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Background: Multiple myeloma (MM) remains an essentially incurable disease.

This study aimed to establish a predictive model for estimating prognosis in

newly diagnosed MM based on gene expression profiles.

Methods: RNA-seq data were downloaded from the Multiple Myeloma Research

Foundation (MMRF) CoMMpass Study and the Genotype-Tissue Expression

(GTEx) databases. Weighted gene coexpression network analysis (WGCNA) and

protein-protein interaction network analysis were performed to identify hub

genes. Enrichment analysis was also conducted. Patients were randomly split

into training (70%) and validation (30%) datasets to build a prognostic scoring

model based on the least absolute shrinkage and selection operator (LASSO).

CIBERSORT was applied to estimate the proportion of 22 immune cells in the

microenvironment. Drug sensitivity was analyzed using the OncoPredict

algorithm.

Results: A total of 860 newly diagnosed MM samples and 444 normal

counterparts were screened as the datasets. WGCNA was applied to analyze

the RNA-seq data of 1589 intersecting genes between differentially expressed

genes and prognostic genes. The blue module in the PPI networks was analyzed

with Cytoscape, and 10 hub genes were identified using the MCODE plug-in. A

three-gene (TTK, GINS1, and NCAPG) prognostic model was constructed. This

risk model showed remarkable prognostic value. CIBERSORT assessment

revealed the risk model to be correlated with activated memory CD4 T cells,

M0 macrophages, M1 macrophages, eosinophils, activated dendritic cells, and

activated mast cells. Furthermore, based on OncoPredict, high-risk MM patients

were sensitive to eight drugs.

Conclusions: We identified and constructed a three-gene-based prognosticmodel,

which may provide new and in-depth insights into the treatment of MM patients.
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Introduction

Multiple myeloma (MM) is the second most common malignant

hematological disease, accounting for approximately 10% of all

hematologic malignancies (1). Our understanding of the biological

mechanisms underlying the development of MM has advanced greatly.

Survival in multiple myeloma has improved significantly in the last

decade (2), but MM remains an essentially incurable disease. It is

therefore of great clinical importance to find novel molecular markers

for molecular targeted treatment of MM. MM is an invariably fatal

disease with a highly heterogeneous outcome because of heterogeneous

genomes. Transcriptome and proteome maps will accelerate the

discovery of new therapeutic targets based on disease biology and the

identification of biomarkers to guide therapeutic decisions in MM.

Gene expression profiling (GEP) is a useful tool to estimate the

aggressiveness of MM and will help to make individualized

therapeutic decisions (3). Many different gene expression-based

prognostic signatures have been reported for MM in the last decade

(4–8). In 2011, the Multiple Myeloma Research Foundation (MMRF)

CoMMpass Study was initiated, which gathered information on close

to 1200 patients aged 27 to 93 years and followed up on a biannual

basis for at least 8 years (9). The main objectives of our study were to

establish universal prognostic gene signatures to enable the

stratification of newly diagnosed MM patients at higher risk based

on the MMRF CoMMpass study, which may provide new biomarkers

serving as druggable targets for the treatment of high-riskMMpatients.
Materials and methods

Data acquisition and preprocessing

We obtained the RNA-seq transcriptome data of 860 newly

diagnosed MM samples and 444 normal samples from the MMRF

CoMMpass and Genotype-Tissue Expression (GTEx) database.

Normalized read counts to these assemblies were calculated using

transcripts per kilobase million (TPM) values. Clinical information

(age, sex, ISS stage, survival time and status) was also collected from

MMRF. Then, the differentially expressed genes (DEGs) were

selected by using the “limma” package (10) with | log FC | ≥ 1

and p value < 0.05.
Identification of prognostic genes

Through univariate Cox analysis, the association between

expression levels of genes and MM patients’ overall survival (OS)

was explored. Genes with P < 0.05 based on the univariate analysis

were identified as PGs. A Venn diagram was drawn to select

intersecting genes between PGs and DEGs.
Functional enrichment analysis

Gene Ontology (GO) functional enrichment analysis was

performed using the R package “clusterProfiler” (11).
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Weighted gene co-expression network
analysis

The construction of the gene coexpression network was completed

using the “WGCNA” package (12) to explore the correlation of

intersecting genes and search for important interacting gene

modules. The correlation of gene expression profiles and module

eigengenes was represented by module membership.
Generation and analysis of a protein-
protein interaction network

A PPI network of module eigengenes was constructed using the

String database (https://www.string-db.org/). Molecular Complex

Detection (MCODE) in Cytoscape (Version 3.8.0,RRID :

SCR_003032) was applied to screen hub genes with MCODE

score >3 and number of nodes >4.
Construction and verification of the risk
model

A total of 756 patients with MM were randomly split into a

training cohort (n = 530) and a validation cohort (n = 226). LASSO

Cox performs collinearity processing on the filtered Hub genes. The

coefficient of more important survival-associated genes is determined

when the adding appropriate penalty (lambda) is the minimum. An

optimal cutoff was identified via themethod of maximally selected rank

statistics to develop a prognosis classifier for MM patients in training

cohort. The GEO database, including GSE4581 and GSE57317,

validated the prognostic model. A receiver operating characteristic

(ROC) curve was applied to evaluate the predictive performance of our

risk model compared with other models (4–6).
Construction and prediction of the
nomogram

A clinical nomogram was developed to predict OS using the

“rms” package. The calibration curve was applied to evaluate the

consistency between the nomograms. Decision curve analysis

(DCA) was used to evaluate the nomogram.
Gene set enrichment analysis (RRID :
SCR_003199)

Reactome GSEA pathway (13) interaction analysis was run to

compare the gene expression profiles of different risk groups.
Tumor-infiltrating immune cell analysis

The relative abundance of 22 TIIC subpopulations was estimated

by applying CIBERSORT (14) in the MM high- and low-risk groups.
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Predictions for drug sensitivity analysis

The R package “OncoPredict” (15) of 198 drugs was used to

predict in vivo drug responses in high-risk MM patients.
Statistical analysis

All statistical analyses were performed using packages developed in

R 4.1.1 (R Project for Statistical Computing, RRID : SCR_001905). A p

value of less than 0.05 was used for statistical significance.
Results

Identification of DEGs

A heatmap of DEGs according to gene expression in 860 MM

samples and 444 normal counterparts is shown in Figure 1A. In

total, 4672 overexpressed genes and 937 underexpressed genes were

identified (Figure 1B). GO functional enrichment analysis of DEGs

is shown in Figure 1C.
Intersecting genes between DEGs and PGs

We analyzed the correlation between the expression of each

gene and the overall survival of MM patients to find 9564 PGs. A

total of 1589 genes were classified as intersecting genes between

DEGs and PGs (Figure 1D).
Frontiers in Oncology 03
WGCNA

A total of 1589 intersecting genes were included in WGCNA.

The soft threshold of b=5 was identified to construct a scale-free

network (Figure 2A). Under the clustering criteria of

mergecutheight and minModuleSize of 0.25 and 30, respectively,

a total of 2 modules (blue and turquoise) were obtained (Figure 2B).

Module blue was the most relevant module for trait (Figures 2C, D).
PPI network construction and hub gene
selection

A total of 119 genes found in the blue module were imported

into the STRING database to obtain the interaction relationships. In

total, there were 10 hub genes from the blue modules using the

MCODE plug-in of Cytoscape for subsequent analysis.

Visualization results are shown in Figure 3A. GO analysis showed

that the hub genes were mainly involved in mitotic nuclear division,

as illustrated in Figure 3B.
Risk prediction model construction and
validation

In the training set, the dimensionality reduction of hub genes

was implemented by Lasso regression, as presented in Figures 4A, B,

and a prognostic model was constructed based on three genes (TTK,

GINS1, and NCAPG). The identified risk scoring equation is as

f o l l ow s : R i s k s c o r e = TTK×0 . 0770053593671592+
B

C

D

A

FIGURE 1

(A) Heatmap was used to visualize DEGs. (B) A volcano plot was generated to visualize DEGs. (C) GO functional enrichment analysis of DEGs. (D) A
Venn diagram was used to identify intersecting genes between PGs and DEGs.
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GINS1×1.1810301963703+ NCAPG×1.09399274693476. There

were significant differences between the survival of patients with

different risks in the training set, validation set and whole MMRF

cohort (p < 0.001, Figures 4C-E). The same results are shown in

GSE4581 cohort and GSE57317 cohort (Figures 4F, G). ROC curves

were applied for the prediction accuracy of different

models (Figure 4H).
Nomogram construction and validation

A nomogram was constructed according to the contributions of

age, sex, ISS staging, and risk status, as shown in Figure 5A. The risk
Frontiers in Oncology 04
status was evaluated by the risk scoring equation. The calibration

curve showed that the predicted probability of the nomogram was

consistent with the actual observed probability (Figure 5B). The

DCA curve demonstrated that the nomogram was clinically

useful (Figure 5C).
TIIC analysis

The differential abundance of TIICs is shown in the heatmap

(Figure 6A). Six TIICs (activated memory CD4 T cells, M0

macrophages, M1 macrophages, eosinophils, activated dendritic

cells, and activated mast cells) showed significant differences
BA

FIGURE 3

(A) Ten hub genes identified by the MCODE plug-in. (B) GO functional enrichment analysis of hub genes.
B

C D

A

FIGURE 2

WGCNA. (A) The soft threshold power of WGCNA was determined based on the scale-free fitting index R2. (B) Clustering dendrograms of genes
based on coexpression network analysis. (C) A heatmap showing the correlation between gene modules and clinical features. (D) A scatter plot of
gene significance versus the module membership in the blue module.
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between different risk groups (Figure 6B). The results also showed

that the 3 genes (TTK, GINS and NCAPG) were correlated with

TIICs (Figure 6C).
GSEA

Reactome GSEA pathway interaction analysis revealed that 22

significant pathways were dramatically changed in the high-risk

group (Figure 7), involving cancer, the immune system,

metabolism, and signal transduction.
Suitable drugs for high-risk patients

The OncoPredict algorithm showed that high-risk MM

patients were more sensitive to 8 drugs, including Nutlin-3a

(MDM2 inhibitor), SB216763 (GSK3 inhibitor), oxaliplatin

(platinum anticancer drug), olaparib (PARP inhibitor),

irinotecan (TopoI inhibitor), BMS-754807 (IGF-1R/IR
Frontiers in Oncology 05
inhibitor), AZD8055 (mTOR inhibitor), and camptothecin

(TopoI inhibitor) (Figure 8).
Discussion

An in-depth understanding of the biological mechanisms

underlying carcinogenesis in MM is vital to find strategies for

MM treatment. To the best of our knowledge, there are few

studies on the role of three genes (TTK, GINS1, and NCAPG) in

MM. TTK is an integral part of the spindle assembly checkpoint,

which is responsible for maintaining the integrity of the genome

(16). TTK is hardly detectable in normal tissues except the testis and

placenta. TTK is an indicator of poor prognosis in breast cancer

(17), hepatocellular carcinoma (18), lung cancer (19), and glioma

(20). Inhibition of TTK could induce MM cell (AMO-1) apoptosis

and deregulate the proliferation in vitro (21). GINS1 is a member of

the GINS complex that plays a vital role in DNA replication (22).

GINS1 was found to be related to poor prognosis in breast and liver

cancer (23, 24). GINS1 physically interacts with TOP2A (25), which
B CA

FIGURE 5

(A) Nomogram-based prognosis prediction model. (B) Calibration curve of the nomogram. (C) Decision curve analysis of the nomogram.
B

C D

E
F

G H

A

FIGURE 4

(A) LASSO for risk factor screening. (B) LASSO variable trajectory diagram. (C) KM curves of the training set. (D) KM curves of the validation set. (E)
KM curves of the whole MMRF CoMMpass. (F) KM curves of the GSE4581 cohort. (G) KM curves of the GSE57317 cohort. (H) ROC curve for
validation.
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might be a highly significant predictor of response to proteasome

inhibitors (26). NCAPG, a subunit of condensin I, is responsible for

the condensation or structure of mitotic chromosomes (27). The

expression level of NCAPG has been shown to be closely related to
Frontiers in Oncology 06
the prognosis of tumors (28–31). NCAPG involves in the regulation

of different signaling pathways, such as PI3K/AKT (32), NF-kB (33)

and SRC/STAT3 (34) signaling pathway. However, the effects of

GINS1 and NCAPG in MM remain unknown.
B

C

A

FIGURE 6

(A) Heatmap showing the proportion of TIICs in MM samples. (B) Violin plot showing the ratio differentiation of TIICs between MM samples with low
or high risk. (C) Correlation of the expression of three genes with the expression of TIICs.
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The CIBERSORT algorithm was used to estimate immune cell

infiltration in the bone marrow (BM) microenvironment. The

proliferation, progression, and survival of malignant plasma cells

(PCs) in MM are highly affected by the BM microenvironment

(35). BM microenvironment is highly enriched for suppressive

immune cells such as MDSCs, Tregs, pDCs, Bregs, N2 neutrophils,

M2 macrophages, which leads to effector cell dysfunction and lack

of persistence (36). We found that M2 macrophages and

regulatory T cells (Tregs) had apparent abnormal infiltration

in MM, contributing to the immune evasion, proliferation,

and drug resistance of MM cells (37). We also found that these

immunosuppressive cells are in bidirectional and multidirectional

crosstalk inhibited memory effector T-cell populations.

Eosinophils (Eos) can contribute to the proliferation of

malignant PCs in MM (38). Suzuki et al. study showed that the

median time to next treatment (TTNT) in the elevated eosinophil

group was significantly longer than that in the nonelevated group

(40.3 months vs 8.4 months; P = .017) in relapsed or refractory

myeloma patients treated with lenalidomide (39). Mast cell (MC)

accumulation correlates with increased neovascularization in MM

(40). Raised IL-6 levels can be caused by the presence of MC (41),

and it has been identified as the key growth and survival factor for

myeloma cells (42). Tumor lesions in MM are highly infiltrated by

dend r i t i c c e l l s ( 4 3 ) . TTK cou ld a ff e c t t h e t umor

microenvironment (TME) by affecting the number of immune

cells (44). No literature is available on the role of GINS1 and

NCAPG in the TME.
Frontiers in Oncology 07
Reactome GSEA pathway interaction analysis revealed that

several pathways were dramatically changed in the high-risk

myeloma patients. The IL-21 signaling pathway in myeloma cells

involves phosphorylation of Erk1/2, Jak1, and Stat3 (45). The

upregulation of chaperone-mediated autophagy (CMA) is a

potential mechanism of resistance to bortezomib (46). The

pentose phosphate pathway protects against oxidative stress-

mediated late apoptosis/necrosis of multiple myeloma cells (47).

Our study showed that 8 drugs were effective in high-risk

MM patients. Nutlin-3 can disrupt the p53-MDM2 interaction

and activate p53. Nutlin-3 with bortezomib may increase clinical

responsiveness to bortezomib-based therapy (48). The chemical

inhibitor SB216763 leads to a reduction in MM cell growth and

augments the response of MM cells to the cytotoxic effects of

bortezomib (49). Oxaliplatin triggers bona fide “immunogenic

cell death” (ICD), as it provokes a premortem endoplasmic

reticulum stress response (50), so it can be used as an inducer

of ICD and as a modulator of the TME (51). Drugs that induce

excessive amounts of ER stress, such as proteasome inhibitors

and novel ER stressors, are predicted to be very effective in

targeting MM cells (52). The PARP1 inhibitor olaparib impaired

MM cell viability in vitro and was effective against MM in vivo

xenografts (53). Efficacy needs to be further evaluated in

clinical trials.

Certainly, our research still has some limitations. First, only

transcriptome data were included for the MM prognosis study.

Second, some clinical data are missing, such as cytogenetic profile
FIGURE 7

GSEA results showed that the reactome pathway was enriched in MM samples from the high-risk group.
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and type of measurable disease. Third, the carcinogenic mechanism

of the three genes in MM warrants intensive study. Fourth, we used

algorithm analyses to predict drug sensitivity but did not verify it.

In conclusion, our findings may improve the understanding of

the factors that influence development and prognosis in MM, which

may present a new strategy.
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