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Comprehensive analysis of
autophagy-related clusters and
individual risk model for
immunotherapy response
prediction in gastric cancer

Yanxin Yao †, Xin Hu †, Junfu Ma †, Liuxing Wu, Ye Tian,
Kexin Chen and Ben Liu*

Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of
Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and
Hospital, Tianjin Medical University, Tianjin, China
Introduction: Autophagy can be triggered by oxidative stress and is a double-edged

sword involved in the progression of multiple malignancies. However, the precise

roles of autophagy on immune response in gastric cancer (GC) remain clarified.

Methods: We endeavor to explore the novel autophagy-related clusters and

develop a multi-gene signature for predicting the prognosis and the response to

immunotherapy in GC. A total of 1505 patients from eight GC cohorts were

categorized into two subtypes using consensus clustering. We compare the

differences between clusters by the multi-omics approach. Cox and LASSO

regression models were used to construct the prognostic signature.

Results: Two distinct clusters were identified. Compared with cluster 2, the patients

in cluster 1 have favorable survival outcomes and lower scores for epithelial-

mesenchymal transition (EMT). The two subtypes are further characterized by high

heterogeneity concerning immune cell infiltration, somatic mutation pattern, and

pathway activity by gene set enrichment analysis (GSEA).We obtained 21 autophagy-

related differential expression genes (DEGs), in which PTK6 amplification and BCL2/

CDKN2A deletion were highly prevalent. The four-gene (PEA15, HSPB8, BNIP3, and

GABARAPL1) risk signature was further constructed with good predictive

performance and validated in 3 independent datasets including our local Tianjin

cohort. The risk scorewas proved to be independent prognostic factor. A prognostic

nomogram showed robust validity of GC survival. The risk score was significantly

associated with immune cell infiltration status, tumor mutation burden (TMB),

microsatellite instability (MSI), and immune checkpoint molecules. Furthermore,

the model was efficient for predicting the response to tumor-targeted agent and

immunotherapy and verified by the IMvigor210 cohort. This model is also capable of

discriminating between low and high-risk patients receiving chemotherapy.

Conclusion: Altogether, our exploratory research on the landscape of autophagy-

related patterns may shed light on individualized therapies and prognosis in GC.

KEYWORDS

gastric cancer, autophagy-related genes, immunotherapy, prognostic signature,
oxidative stress
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Introduction

Being the fifth most common cancer globally, GC has been one

of the leading causes of cancer death (1). In 2018, the mortality

rate of gastric cancer was 8.2% because it is usually at an advanced

stage when diagnosed (2). Surgery, chemotherapy, and chemo-

radiotherapy are effective methods for gastric cancer (3, 4).

Currently, molecular targeted therapy and immunotherapy are

also increasingly highlighted (5). Lauren classification and WHO

classification, the current histological classification methods of

GC, sometimes affect the choice of endoscopy or surgery. Still,

they are not enough to guide the proper treatment of individual

patients (6, 7). GC is classified into four different molecular

subtypes in Cancer Genome Atlas (TCGA) (8), among four

molecular subtypes, Epstein-Barr virus-positive (EBV+) and

microsatellite instable (MSI) subtypes play a certain role in the

prognosis and treatment response of GC. For drug therapy, MSI/

dMMR status and HER2 (9, 10) are strongly predictive biomarkers

rather than molecular subtypes. Even so, the first-line drug targets

HER2 receptor shows limited utility against GC (11). The high

heterogeneity of gastric cancer has hindered the development of

its treatment. Exploring new pathways and targets for molecular

targeted therapy remains a trend in the molecular treatment of

patients with GC.

Autophagy is a form of programmed cell death (12), playing a

crucial role in the initiation and development of GC (13). Closely

linked to the effect of tumors, autophagy responds to different stress,

such as nutrient deprivation, hypoxia, and various cytotoxic insults

(14). Oxidative stress is caused by the continuous elevation of

reactive oxygen species(ROS), and ROS formation is essential for

autophagy (15). When the tumor is in the stage of initiation and

early steps of progression, autophagy suppresses tumor progression.

However, autophagy always promotes tumor survival in advanced

cancers, as autophagy helps tumors deal with a hard environment

like hypoxia (16). Autophagy is bidirectionally related to immune

checkpoint molecules (17, 18), EMT (19), MSI (20), and TMB (21),

credible immunotherapy biomarkers for cancers (22, 23). Thus, it is

a double-edged sword in the immunotherapy of GC. Autophagy

provides targets of immunotherapy for regulating immune response

by influencing cells and the release of cytokines. Some research has

shown that conventional cancer treatment, including

immunotherapy, combined with autophagy-based inducer or

inhibitor, may be more effective (24). The mechanism of

autophagy in the development of GC is relatively clear. However,

due to the double-sided effect of autophagy, the role of autophagy in

the prognosis of patients with GC still needs further exploration. It

is necessary to analyze the function of autophagy-related genes in

gastric cancer and its contribution to prognosis.

In the present study, we collected autophagy-related genes and

divided patients with GC from TCGA and GEO database into two

subtypes. A prognosis signature of gastric cancer patients has been

established with four prognosis-related genes selected from 21

differentially expressed genes (DEGs).
Frontiers in Oncology 02
Materials and methods

Gastric cancer dataset source
and preprocessing

The RNA-Seq profile and clinical information of GC patients

were downloaded from the TCGA database (http://www.ca

ncergenome.nih.gov/), and the Gene Expression Omnibus (GEO)

(RRID : SCR_005012) database (https://www.ncbi.nlm.nih.gov/geo/

). Tianjin cohort, which included 90 samples, served as the

validation set (25, 26). Batch effects of 6 cohorts enrolled were

removed by sva R package. Sample sizes were not chosen using

power analysis, as effect sizes could not be pre-determined.
DEGs screening

Consensus clustering analysis was used to classify GC patients

into subtypes carrying out by the Consensus ClusterPlus R package.

Differentially expressed genes (DEGs) between different subtypes

were selected by limma R package(LIMMA, RRID : SCR_010943),

with|log2 fold change (FC)|>0.5, and P<0.05.
Construction of prognostic signature and
risk score calculation

Univariate Cox regression analysis and LASSO regression were

used based on selected DEGs, and P<0.05 was considered confident

in statistics. The risk score was built by selected prognostic genes,

calculated as follows:

riskscore =o
n

i=1
Coefi � XI

this equation, the Coef means the gene coefficient, and X means

the gene expression level. All sample enrolled in this study was

divided into high-risk and low-risk groups by the median risk

score value.
Analysis of subtypes biological features and
evaluation of prognostic signature

Details were available in Supplements.
Statistical analysis

R software 4.1.0 was applied to conduct all statistical analyses of

this study. The Pearson correlation test analyzed the correlation

between molecules. Verified Two-tailed p<0.05 was regarded

statistically significant. The analysis required no randomization

or blinding.
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Results

Two clusters are identified based on
autophagy-related genes

A brief flow chart showed the process of contradistinction

between two clusters and building prognostic signature (Figure 1).

The batch effect among all cohorts was removed before analysis

(Figures S1A, B). A total of 1401 gastric cancer samples were

enrolled in this analysis. Among them, 1311 GC patients from

TCGA and GEO were used as a training set. Moreover, 90 patients

from the Tianjin cohort were used as a validation set. A total of 222

autophagy-related genes were acquired. Only genes common to all

studies were included. The clinical information of the six cohorts

enrolled (Table S1). According to the expression of autophagy-

related genes, we performed a consensus clustering analysis of GC

patients from the training set, and optimal k was 2, which was

identified from the range between 2 and 9 with optimal clustering

stability (Figures 2B, C, S2A, B). The Consensus clustering results

suggested different gene expression patterns in two clusters

(Figure 2A). All training set samples were divided into cluster 1

(n=849) and cluster 2(n=462). Kaplan–Meier survival curves

showed the OS was significantly poorer in cluster 1 than those in

cluster 2(p = 0.0081, HR = 1.2445, 95% CI: 1.0580 1.4637),

(Figure 2D). A schematic diagram was applied to briefly

show autophagy ’s dual role in cancer progression and

immunotherapy (Figure 2E)
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The characteristics are quite distinct
between the two clusters

GSVA analysis was conducted to explore the characteristics

between cluster 1 and cluster 2. The results showed two clusters

enriched in differentially expressed pathways: cluster 1 enriched in

MYC target gene sets (MYC_TARGETS_V2), E2F target gene sets

(E2F_TARGETS) which are related with cell circle, and Gene sets

involved in glycolysis and gluconeogenesis (GLYCOLYSIS), cluster 2

enriched in Gene sets down-regulated in response to ultraviolet (UV)

radiation(UV_RESPONSE_DN), Gene sets defining epithelial-

mesenchymal transition (EPITHELIAL_MESENCHYMAL_

TRANSITION), and gene sets involved in the development of

skeletal muscle (MYOGENESIS)(Figure 3A). A total of 28 kinds of

immune cells were quantified between two clusters, such as B cells, T

cells, NK cells, and macrophages (27). And a heatmap was drawn

with the project of samples. Heatmap showed that the immune cell

infiltration level of cluster 1 was lower than cluster 2 (Figure 3B).

Further analysis revealed that most of the 28 immune-related terms

between cluster 1 and cluster 2 were very highly significant differences

(P<0.001) (Figure 3C). The EMT scores, which estimated the degree

of epithelial-mesenchymal transition, had statistically significant

differences between the two clusters(P<0.001) (Figure 3D). The

different frequency and types of mutations in genes between two

clusters were shown in these waterfall plots. Somatic mutations

analysis suggested that the TTN, TP53, and MUC16 are the highest

mutation frequency both in cluster 1 and cluster 2. Though the top
FIGURE 1

The flow chart of the study design for autophagy-related subtyping and risk model construction.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1105778
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yao et al. 10.3389/fonc.2023.1105778
three of the mutant genes in the two clusters were the same, the

fourth and fifth ones were not inconsistent: cluster 1 are SYNE1 and

LRP18, as cluster 2 are ARID1A and SYNE1(Figures 4A, B). Next, the

COSMIC mutation signature analysis showed two clusters associated

with defective DNA mismatch repair (signature 6). The results

implied that mutation of cluster 1 was associated with recurrent

POLE somatic mutations (signature 10), and cluster 2 was related to

the failure of DNA double-strand break-repair and endogenous

mutational process (signature 17, signature 3 and signature 1)

(Figures 4C, D).
Twenty-one autophagy-related DEGs are
selected, and the four-gene prognostic
signature is constructed

With limma R package, 203 genes were differentially expressed,

and 21 DEGs (|log 2 FC|>0.5, P<0.05) were selected from all

autophagy-related genes, including 14 up-regulated and 7 down-

regulated genes (Figure 5A). The results showed that all of the 21

DEGs had CNV alteration, including both copy number amplifications

(PTK6, DLC1and EIF4EBP1, etc.) and losses (BCL2, CDKN2A, and

TUSC1, etc.) (Figure 5B). By pathway enrichment analysis of 203

differential genes through Metascape, autophagy, oxidative stress, and

lifespan-related pathways were significantly enriched between subtypes

(Figure 5C). Interestingly, the results indicated that pathways related to

oxidative stress were highly enriched, such as response to oxidative

stress, intrinsic apoptotic signaling pathway, and cell death in response

to oxidative stress (Figure 5D).
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Prognosis-related genes were selected by Univariate Cox

regression and LASSO regression to constitute prognosis

signature (Figure 5E). The risk score was calculated as follows:

riskscore = 0:0877� expPEA15 + 0:0275� expHSPB8 + 0:0053

� expBNIP3 + 0:0053� expGABARAPL1

We calculated the 4-autophagy-related genes signature risk

score for each patient in the training set and ranked them with

their risk scores. Then, patients were divided into high- (n=655) and

low-risk group(n=656) by the median risk score (Table S2). Patients

in the low-risk group had significantly longer OS than those in the

high-risk group (log-rank test P=2.39346×10-5)(Figure 5F, left

panel). A time-dependent ROC curve was used to predicting the

1-, 3-, 5‐year survival. The area under the curve (AUC) value of the

ROC curve reflected the quality of the ROC curve. In the training

set, 1-year AUC = 0.548, 3-year AUC = 0.569, and 5-year AUC =

0.585 (Figure 5F, right panel). In the external data set, the

distribution of survival time indicated that the high-risk group

had a better prognosis. The result of K-M survival analysis indicated

OS was shorter in the high-risk group than in the low-risk group

(log-rank test P= 0.0082) (Figure 5G, left panel). In the validation

set, the 1‐year AUC was 0.679, the 3‐year AUC was 0.657, and the

5-year AUG was 0.702(Figure 5G, right panel). Beyond this, two

external validations datasets (GSE13861 and GSE28541) were used

to verify our method. The two external validation results suggested

that patients identified as high risk had a poorer prognosis than

patients identified as low risk (GSE13861, P =0.0041; GSE28541, P =

0.0056) (Figure 5H, left panel, Figure 5I, left panel). Furthermore,
A B D

E

C

FIGURE 2

Consensus clustering indicates that 2 clusters are the greatest number of stable clusters across clustering techniques. (A) Heatmap of gene
expression with the project, stage, gender, OS, and age between cluster 1 and 2. (B) Consensus clustering cumulative distribution function (CDF) for
k = 2 to k = 9. (C) Relative change in area under CDF curve according to various k values. (D) Survival analysis of Cluster 1 and Cluster 2 in the
training set. (E) Schematic diagram for the molecular machinery of autophagy and the dual role of autophagy in cancer progression.
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the 5-year ROC curve was 0.68 and 0.723, respectively (Figure 5H,

right panel, Figure 5I, right panel).
The constructed risk score is an
independent prognosis factor for GC

By multivariate Cox regression analysis, the risk score was the

independent prognosis factor for gastric cancer (P=0.029,

HR=3.180, 95%CI 1.125~8.987) (Figure 6A). The risk score was

significantly associated with clinicopathological factors, including

age (Wilcoxon test, P= 0.045) and stage (Wilcoxon test, P=0.038)

(Figures 6B, C). Nomogram, which calculated scores for every GC

patient, was applied to estimate the prognosis of gastric cancer

patients visually and accurately. The nomogram was established

using the training set, which can predict 3- and 5-year OS based on

the multivariate Cox regression model (Figure 6D). The risk score,
Frontiers in Oncology 05
age, gender, and stage were parameters included in the nomogram.

The concordance index for the nomogram was 0.6771(95%CI,

0.6456 to 0.7088). The calibration curves of 3- and5-year

prediction showed good consistency compared with the ideal

model, indicating that the nomogram was stable in the prognosis

of GC patients (Figure 6E).
The low-risk group is more suitable to
receive immunotherapy

The present research revealed a significant association between

risk score and infiltration of 25 immune cell types. Of these, 21

immune cells were positively related to risk score (Figure 7A), such

as plasmacytoid dendritic cell (Spearman r =0.63, P<0.0001). In

comparison, four immune cells showed a negative correlation with

the risk score, such as activated CD4 T cell (Spearman r = -0.28,
A B

DC

FIGURE 3

Molecular and immune characteristic analysis between two autophagy subtypes. (A) Differential expression of genes in GC patients between cluster 1
and cluster 2 was analyzed by GSVA. (B) Heatmap of the two clusters based on autophagy-related genes expression for 21 immune terms. (C) Box
plots to visualize significantly different immune cells between two clusters. (D) Box plots shows that EMT score of cluster 1 is higher than cluster 2
(P<0.001) (*P< 0.05; ***P< 0.001; NS or ns, P > 0.05).
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P<0.0001) (Figures 7B, C). The expression of immune checkpoint

molecules was investigated between high-risk and low-risk groups.

Most of the immune checkpoint molecules between the high-risk

and low-risk groups, including IAP, ICP, MHC, were expressed

differently. The results showed that almost all expression of immune

checkpoint molecules in the high-risk group was higher than the

low-risk group. Among these immune checkpoint molecules,

CTLA-4, one of the most critical immune checkpoint molecules,

played an important role in immunotherapy. The expression of

CTLA-4 was statistically different between high and low-risk

groups. (P<0.05) (Figures 7D–F).

Furthermore, we investigated the difference of somatic

mutations between the high- and low-risk groups in the TCGA

GC dataset. The same tendencies were observed when comparing

non-synonymous and synonymous mutation frequency between

the low- and the high-risk groups (Figure 7G). Mutant distribution

of the top 13 genes with the highest mutation frequency between

high- and low-risk groups were showed in a waterfall plot

(Figure 7H), including PLEC, SACS, KMT2C, RYR1, PCLO,

KMT2D, FAT4, MUC16, OBSCN, ANK3, SYNE1, CSMD3 and

LAMA1(Figure 7H, Table S3). Interestingly, we observed significant

co-occurrences of mutations according to pairwise comparisons in

these 13 mutated genes. (Figure 7I).
Frontiers in Oncology 06
Oxidative stress was one of features of tumor microenvironment,

which influenced immune cell functions (28). We compared the

different expressions of oxidative stress-related pathways between the

high- and low-risk groups. The differentially expressed pathway

focused on several oxidative stress-related pathways, such as

modulation of the frequency, rate or extent of transcription from

an RNA polymerase II promoter under oxidative stress

(GOBP_REGULATION OF_TRANSCRIPTION_FROM_RNA_

P O L YM E R A S E _ I I _ P R OMO T E R _ I N _ R E S P ON S E

_TO_OXIDATIVE_STRESS, P= 0.039). The protein encoded by

prognosis genes and related to differentially expressed pathways

was included in the construction of protein−protein interaction

(PPI). The HIF-1a, presenting the highest number of interactions,

and the prognosis gene BNIP3 play an important role in oxidative

stress and autophagy (Figure 7J).

Then, some anti-tumor drugs were collected (the information of

drug and drug targets were obtained from DurgBank), whose

targets were linked with oxidative stress and autophagy. The

interactions between prognostic genes and target protein-coding

genes are apparent (Table S4). For instance, ERBB2, the target of

Lapatinib, was negatively associated with the prognostic risk genes,

including HSPB8 (P=7.155×10-19), PEA15(P=1.385×10-10) and

GABARAPL1 (P=1.705×10-24). ATPA1, the target of Etacrynic
A

B D

C

FIGURE 4

The mutation landscapes of cluster 1 and cluster 2. (A-B) The waterfall plot illustrates the single most damaging variant found per gene and per
sample in TCGA, with colors indicating mutation types of cluster 1(A) and cluster 2 (B). (C) Mutation signature of cluster 1 is focused on signature 6
and 10. (D) Mutation signature of cluster 2 is focused on signature17, 3, 6 and 1.
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Acid, was positively associated with prognostic risk genes, including

GABARAPL1(P=5.267×10-13), HSPB8(P=4.102×10-18), and PEA15

(P=4.611×10-10) (Figure 8A). These results indicated that the effects

of oxidative stress-related and autophagy-related drugs might

interact with prognostic genes by target protein-coding genes.

The results suggested that the prognostic genes are highly related

to therapeutic targets, and the four-gene signature may play an

important role in immunotherapy and targeted therapy.

The indicators of common biomarkers for predicting the

immunotherapy response were also calculated. TMB score of the
Frontiers in Oncology 07
high-risk group was lower than the low-risk group (Wilcoxon test,

P= 1.921×10-5) (Figure 8B). Analysis of microsatellite status

suggested that MSI of the low-risk group was higher than the

high-risk group (Wilcoxon test, P= 2.725×10-5) (Figure 8C). Finally,

the IMvigor210 cohort was applied to predict the results of two

groups if they accepted immunotherapy. The patients were divided

into a high-risk (n=149) and low-risk group(n=149) by the median

of their risk score. The results also showed that the high-risk group

had a longer OS than the low-risk group (log-rank test P= 0.0027),

which preferred to receive immunotherapy (Figure 8D). The Chi-
A B

D
E

F G

H I

C

FIGURE 5

Gene features of DEGs and survival analysis based on the risk model in training and validation datasets. (A) Volcano plot of differential gene
expression analysis. (B) Circular map of CNV regions in DEGs(top), and CNV frequency of 21 DEGs(bottom). (C) Genetic functional enrichment
analysis, and the pathways related to oxidative stress are colored red. (D) GO enrichment analysis of oxidative stress-related pathways. (E) LASSO
deviance profiles, and LASSO coefficient profiles. (F–I) Kaplan-Meier survival curves and 1-,3- and 5-year ROC curves for patients between high- and
low-risk groups in the training set (n=1311, P<0.05), Tianjin validation set (n=90, P<0.05), GSE13861validation set (n=64, P=0.0041) and GSE28541
validation set (n=40, P=0.0056).
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square test results showed that the immune response of the high-

risk group is higher than the low-risk group (P=0.0384) (Figure 8E).
The sensitivity of high-risk and low-risk
groups to chemotherapy drugs is different

Next, chemotherapy responses were compared between low-

and high-risk groups. In this study, five drugs that affected GC

treatment were selected to explore the sensitivity of high and low-

risk groups to different chemotherapeutic agents. Drug analysis by

pRRophetic R package showed that the low-risk group was more

sensitive to Cisplatin (Wilcoxon test, P= 3.8×10-6), FH535

(Wilcoxon test, P= 1.1e−05), and Rapamycin (Wilcoxon test, P=

0.027) (Figure 8F). In contrast, the high-risk group was more

sensitive to Paclitaxel (Wilcoxon test, P=1.2×10-14) and Sorafenib

(Wilcoxon test, P<0.0001) (Figure 8F). To some extent, these results
Frontiers in Oncology 08
suggested that the risk score of GC patients could influence the

clinical medication regimen.
Discussion

Overall, we confirmed that there were remarkable differences

between clusters of GC based on autophagy-related genes. Then a

prognostic signature was constructed based on four autophagy-

related genes, and the risk score was calculated by signature, an

independent prognostic factor for patients with GC.

Firstly, the clusters based on autophagy-related genes had

different molecular characteristics. We found the cell growth and

metabolism pathway were enriched in cluster 1, while the EMT

pathway was be observed in cluster 2. MYC is a core of the

oncogenic process (29) and can promote tumorigenesis with its

regulation of transcription (30). E2F plays a crucial role in the CDK-
A B

D

E

C

FIGURE 6

Multivariate survival analysis and nomogram construction for predicting overall survival combining the risk signature with clinicopathological
characteristics. (A) Forest plot of hazard ratios from the multivariable Cox proportional hazard regression model suggests that risk score is an
independent risk factor. (B) Box plot of risk score levels grouped by age (P<0.05). (C) Box plot of risk score levels grouped by stage (P<0.05). (D)
Nomogram predicting overall survival probability for GC patients. (E) Calibration of the nomogram for 3- and 5-year.
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RB-E2F axis, the core transcriptional machinery to drive cell cycle

progression (31). E2F2, a member of the E2F family, is a regulator in

PI3K/Akt/mTOR pathway, which is strongly associated with

autophagy for it inhibits autophagy in GC cells when

overexpressed (31). Autophagy is closely connected with the

nutrient supply of tumors (32), and PKM2, a critical kinase of

glycolysis, promotes cell migration and inhibits autophagy

contributing to the malignant development of gastric cancer (33).

EMT improves the aggressiveness of cancer cells (34), which
Frontiers in Oncology 09
influences cancer progress by interaction with autophagy (19).

The EMT score also shows the same results between the two

clusters, as cluster 2 is more enriched in the EMT pathway. These

results provide initial evidence that GC cells show different

characteristics when the expression of autophagy-related genes in

GC is different in the two clusters. The results of GSVA can hint

that the pathogenesis of GC is related to autophagy-related genes

expressing to some extent. This work may provide a basis for

building new molecular typing methods in GC patients.
A B

D

E

F

G
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C

FIGURE 7

Immune-related characteristics analysis between high-risk group and low-risk group. (A) Correlation between immune infiltration pattern and risk
score. (B) Plasmacytoid dendritic cell expression positively correlated with risk score in GC patients. (C) Activated CD4 T cell expression negatively
correlated with risk score in GC patients. (D–F) The differential expression of immune checkpoint molecules between high-and low-risk groups. (*,
P< 0.05; **, P< 0.01; ***, P< 0.001; NS or ns, P > 0.05) (G) Association with all mutation counts, non-synonymous mutation counts, synonymous
mutation counts in different risk groups. (H) Forest plot of genes mutation in GC patients of the low- and the high-risk groups. (I) Interaction effect
of genes mutating differentially between low- and high-risk groups. (J) PPI network for protein of differentially expressed pathways and differential
expression genes, the size of circle means the degree of each Protein.
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In addition, we find several autophagy regulators with superior

prognostic value, such as PEA-15, BNIP3, GABARAPL1, and

HSPB8. These autophagy-related genes are associated with cancer

initiation and progression in many aspects. PEA-15, known as

phosphoprotein enriched in diabetes (PED) (35), is connected with

cell survival and glucose metabolism (36). PEA-15 is related to the

drug resistance of cisplatin, the first-line chemotherapeutic drug

gastric cancer (37). BNIP3 is one of the mitophagy receptors playing

a suppressing role in breast cancer (38). In gastric cancer, tumor

cells partly occur aberrant methylation of BNIP3 but not in adjacent

normal tissues, which indicates that inactivation of BNIP3 would

promote gastric cancer progress (39). Hypoxia provokes oxidative

stress, as it is accompanied by increasing ROS production (40).

HIF-1a is the principal regulator of hypoxia (41), and is also led to

autophagy activation with BNIP3 in breast cancer (42). Knockdown

of GABARAPL1, an early estrogen-regulated gene belonging to the

GABARAP family (43), inhibits AR-positive prostate cancer

growth. Correspondingly, GABARAPL1 has been reported to

promote tumor growth by increasing FL-AR/AR-V transcription

activity (44). HSPB8 is one of the heat shock protein families. In

breast cancer, E2 could activate HSPB8, which promotes breast

tumor cells growth by MAPK Signaling (45).

In the current research, the four prognostic autophagy-related

genes are applied to the constructed prognostic signature, and the

risk scores of patients with GC are calculated with this signature.

Previously, there are some prognostic signatures based on GC’s

autophagy-related genes (46), such as autophagy-clinical prognostic
Frontiers in Oncology 10
index (47) and a six-gene-based prognostic model (48). The

signatures above only reveal a predictive power, while our four-

gene prognostic signature can predict the prognosis, biomarkers in

immunotherapy, and therapy response. The signature we

constructed provides more comprehensive prognostic information

for patients with GC. From this study, a risk score based on

autophagy-genes is one of the prognostic factors of GC. The risk

score is associated with clinical-pathological factors, including age

and stage. Autophagy decreases with age, and age-related diseases

are induced by impaired autophagy predisposes (49). And the stage

is a major factor in treatment method determining and patient

prognosis predicting (50). So, the risk score was proven to be a

robust model for GC patient outcome prediction. Nomogram is a

usual method to estimate prognosis in oncology, which is more

exact and user-friendly than conventional stage (51). Nomogram is

widely used in the prognosis of GC, such as predicting gastric

cancer recurrence by biomarker gene expression (52), predict the

risk of peritoneal metastasis in GC with serosal invasion after

radical surgery (53), and so on. The nomogram integrated risk

score with various clinical parameters in our study, intuitively

highlighting their weight in GC prognosis.

Furthermore, the risk score of patients with GC has potential

application to predicting therapy response. Now, immunotherapy is

applied in gastric cancer treatment, especially late-stage metastatic

gastric cancer (9). Plasmacytoid dendritic cells, positively correlated

with the presently constructed risk score, contribute to tumor

immunologic tolerance rather than anti-effect (54). The activated
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FIGURE 8

Evaluation of the potential Immunotherapy benefit and prediction chemotherapy sensitivity of different risk groups. (A) The interactions between
drugs, drug targets and prognostic autophagy-related genes. (B) The association between risk score and TMB. (C) MSI status differences between
high-and low-risk groups. MSI, microsatellite instability; MSI-L, low-level MSI; MSI-H, high-level MSI; MSS, stable MSI. (D) Kaplan-Meier survival
curves for patients between high- and low-risk groups in IMvigor210 cohort (n=298, P= 0.0027). (E) Differences in immunotherapy response
between high - and low-risk groups in IMvigor210 cohort CR/PR: response to immunotherapy SD/PD: no response to immunotherapy. (F)
Chemotherapy sensitivity of different risk groups: from left to right are Cisplatin, FH535, Rapamycin, Paclitaxe and Sorafenib.
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CD4 T cell is negatively correlated with the risk score and may

facilitate cancer immunotherapy by improving cytotoxic T cell

response (55). Immune checkpoints molecules, including anti-

cytotoxic T lymphocyte antigen-4 (CTLA-4), anti-programmed

cell death-1 (PD-1), and anti-programmed cell death ligand-1

(PD-L1), are the thoroughly investigated class of immunotherapy

(56, 57). TMB and MSI, independent of expression of PD-L1, are

widely applied biomarkers in immunotherapy of cancer (58). GC

patients with high MSI characteristic shows positive outcoming in

most research regardless the disease stage (20). Compared with low

TMB patients, high TMB patients show significantly better

responses and longer survival advantage in many cancers such as

non-small-cell lung cancers (59). High TMB may be a predictive

marker of advanced gastric cancer received toripalimab (one type of

immunotherapy drug) (60). Risk score has a relatively good

correlation with a prognostic indicator of response to

immunotherapy above. It can be a comprehensive indicator for

decisions regarding immunotherapy in GC patients. The result of

IMvigor210 cohort suggest that high-risk group has better

prognosis with immunotherapy, that is in contrast to expectations

in training and validation cohorts. Cancers are heterogeneous, even

so, risk score absolutely has the ability to divide cancer patients into

high-and low-risk groups with survival significance statistically.

Chemotherapy has been an important part of the treatment of

gastric cancer. Based on the grouping in risk score, the sensitivity of

drugs between the two groups is different. Cisplatin and paclitaxel,

the drugs enrolled in this study, are first-line chemotherapy of

gastric cancer, and they are usually on behalf of varying treatment

projects. In the Chinese society of Clinical Oncology (CSCO), for

metastatic gastric cancer, cisplatin is suitable for HER2 positive

patients, and paclitaxel is available for HER2 negative patients (9).

Besides above, Sorafenib plays an anti-tumor role by inhibiting

gastric cell growth and induces apoptosis combined with cisplatin

(61). FH535, the small molecule inhibitor of canonical wnt signaling

(62), can inhibit tumor proliferation and moderate invasion of

gastric cancer (63). The specific mTOR inhibitor, Rapamycin, can

treat gastric cancer combined with other chemotherapy drugs (64).

Interestingly, mTOR is a pharmacologic target of autophagy (65),

and the exploration of chemotherapy drugs of gastric cancer can

continue from autophagy by mTOR. Above all, the risk score may

be a direction to estimate the risk of GC patients and ensure proper

clinical medication for patients.

Despite the strengths associated with our study, there were also

some limitations. We utilized several large GC datasets containing

over 1000 samples. However, more GC samples are required to

verify the reliability of our conclusion. Another drawback is that the

cohort of immunotherapy-therapied GC patients is not available

now. We look forward to obtaining more immunotherapy clinical

cohorts with GC to verify the risk score in an actual treatment

environment. It might enable the selection of appropriate patients

for individual f therapeutic regimens. Finally, the function of the

autophagy-related genes requires more experimental verification.

In conclusion, these findings have significant implications for

the understanding of autophagy-related genes in GC. The risk score

based on autophagy-related genes could serve as a potential

prognostic biomarker. It will be significant for guiding therapeutic
Frontiers in Oncology 11
strategies for GC for there is a prominent association between risk

score and treatment response.
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