseudouridylation of tRF-5 at the U8 position (referred to as
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mTOGs) inhibits translation initiation by competitively binding to

polyA binding protein-1 (PABPC1), eIF4G/A, and eIF4E.

tRFs not only disrupt translation initiation but also enhance

translation efficiency. For example, the overexpression of

LeuCAG3′-tsRNA significantly promotes the biogenesis of 18S

rRNA (58). LeuCAG3′-tsRNA promotes the translation efficiency of

RPS28 mRNA by interacting with the coding sequence and unfolding

the hairpin structure of RPS28 mRNA. (Figure 2D).

Moreover, research has verified that the pre-tRNA trailer derived

tRFs sequesters La/SSB in the cytoplasm and leads to the inhibition of

HCV internal ribosome entry site-mediated translation (59). Certain

aspects of tRF-5 play a critical role in translation silencing. For

example, a conserved “GG” dinucleotide structure in tRF-5

contributes to translation inhibition regardless of the shortened

length of RF-5 (60). These results pave the way for tRFs in

translation regulation by interacting with RBPs or mRNAs.
4.4 Regulation of cellular apoptosis

Studies have disclosed the potential role of tRFs in regulating cell

apoptosis. Saikia et al. verified that a series of tiRNAs perturb the

formation of the apoptosome by interfering with the interaction of

apoptotic protease activating factor-1 (APAF1) and cytochrome c,

resulting in increased survival of mouse embryonic fibroblasts. The

affinity of cytochrome c for disparate tiRNAs varies considerably, and

it was shown that cytochrome c showed significantly lower affinity to

tiRNAArg than to tiRNAAla. However, how cytochrome c recognizes

specific tRNA targets needs further research (61).

A recent study revealed that tRF-21-VBY9PYKHD (i-tRF, derived

from tRNAGlyGCC) is involved in cell apoptosis regulation (62).

Inflammatory cytokine-induced tRF-21 was downregulated in

pancreatic ductal adenocarcinoma (PDAC), and overexpression of

tRF-21 significantly enhanced apoptosis and inhibited growth of

PDAC cells. Further research revealed that tRF-21 knockdown

promotes the phosphorylation of heterogeneous nuclear

ribonucleoprotein L (hnRNP L) and the formation of hnRNP L and

dead-box helicase 17 (DDX17) complexes. These complexes play

crucial roles in splicing Caspase 9 into Caspase 9b (with anti-

apoptotic specificity) and mH2A1.2 (with pro-invasive specificity),

while upregulation of tRF-21 exerts the opposite effect (Figure 3A).

These studies reveal novel apoptosis-related mechanisms for the

treatment of cancers.
B C DA

FIGURE 2

Gene expression regulation by tRNA-derived fragments (tRFs). (A) Gly-tRFs inhibit the expression of Sirt1 by associating with AGO3 to target Sirt1 mRNA
3′-UTR. (B) 5′-tsRNAs sequester RBP IGF2BP1 from the c-Myc mRNA and affects the stability of the target mRNA. (C) tiRNA-Gly promotes translocation
of RBM17 from the cytoplasm to the nucleus, and induces RBM17-dependent splicing of MAP4K4 mRNA. (D) LeuCAG3’-tsRNA promotes the translation
efficiency of ribosomal protein S28 (RPS28) mRNA by unfolding the hairpin structure of RPS28.
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4.5 Epigenetic regulation of tRFs in a
transposon-dependent manner

Transposons are genetic sequences that can translocate their sites

within a genome (63). The mobilizable peculiarity of transposons is

beneficial to the diversity of life and strengthens the adaptation to stress

conditions (64). However, substantial evidence has shown that various

cancers are significantly correlated with the transcriptional activity of

transposons (65, 66). To constrain the possible harmful effects of

transposons, eukaryotes have developed various mechanisms such as

DNA methylation, chromatin modification, as well as RNA silencing

mediated by piRNA-Piwi complexes to keep these genetic elements in a

quiescent state (67). The question naturally arises of how the genome

protects itself from being destructed when most of the epigenetic marks

and piRNAs disappear during epigenetic reprogramming, like during

embryonic development prior to implantation. It was verified that a

novel class of tRF-3s (derived from mature tRNAsLysUUU) 18–22

nucleotides long was discovered to be enriched in SET domain

bifurcated histone lysine methyltransferase 1 (SETDB1) knockout

mouse embryonic stem cells (68). SETDB1 induces histone H3K9

trimethylation and plays a passive role in the transcription of long

terminal repeat-retrotransposons, named endogenous retroviruses. The

18 nucleotide-long tRF-3 interferes with retroviral cDNA synthesis by

displacing tRNAs from the primer binding site located in the long

terminal repeat retrotransposon. The 22 nucleotide-long tRF-3 leads to

the gene silencing of endogenous retrovirus mRNA through sequence

complementarity to the primer binding site and results in reduced

retrotransposon integration. MERVL is a retroelement that functions to

drive the transcription of specific genes (69). GlyGCC 5′-tRF
suppresses MERVL-mediated gene transcription by binding to

heterogeneous nuclear ribonucleoproteins F and H (hnRNP F/H) to

form complexes, which play a crucial role in the biogenesis of several

classes of small non-coding RNAs including U7 snRNAs. The stability

and utility of U7 snRNAs rely on Cajal bodies. U7 snRNAs promote the

production of histone proteins by interacting with histone downstream

elements. As a result, the biogenesis of histone partially halts the post-

transcriptional expression of MERV-mediated genes (10).
Frontiers in Oncology 05
4.6 Epigenetic regulation of tRFs in a Piwi-
dependent manner

tRF-3 has a length of 26–31 nucleotides and has been found to

interact with ribonucleoproteins AGO/Piwi and participate in

epigenetic regulation (70). Couvillion et al. challenged the

conventional wisdom that AGO/Piwi typically induces mRNA

degradation and represses translation through RNA-induced

silencing complex formation (70). They revealed that tRF-3

associates with the Tetrahymena thermophila AGO/Piwi protein

Twi12 and promotes its nuclear translocation, while Twi12 plays

essential roles in ribosomal RNA processing by assembling with Xrn2

and Tan1 proteins (Figure 3B). This study unveiled the roles of tRF-3s

in nuclear translocation of Twi12 and possible mechanisms of

epigenetic regulation. Simultaneously, it was speculated that the

modified bases on tRF-3s attenuated the effects of sequence

complementarity to target genes. This study may help to broaden

the roles of tRF-3 and differentiate these roles from those of tRF-5.

Another study identified that tRFGlu derives td-piR(Glu) with a

2′-O-methylation and 3′-terminus, and is highly enriched in

monocytes in comparison to dendritic cells (71). In addition,

interleukin-4 (IL-4) decreases the production of tRNAGlu and its

by-product td-piR(Glu) by regulating the activity of polymerase III.

td-piR(Glu) functions as an IL-4-mediated signaling molecule by

promoting H3K9 histone methylation, binding to PIWIL4 protein

and recruiting SETDB1 and heterochromatin protein 1b (HP1b).
Suppressor of variegation 3-9 homolog 1 (SUV39H1) is also recruited

to the promoter of CD1A, which results in the suppression of CD1A

transcriptional activity (71). These results suggest that td-piR(Glu)

participates in chromatin remodeling in immune cells (Figure 3C).
5 Effect of tRFs in cancer and
viral infection

Mounting evidence indicates that the dysregulation of tRFs are

key players of various malignant tumors.
B CA

FIGURE 3

Apoptosis and epigenetic regulation by tRNA-derived fragments (tRFs). (A) The interaction of tRF-21-VBY9PYKHD and hnRNP L inhibits the
phosphorylation of hnRNP L mediated by AKT2 and promotes the formation of the hnRNP L and DDX17 complex. This complex splices Caspase 9 and
mH2A1 pre-mRNAs into Caspase 9b mRNA and mH2A1.2 mRNA. (B) tRF-3 translocates into the nucleus with the assistance of Twi12. The Twi12-tRF-3
complex binds to the exonuclease Xrn2 and Tan1 to form a complex, which plays important roles in rRNA processing. (C) IL-4 decreases the production
of tRNAGlu followed by the downregulation of td-piR, which assembles with PIWIL4 and recruits SETDB1, SUV39H1, and HP1b to the promoter of CD1a
mRNA and facilitates methylation of H3K9 histone followed by inhibition of CD1a transcription.
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5.1 Regulation of cancer cell proliferation

Upregulated oncogenic signaling and downregulated anti-cancer

signaling triggers the initiation and progression of cancers. tRF-19-

3L7L73JD (i-tRF, derived from tRNAValAAC) is downregulated in the

plasma of pre-operative gastric cancer patients, while overexpression of

tRF-19-3L7L73JD attenuates viability of gastric cancer cells by

promoting cell apoptosis (72). Lee et al. demonstrated that tRF-1001

is abundantly expressed in PCA cells and the knockdown of tRF-1001

affects cell cycle distribution and reduces cell proliferation (19). In

another study, 5′ tRFHisGTG (derived from tRFHisGTG) was upregulated

in colorectal cancer (CRC) tissues and positively correlated with tumor

size. Moreover, the overexpression of 5′ tRFHisGTG promoted cancer cell

division by targeting large tumor suppressor 2 (LATS2), which

functions in the tumor-suppressive Hippo signaling pathway (73).

Analogously, tRF-Val was found to be upregulated in GC cell lines

and tissues. Functionally, tRF-Val promoted proliferation of GC cells in

vivo and in vitro by destabilizing the eukaryotic translation elongation

gene, elongation factor 1-alpha 1 (EEF1A1), a regulator that mediates

p53 ubiquitination by enhancing the effects of E3 ubiquitin ligase (74).

This study suggests the substantial potential of tRFs in cell

proliferation regulation.
5.2 Regulation of cancer cell migration
and invasion

Migration and invasion allow cancer cells to spread to distant

tissues or organs from the primary tumor site. Accumulating studies

have shown that dysregulated tRFs are correlated with the invasion

and metastasis of tumors. For example, Zhang et al. discovered that

tRF-03357 is more abundant in ovarian cancer cells, and

overexpression of tRF-03357 significantly inhibits the migration

and invasion of ovarian cancer cells (75). Li et al. revealed that a

cluster of 5′-tiRNAs regulate the metastatic and invasive abilities of

CRC cells, and among the detected 5′- tiRNAs, 5′-tiRNAVal (derived

from tRNAVal) was verified to be positively correlated with lymph

node and distant metastasis in vivo and in vitro (76). Meanwhile,

another study revealed that tRF-20-MEJB5Y13 promotes the

migration and invasion of CRC cells (77). Dong et al. discovered

that the overexpression of tRF-24-V29K9UV3IU hinders the

migratory capacity of gastric cells, and a bioinformatics analysis

revealed that tRF-24-V29K9UV3IU influences signaling pathways

involved in cancer metastasis (78). However, the detailed

mechanism of these phenotypes requires further study.
5.3 Regulation of cancer cell apoptosis

Malignancy, characterized by an attenuation of cancer cell

apoptosis, can also be regulated by certain tRFs. For example,

overexpression of tRF-315 (derived from tRNAlys) inhibits the

apoptosis of PCA cells by perturbing the expression of growth

arrest and DNA damage 45a (GADD45a), which plays a vital role

in sustaining BAX mRNA stability and facilitating the expression of

the apoptotic factor BAX (79). These studies shed light on novel
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apoptosis-promoting mechanisms and could be relevant in the

treatment of PCA.
5.4 Promotion of viral replication

A growing number of studies have identified dysregulated tRFs in

cells or tissues associated with viral infection, and have revealed the

function of tRFs in viral replication (11, 80–83). 5′-tRF-GlyCCC and

5′-tRF-LysCTT were discovered to be upregulated in A549 cells upon

respiratory syncytial virus (RSV) infection, and overexpression of 5′-
tRF-GlyCCC and 5′-tRF-LysCTT significantly promoted RSV

replication (81). However, the mechanism underlying this

observation was not specified in the study. Ruggero et al.

demonstrated the specific function of tRF-3019 in promoting

human T-celll leukemia virus type1 (HTLV-1) replication in CD4+

T cells (11). It was revealed that tRF-3019 exhibited perfect base

pairing to the primer binding site of HTLV-1, and served as a primer

in guiding the reverse-transcriptional activity of HTLV-1. A study by

Deng et al. revealed a novel targeting mechanism of tRFs in regulating

viral replication (80). For example, tRF5-GluCTC was highly

abundant in airway epithelial cells upon RSV infection (80).

Contrary to typical microRNAs, tRF5-GluCTC utilizes a novel gene

silencing mechanism. It was reported that the interaction of the 3′-
portion of and 3′-UTR of apolipoprotein E receptor 2 (APOER2)

mRNA resulted in reduced expression of APOER2. APoER2 is an

antiviral protein whose inhibition leads to RSV replication. Given the

role of tRF5-GluCTC in promoting RSV replication (84), Choi et al.

examined whether tRF5-GluCTC silences target gene expression in

miRNA machinery (83). Both AGO1 and AGO4 was found to

contribute to gene silencing of tRF5-GluCTC, while AGO2 and

AGO3 were not involved in tRF5-GluCTC-induced gene expression

activity. These observations signify the possible development of novel

therapeutics against viral infection by exploiting the function of tRFs.
6. Clinical values of tRFs in cancers

Numerous studies have elucidated the abnormal expression of

tRFs in various kinds of tumors and body fluids in cancer patients.

There is enormous potential for tRFs to function as novel biomarkers

for diagnosis, tracking the prognosis of cancer, as therapeutic targets,

as well as in improving chemotherapy resistance (Figure 4

and Table 1).
6.1 tRFs as potential biomarkers for cancer
diagnosis and prognosis

Early diagnosis and treatment are considered critical factors

relating to the improved prognosis of cancer patients. Therefore, it

is crucial to develop specific biomarkers to significantly improve the

diagnostic efficiency for cancer patients. The fact that various types of

tRFs have been detected in body fluids, such as blood, urine, saliva

and sperm (92–94), has rendered tRFs promising biomarkers. Recent

studies have affirmed the values of tRFs as diagnostic and prognostic
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markers. Panoutsopoulou et al. revealed that i-tRF-GlyGCC is

abundant in ovarian cancer compared to healthy controls. A

Kaplan-Meier survival analysis confirmed the diagnostic value of

elevated i-tRF-GlyGCC in predicting poor overall survival (OS) and

worse progression-free survival of patients (90). Another study

verified that the diagnostic values of tRFArgCCT-017, tRFGlyCCC-

001, and tiRNAPheGAA-003 in BCA within an area under the curve

were 0.683, 0.656, and 0.666, respectively (86). Meanwhile, elevated

tRFArgCCT-017 or tiRNAPhe-GAA-003 levels are correlated with

worse OS and disease-free survival rates in BCA patients (86). Wu

et al. revealed that the plasma levels of 5′-tRF-GlyGCC increase with

the progression and metastasis of CRC (87). The combination of 5′-
tRF-GlyGCC and carcinoembryonic antigen, and carbohydrate

antigen 19-9 (CA19-9) improves the AUC to 0.926. Gu et al.
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reported that the serum level of hsa_tsr016141 is correlated with

metastasis and the cancer stage of gastric cancer, and can improve the

diagnostic efficiency when combined with carcinoembryonic antigen

and CA19-9 (85).

Xue et al. found that the combination of tRFValTAC-41 or

tRFMetCAT-37 with CA19-9 can increase the diagnostic value

(AUC = 0.947 and 0.949, respectively) in PDAC compared to

CA19-9 alone (AUC = 0.906), and confirmed the clinical

significance of tsRNA-ValTAC-41in predicting poor OS (89). In

addition, high expression of tsRNA-5001a was revealed to be

associated with increased risk of postoperative recurrences and poor

OS in lung adenocarcinoma (3). Moreover, several studies have

revealed that tRFs can be selectively exported in extracellular

vesicles (95). Zhu et al. verified that 5′-tRH-GlyTCC, 5′-tRH-

ValAAC, 5′-tRH-GluCTC, and 3′-tRF-ValTAC exhibit higher levels

in plasma exosomes in patients with liver cancer (91). Intriguingly, it

was reported that 5′-tiRNAs can form homodimers or heterodimers

to prevent endonucleolytic cleavage, thus enhancing the stability of

5′-tiRNAs in extracellular vesicles (96). The presented studies indicate
the immense potential of tRFs as novel forms of bio-liquid-based

markers in diagnosing and evaluating prognosis.
6.2 tRFs as therapeutic agents or targets for
cancer therapy

In the context of tRFs with suppressive effects on tumor

development, synthesized tRF mimics can be introduced into

cancer cells or tissues to treat cancers. Pan et al. identified that

inflammatory cytokine-induced tRF-21-VBY9PYKHD was

downregulated in PDAC cells, and overexpression of tRF-21
FIGURE 4

Roles of tRNA-derived fragments (tRFs) in various cancers. Different
types of tRFs could serve as various biomarkers or therapeutic targets
for distinct cancers or potential therapeutic agents.
TABLE 1 Clinical values of tRFs in various cancers.

tRF
Type

tRF name Parental tRNA Cancer Expression Source Clinical values Reference

tRF-5 hsa_tsr016141 tRNA-GlnTTG BC higher plasma correlated with metastasis and cancer
stage and improved the diagnostic
efficiency

(85)

tRFArgCCT-017
tRFGlyCCC-001
tiRNAPheGAA-003

tRNA-ArgCCT tRNA-
GlyCCC tRNA-
PheGAA

BC higher plasma potential diagnostic and prognostic
biomarkers

(86)

5′-tRF-GlyGCC tRNA-GlyGCC CRC higher plasma potential diagnostic biomarker (87)

tRF-5026a tRNA-ValAAC GC lower tissue and
plasma

potential therapeutic agent (88)

tRF-3 tRF-3019 tRNA-ProAGG/
tRNA-ProTGG

TLL higher HTLV-1-
infected CD4
cells

potential therapeutic target (11)

tRFValTAC-41/
tRFMetCAT-37

tRNA-ValTAC/
tRNA-MetCAT

PDAC higher serum potential diagnostic and prognostic
marker

(89)

i-tRF i-tRF-GlyGCC tRNA-GlyGCC OC higher serum associated with overall survival and
progression free survival

(90)

tRF-21- VBY9PYKHD tRNA-GlyGCC PDAC lower tissue potential therapeutic agent (62)

tRH-5 5’-tRH-GlyTCC,
5’-tRH-ValAAC,
5’- tRH-GluCTC,

tRNA- GlyTCC/
tRNA- alAAC/
tRNA- GluCTC

LC higher exosome from
plasma

potential biomarker (91)
f
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significantly enhanced apoptosis and inhibited growth of PDAC cells

(62). Mice treated with tRF-21 agomir showed a reduction in tumor

volume and had longer survival times. Likewise, Zhu et al. transfected

gastric cancer cells with tRF-5026a mimics and injected these cells

subcutaneously into nude mice, successfully attenuating the tumor

growth in vivo (88). Han’s group transfected CRC cells with

tRF3008A (derived from tRNAVal) mimics and subcutaneously or

intravenously injected these cells into mice to identify the effects of

tRF3008A (97). tRF3008A had suppressive effects on the proliferation

and migration of CRC. The results indicate the potential value of tRFs

as therapeutic agents (98). In the context of oncogenic tRFs, the

inhibition of certain tRFs may have therapeutic effects on cancer (99).

Yang et al. demonstrated that upregulation of AS-tDR-007333

significantly promoted the growth and migration of non-small cell

lung cancer cells (99). A mechanistic study revealed that AS-tDR-

007333 and HSPB1 synergistically enhance transcription of mediator

complex subunit 29 (MED29) by modifying histone modifications on

MED29 promoter regions. The therapeutic efficacy of AS-tDR-

007333 was evaluated in vivo. Reduced levels of AS-tDR-007333

significantly inhibited growth of NSCLC tumors (99). However, it

should be noted that several endogenous tRFs harbor modifications

that may confer improved stability compared to synthesized tRFs.
6.3 Use of tRFs to improve
chemotherapy resistance

Chemotherapy resistance is a challenge in cancer treatment and

affects patient survival directly (100). It is therefore imperative to

ascertain the potential mechanisms of cancer chemoresistance. We

speculate on the potential methods that tRFs could be involved in

cancer chemoresistance. For example, Cui et al. determined that tDR-

0009 (derived from tRNAGlyGCC-1-1) and tDR-7336 (derived from
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tRNAGlyGCC-1-2) were significantly upregulated in hypoxic BCA cells,

and a bioinformatics analysis revealed the two upregulated tRFs were

mainly involved in cellular response to IL-6 in TNBC (101). IL-6 was

reported to promote transcription of HIF1A by activating STAT3

signaling, and enhancing cisplatin resistance of ovarian cancer cells

both in vitro and vivo by upregulation of HIF1A (102). As a

transcription factor, HIF-1a induces paclitaxel and cisplatin

resistance of BCA cells by increasing transcription of apoptosis-

resistant Bcl-2, as well as ATP-binding cassette (ABC) transport

proteins, P-glycoproteins (P-gps) and multidrug-resistant protein 1s

(MRP1s) (103). On the basis of the above studies, we speculate that

specific tRFs may act as new classes of regulators in cancer

chemoresistance (Figure 5A).

Meanwhile, Mo et al. demonstrated that overexpressed 5′
tiRNAVal suppresses cell proliferation and migration of BCA cells

by targeting frizzled-3 (Fz-3) (104). As a vital component of the Wnt/

b-catenin pathway, Fz-3 upregulation promotes expression of c-Myc,

while Fz-3 inhibition results in degradation of free b-catenin (104)

(105). This results in the subsequent attenuation of c-Myc expression

(Figure 5B). c-Myc has been reported to confer antiestrogen

resistance in BCA cells (106, 107).

Moreover, Huang’s team demonstrated that the 17 nucleotide-long

tRF/miR-1280 suppresses proliferation and metastasis activity by

destabilizing jagged canonical Notch ligand 2 (JAG2) (108). JAG2 is a

membrane-bound ligand, and the binding of JAG2 to notch receptors

results in proteolysis of the Notch intracellular domain, which

translocates into the nucleus and binds to the promoter of GATA1 and

GATA3 genes. GATA1 and GATA3 proteins exert transcriptional

inhibition of miR-200b. As a result, the inhibition of Notch/JAG2

signaling reduces GATA1 and GATA3 expression, upregulates miR-

200b expression, and subsequently increases expression of ZEB1 (target

gene of miR-200b) (108).While ZEB1was verified in CRC cells to inhibit

transcription of ubiquitin-specific peptidase 17 (USP17), chromodomain
B CA

FIGURE 5

Molecular mechanism underlying tRNA-derived fragment (tRFs) regulation of carcinogenesis and chemoresistance. (A) DR-0009 and tDR-7336 activate
the JAK/STAT3 pathway. Activated STAT3 promotes the biogenesis of HIF-1a. HIF-1a upregulates the expression of Bcl-2, ABC transporters, P-gp and
MRP1. (B) 5′ tiRNAVal suppresses FZD3/Wnt/b-Catenin signaling. Inhibition of Wnt signals results in the degradation of free b-Catenin followed by
downregulation of c-Myc and cyclin D1. (C) The 17nt-tRF/miR-1280 suppresses Notch/JAG2 transmembrane signal transduction by downregulating
JAG2. This then leads to transcriptional repression of Gata1 and Gata3 and upregulation of miR-200b. miR-200b downregulates ZEB1 by targeting its 3′-
UTR, followed by reduced expression of USP17, CHD1L and DUX4.
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helicase DNA-binding protein 1-like (CHD1L), and double homeobox 4

(DUX4), knockdown of ZEB1 improved CRC cell response to cisplatin

(109). For example, 17 nucleotide-long tRF/miR-1280 mediated

suppression of the Notch/JAG2 pathway and results in reduced levels

of ZEB1. This may improve cisplatin sensitivity in CRC (Figure 5C). The

regulatory mechanism that tRFs may play in chemoresistance is

complicated, and is unlikely to be limited to the mechanism

mentioned above. However, it is likely that tRFs may participate in this

elaborate network.
7 Conclusions and future outlook

According to existing literature, there are more than 500 tRNAs

used to transport amino acids during translation (110). Therefore, it is

rational to speculate that the number of existing tRF species may

exceed the current estimates. The advanced technology of RNA

sequencing contributes to the detection of diverse types of tRFs.

tRFs have been verified to play roles in regulating the proliferation,

metastasis, invasiveness and chemoresistance of cancer cells. Their

specialties in cancer tissues and plasma makes it possible for scientists

to develop novel screening, diagnostic and prognostic “liquid biopsy”

biomarkers, as well as treatment targets for cancers. Nevertheless, as

we have only scratched the surface of the biological roles of tRFs, the

availability and biological significance of the various tRFs still require

further investigation.

Firstly, the clinical applications of tRFs require in-depth research.

Because of the extensively modified residues on tRNAs (111), tRFs

inevitably contain these modifications, and may lead to inaccurate

cDNA production. Our group previously combined tRF pretreatment

and qRT-PCR to quantify tRFs (88), and we also applied hairpin

structure primers to achieve accurate cDNA synthesis. The

conventional methods used to detect tRFs mainly include high-

throughput sequencing and Northern blotting. As these methods

are not suitable for large-scale clinical testing, more advanced

methods are needed for clinical applications.

Secondly, as tRF research in the context of chemotherapy resistance

is in its infancy, it is still challenging to fully comprehend the potential

mechanisms of the role of tRFs in chemoresistance. Therefore, the depth

and breadth of research on the carcinogenesis of tRFs should be further

expanded, especially with chemotherapeutic resistance.

In conclusion, despite the limited knowledge about tRFs, it is

obvious that tRFs exist ubiquitously in all domains of organisms and

play formidable roles in different pathophysiological processes.
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However, in-depth studies are required before clinical applications

can be performed.
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