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The progress of radiomics in
thyroid nodules
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Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
Due to the development of Artificial Intelligence (AI), Machine Learning (ML), and

the improvement of medical imaging equipment, radiomics has become a

popular research in recent years. Radiomics can obtain various quantitative

features from medical images, highlighting the invisible image traits and

significantly enhancing the ability of medical imaging identification and

prediction. The literature indicates that radiomics has a high potential in

identifying and predicting thyroid nodules. So in this article, we explain the

development, definition, and workflow of radiomics. And then, we summarize

the applications of various imaging techniques in identifying benign and

malignant thyroid nodules, predicting invasiveness and metastasis of thyroid

lymph nodes, forecasting the prognosis of thyroid malignancies, and some new

advances in molecular level and deep learning. The shortcomings of this

technique are also summarized, and future development prospects are provided.
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1 Introduction

The epidemiological characteristics and clinical examination methods of thyroid nodules:

Thyroid nodules are widespread clinically, and the incidence continues to rise worldwide,

with an autopsy study estimating that 50% to 60% of adults may have thyroid nodules (1, 2).

High-resolution ultrasound (US) can detect thyroid nodules in 19%- 68% (3) of randomly

selected individuals, of which thyroid cancer occurs in 7% to 15% (4). Thyroid cancer is the

most common endocrine malignancy in the United States (5) and the fifth most common

cancer among women (6). The benign thyroid nodules without surgical indications generally

do not require special treatment. In contrast, malignant thyroid nodules should be elective

surgical treatment once diagnosed, and neck dissection should be performed if lymph node

metastases are present. Some patients need to be treated with Iodine-131 nuclide after the

operation (7) and predict the prognosis. Papillary thyroid carcinoma (PTC) is the most

common pathological type of thyroid cancer. It usually has a good prognosis, but relapse

patients have a poor prognosis. About 10%-15% of PTC will relapse, and recurrent PTC has

aggressive characteristics such as extra-thyroid extension (ETE), invasive cell subtypes, lateral

neck lymphatic metastasis, resistance to therapy, and distant metastases (8). The challenge for

clinicians is to balance treatment approaches so that patients with low-risk or benign thyroid

nodules are not over-treated, while patients with high-risk or malignant thyroid nodules need
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more aggressive therapies. Therefore, the differential diagnosis of

thyroid nodules and the risk stratification are essential and helpful for

the subsequent individualized treatment.

Currently, ultrasound(US), computed tomography (CT),

magnetic resonance imaging(MRI), and nuclear medicine imaging,

such as positron emission tomography/computed tomography (PET/

CT), are commonly used in the clinic to evaluate thyroid nodules (9).

They are mainly used to assess the benignity and malignancy of

nodules, the degree of invasion by adjacent tissues, and lymph node

metastasis (10). Medical imaging has become routine clinical practice

to provide information about the characteristics of human tissues in a

non-invasive and repeatable manner (11). However, current risk

stratification for diagnostic imaging of thyroid nodules is subjective.

It relies heavily on the clinician’s empirical judgment, and there is a

large amount of untappeddigital information in various images.Many

researchers have attempted to develop non-subjective methods,

including artificial intelligence models, to mine previously unused

data in pictures to help solve this problem.
2 Radiomics

2.1 The development of radiomics

The emergence of radiomics cannot be separated from the

development of artificial intelligence and machine learning.

Artificial intelligence has been developed rapidly with the rapid

progress of computer hardware computing power and the

continuous iteration of new algorithms. Machine learning, as an

essential subset of artificial intelligence (12), generally uses

computer language to deeply mine existing prior knowledge or

data, learn the relationship between high-dimensional features and

target variables based on training samples, continuously learn from

the data, optimize the prediction process and improve performance

through a series of statements, and build an accurate model to make

accurate predictions. The technology of radiomics based on

machine learning is getting more and more attention in clinics.

Since the birth of artificial intelligence, humans have tried to apply it

to medicine (13). Some early applications, such as Computer Aided

Detection (CADe) and Computer Aided Diagnosis System (CADx),

were developed to detect and diagnose abnormal areas in human

tissues by analyzing image features (14). In recent years,

computational analysis and artificial intelligence (AI) have played

an increasingly important role in various acquisition and data

processing aspects. For example, AI-based image reconstruction

dramatically reduces the time required for image reconstruction,

producing images of comparable quality while providing the ability

to reconstruct large datasets in real time. In addition, the availability

of artificial intelligence lays the foundation for automated image

post-processing, including segmentation and volumetric analysis.
2.2 The definition of radiomics

The term “radiomics” was first proposed by Dutch scholar

Philippe Lambin et al. in 2012 (15). It is defined as extracting high-
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throughput features from medical images, using automatic or semi-

automatic analysis methods to conduct deeper data mining of image

information, and associating it with other clinical data for evidence-

based clinical diagnosis and treatment decision support. Compared

with traditional manual interpretation, radiomics is more objective,

has higher information utilization, better interpretation

repeatability, and more accessible quantitative analysis and

knowledge and experience inheritance. With the rise of precision

medicine worldwide, radiomics provide clinicians with new tools

and means to achieve more accurate and personalized diagnosis and

treatment of patients.
2.3 Radiomics workflow

The workflow of radiomics can be summarized as follows: ①

Image acquisition; ② Image segmentation; ③ Feature extraction; ④

Feature selection; ⑤ Establish models and databases to classify the

prediction results (Figure 1).
2.3.1 Image acquisition
Image acquisition is mainly carried out by CT, MRI, PET-CT,

and other image scanning methods. When collecting images, the

same or similar scanning machine should be selected as far as

possible and appropriate parameters should be set, such as proper

layer thickness and pixel size.
2.3.2 Image segmentation
Image segmentation is crucial in radiomics because many

extracted features may depend on the segmented region. Before

segmentation, the images were reviewed carefully, high-quality

images were selected, and artifacts were eliminated. Two

experienced physicians work together to verify the location and

area of the nodules on the chosen high-quality images and to

outline the region of interest (e.g., tumor) as the region of interest

(ROI). When delineating, try to cover all tumors and avoid normal

thyroid tissue. There are three methods of image segmentation:

manual segmentation, semi-automatic segmentation, and

automatic segmentation.

Manual segmentation is susceptible to subjective influence

related to operator experience. It requires a large amount of

source data to establish a radiomics database, so it is time-

consuming and labor-intensive to use manual segmentation to

complete this work. Fully automatic segmentation refers to using

computer algorithms to outline the nodes without human

involvement, with less workload, which can, to some extent,

compensate for the poor repeatability of manual segmentation

but is prone to misjudge the boundaries of specific nodes. Semi-

automatic segmentation means that the computer automatically

draws the outline of the nodes and then uses manual operation to

make corrections based on experience. This method reduces the

workload and can also compensate for the defects of fully automatic

segmentation that may misidentify the node boundaries. Evaluating

by multiple clinicians or a combination of algorithms can be

considered to avoid possible prejudice.
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2.3.3 Feature extraction and selection
According to the number of voxels involved in the calculation,

the extracted features can be divided into shape features, first-order

features, second-order features, and higher-order features (16).

Morphological features, i.e., based on the geometric

characteristics of the ROI, such as volume, maximum surface

area, and maximum diameter. First-order features: depend on the

distribution of gray-scale intensities within the ROI, without

considering the spatial relations within the ROI, for example,

gray-scale mean, maximum value, minimum value, standard

deviation, variance, mean absolute deviation, variance, skewness,

sharpness, energy, entropy, etc. Second-order features, also known

as texture features (17), quantify the heterogeneity within a tumor

and explain the spatial dependence or co-occurrence of information

between neighboring voxels. Texture features are not computed

directly from the original image but from different description

matrices encoded by the specific spatial relationships between

pixels or voxels in the original image. In the original image, there

are some spatial relationship matrices among the intensities of the

encoded images from which a large number of texture features can

be computed. For example, the absolute gradient, the gray-scale co-

generation matrix (GLCM), the gray-scale run length matrix

(GLRLM), the gray-scale size region matrix (GLSZM), and the

gray-scale distance region matrix (GLDZM). Higher-order features

are computed after applying mathematical transforms and filters

highlighting repeating patterns, histogram-oriented patterns, or

local binary patterns, such as wavelet or Fourier transforms. With

the development of radiomics and to standardize terminology, the

Image Biomarker Standardization Initiative 2020 (IBSI) provides

guidelines for the accurate naming, definition, and reporting of

imaging histology features (18).
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2.3.4 Feature selection
After extracting the high-latitude features, it is necessary to

eliminate unreliable, under-informed, or redundant features to

avoid dimensionality catastrophe and over-fitting of the model,

improve learning accuracy, and reduce computation time. This step

is called data dimensionality reduction, also called data cleaning,

data selection. The last absolute shrinkage and selection operator

(LASSO) Cox regression model, maximum relevance and minimum

redundancy (mRMR), and principal component analysis (PCA) are

the commonly used feature reduction methods.

2.3.5 The model algorithm was established for
classification and prediction

Other information can combine the above features with

building models and databases to develop classifiers to predict

results, which is the ultimate goal of radiomics (19). At present,

the commonly used modeling machine learning algorithms in

radiomics are as follows (20): Logistic regression, random forest

(RM), support vector machine (SVM), Decision Tree, k-Nearest

Neighbor(KNN), artificial neural networks (ANNs), Bayesian

algorithm (Bayes), clustering algorithm (such as K-means/

DBSCN). All of them are supervised learning algorithms except

the clustering algorithm, which is unsupervised learning (21). The

implementation of the classification model involves at least two

stages: training and testing. The training phase is learning the

classification model itself, and the training data must be large

enough and representative of the general population. The test

phase is to use or test the model learned in the training phase on

new samples, and the data used in this phase is called test data. A

third phase, the validation phase, can be introduced to improve

learning performance when sufficient samples are available. In this
FIGURE 1

The workflow of radiomics can be summarized as follows: ① Image acquisition; ② Image segmentation; ③ Feature extraction and Feature selection;
④ Establish models and databases to classify the prediction results. US, ultrasound; CT, computed tomography; MRI, magnetic resonance imaging;
SVM, support vector machine.
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phase, the model parameters learned in the training phase are

adjusted and optimized, which may include the number of variables

used or their relative weights. The data used in this phase is called

validation data (22).
3 Application of radiomics in
the diagnosis and treatment of
thyroid nodules

3.1 Differentiate benign and malignant
thyroid nodules

3.1.1 Ultrasound for differentiating benign and
malignant thyroid nodules

With the continuous improvement of ultrasound instruments,

the application of high-frequency ultrasound to small organs has

become an essential part of non-invasive ultrasound diagnosis (23).

Because of its high sensitivity, non-radioactivity, simple operation,

and rapid diagnosis, it is the first choice for the clinical screening of

thyroid nodules. The 2015 guidelines of the American Thyroid

Association (ATA) emphasize the significance of ultrasound in

detecting thyroid nodules (24). In recent years, some studies have

proposed new ultrasound techniques such as contrast-enhanced

ultrasound (CEUS) and especially US-elastography (USE) to

improve thyroid nodule diagnosis accuracy greatly (25). Most

studies have focused on developing a radiomics score for

predicting thyroid malignancy using ultrasound images and

investigating it as a complementary tool to improve the

performance of risk stratification systems. Jinyu Liang (26) used

ultrasound images to perform radiomics scores and compared them

with ACR TI-RADS scoring standards. The ultrasound radiomics

score showed good discriminative and predictive value, and

decision curve analysis showed that the model using the

radiomics score added more benefits than the ACR score model

for junior radiologists. Jiyoung Yoon (27) used multivariate logistic

regression analysis to establish two prediction models: one based on

clinical variables and the other using clinical variables combined

with a radiomics score. The results showed that: The AUC of the

prediction model composed of clinical variables and radiomics

score was significantly higher than that of the model consisting of

clinical variables alone (0.839 vs. 0.583). ShiYanping (28) has also

conducted a similar experiment, and Shi established three models:

the model of clinical imaging group learning model, the clinical

imaging group joint model, and combined images with nomogram

omics. Results show that the clinical imaging omics collaborative

model is higher than the above two models, has a predictive value,

and has a higher net efficiency.

3.1.2 MRI for differentiating benign and
malignant thyroid nodules

MRI has a high contrast resolution, can provide excellent soft

tissue contrast, and can be all-round, multi-angle, and multi-plane

to discriminate evaluation of nodules for benign and malignant

differentiation (29), while no radiation damage compared with CT.
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In recent years, MRI has been shown to accurately stage cancer and

support patient follow-up in some areas, especially colorectal

cancer, prostate cancer, and gynecological tumors (30). MRI is

the most sensitive imaging method to diagnose early liver and

metastatic brain diseases. It is also routinely used to determine the

extent of bone marrow involvement and determine the lesions in

bone malignancies. However, due to its long operation time, motion

artifacts and other problems are rarely used to diagnose thyroid

nodules. Wang (31) used high b-value diffusion-weighted imaging

(DWI), PCA, and PCC for dimensionality reduction and

constructed ten models: support vector machines (SVM), Latent

Dirichlet Allocation (LDA), Auto-Encoder (AE), Random Forests

(RF), Logistic Regression (LR), Least Absolute Shrinkage and

Selection Operator (LASSO), decision tree, gene programming,

Naive Bayes. They used sensitivity, specificity, accuracy, and AUC

four indexes for verification. When “NormUnit” was used for

standardization, principal component analysis was used for

dimensionality reduction, ANOVA was used for eigenvalue

screening, and 15 eigenvalues were selected; the differential

diagnosis effect of the model was the best, the accuracy was

85.71%, and the sensitivity was 80.00%. The specificity was

100.00%, and AUC was 0.925. Xia Liang (32) selected T2

weighted images and apparent diffusion coefficient images. They

used factor analysis to screen features and then further screened

from the above features to build an SVM model. The model’s

accuracy was 88%, the sensitivity was 98%, the specificity was 80%,

and the area under the curve was 0.92. A total of 15 features were

screened, divided into general, morphological, and grey spatial

distribution-related features (including GLZML, GLRLM, etc.).

From the feature importance of the support vector machine

model with polynomial kernel function, CONVENTIONAL_Q2

characteristics in ADC images, i.e., the second quarter number

(median), and CONVENTION‐ AL_Q3, i.e., the third percentile,

are of great significance for the recognition of thyroid papillary

carcinoma. At the same time, CONVENTIONAL_std-t is the most

important newly discovered characteristic of T2WI to differentiate

nodular goiter from thyroid papillary carcinoma.
3.1.3 CT for identification of benign and
malignant thyroid nodules

Thyroid imaging studies are mostly based on ultrasound, with

fewer studies on CT and MRI. Still, thyroid nodules are usually first

found on other cross-sectional patterns of computed tomography

(CT) and magnetic resonance imaging (MRI) (33). Thyroid lesions

can be considered incidental findings, with thyroid nodules found

in about 16% of chest CT scans. Enhanced CT scans can show the

characteristic enhancement of the thyroid, nodules, and

surrounding tissues, which is of great significance for the

qualitative diagnosis of thyroid nodules. The use of CT images

can avoid the bias of ultrasonic images due to subjective operation,

the image standardization is higher, and the trained model has a

stronger generalization ability. Wu Yuqiang (34) identified benign

and malignant thyroid nodules based on enhanced arterial phase

single-layer CT images and excluded calcification and cystic

necrosis lesions. It is found that GlCM-based texture feature
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values (entropy and FD) differ significantly between benign and

malignant nodules, and the sensitivity and specificity are higher

when the entropy boundary value is 5.00. However, Guo Wei (35)

did not avoid cystic necrosis and calcification in nodules when

sketching areas of interest with single-layer CT-enhanced images.

The results showed that the differential diagnosis efficiency was

better when entropy 6.09 was used as the boundary value. Entropy

is the most objective texture parameter feature, reflecting the

complexity and heterogeneity of the internal structure of the

tumor. The pixel value represents the number of pixels contained

in the image. The higher the value, the clearer the image will be.

Skewness, peak state, and standard deviation reflect the distribution

of pixel values. Using the volume measurement method, Hu

Yunting (36) extracted the 3D texture feature values of enhanced

CT images of 41 thyroid nodules, including skewness, kurtosis,

entropy, inhomogeneity, standard deviation, and average intensity.

Among them, the difference in entropy between benign and

malignant thyroid nodules was obvious; the entropy value > 3.79

indicated that thyroid nodules were more likely to be malignant.

Zhang Dawei (37) collected and analyzed 203 patients with thyroid

micronodules and used LASSO Logistic dimension reduction to

analyze and compare six models: Forest, SVM, KNN, Tree, Bayes,

and Logistic. Accuracy, specificity, sensitivity, and AUC of

differential diagnosis of benign and malignant thyroid

micronodules by different models. It is concluded that the

enhanced CT image based on the Forest model has the best

diagnostic efficacy for benign and malignant thyroid nodules. Du

Dandan (38) used the same method to identify thyroid adenoma

and papillary thyroid carcinoma more prominent than 1cm. Six

radiomics models were constructed, including Forest, SVM, KNN,

Tree, Bayes, and Logistic. The accuracy, specificity, and sensitivity

of each model in the differential diagnosis of benign and malignant

thyroid micronodules were higher than the results of conventional

enhanced CT studies. The plain CT and improved Forest imaging

model had a higher value in the differential diagnosis of PTMC and

MNG. The above studies discussed the feasibility of establishing an

imaging omics model based on existing CT images of patients

according to the model’s efficacy to increase better clinicians’

diagnostic accuracy in differentiating benign and malignant

thyroid nodules and maximize the value of thyroid CT examination.
3.2 Prediction of invasion and thyroid
lymph node metastasis

Although PTC is considered an indolent tumor, some cancer

cells will metastasize to lymph nodes around the thyroid gland (39,

40), mainly including central lymph node metastasis and lateral

neck lymph node metastasis. However, excessive lymph node

dissection will lead to many complications. The greater the scope

of surgery, the greater the likelihood of complications such as

damage to the supraglottic nerve and recurrent laryngeal nerves

and the paramedian nerves, permanent hypoparathyroidism, celiac

fistula, and so on (41). Therefore, the preoperative judgment of

LNM metastasis is an important indicator for the prognosis,

surgical scope, and surgical method of thyroid cancer. Accurate
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preoperative diagnosis of thyroid lymph node metastases is crucial

to determining staging and individualized treatment plans (42, 43).

3.2.1 Ultrasound for predicting invasivity and
thyroid lymph node metastasis

There are two ways to predict lymph node metastasis in the

neck of the thyroid gland. One is based on the image of the primary

lesion, and the other is based on the image of the metastatic lymph

node. Although it is more direct to predict the invasiveness of

papillary thyroid carcinoma by extracting radiomics characteristics

of metastatic lymph nodes, the detection rate of metastatic lymph

nodes is low, and there are limitations. Therefore, most prediction

models predict the invasiveness based on the ultrasound radiomics

characteristics of the primary PTC lesion. The accuracy, sensitivity,

and specificity of Zhou Shichong et al. in determining metastatic

lymph nodes based on the characteristics of PTC primary lesions

were 0.731, 0.714, and 0.74, which were much higher than the

diagnostic rate of two-dimensional ultrasound in conventional

studies (44).Some researchers have further analyzed ultrasound

radiomics combined with nomograms. Xian Wang (45) first

divided patients into the ETE (extent-extra-thyroid extension

(ETE) group and non-ETE group according to pathological

results, established a radiomics nomogram and evaluated its

accuracy and clinical practicability. Decision curve analysis

showed that the nomogram of ultrasound radiomics has good

clinical application value. Yuyang Tong (46) used the same

method to construct a nomogram based on metastatic lymph

node images. It concluded that radiomics features were

significantly correlated with lateral neck lymph node metastasis in

the two groups (p<0.001). The training and validation sets show

good recognition and calibration ability, and the AUC is 0.946 and

0.914, respectively.

3.2.2 MRI for the prediction of invasiveness and
thyroid lymph node metastasis

MRI is also advocated for cervical and mediastinal lymph node

imaging. It can be performed with or without the injection of

gadolinium chelate as a contrast agent and without injecting any

iodine contrast agent. In many thyroid cancer patients, the

performance of MRI on neck and mediastinum imaging has not

been directly compared with CT. It can paint a better picture of

anything involving the airway than a CT scan. It is often used as a

second-line imaging technique in patients with CT scans showing or

suspected lesions to characterize these lesions better (3, 47). There are

many studies on the prediction of cervical lymph node metastasis at

the MRI level, most of which are for the prediction of central lymph

node metastasis. However, some early studies only used texture for

statistical analysis, such as Zhang Heng (48) used the texture analysis

method of the first-order histogram and second-order GLCM to

analyze the texture of images at the T2WI stage and extract 9 texture

parameters. He found that entropy, standard deviation, correlation,

and the angular second-order moment significantly differed among

PTC patients with or without cervical lymph node metastasis.

Entropy reflects the non-uniformity of image texture, and the more

complex the texture is in an image, the larger the entropy is. The

angular second-order moment, also known as energy, is the sum of
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squares of GLCM element values, reflecting the uniformity of image

grey distribution and texture thickness. The larger the value, the more

uniform and less heterogeneous the image. Yao Xihu (49) used a

similar method to analyze with a more significant sample number,

delineated at the T2 stage, and selected eight texture parameters,

among which entropy, angular second moment, and correlation were

statistically significant except for standard deviation. The conclusion

was consistent with ZhangHeng’. Hui Qin (50) selected image omics

features from 109 adipose inhibition T2-weighted MRI images,

determined the optimal features by the spearman correlation test,

hypothesis test, and random forest method, and constructed eight

prediction models. The model’s validity was verified by receiver

operating characteristic (ROC) curve analysis. Finally, it is

concluded that the combined model has better diagnostic efficacy

in evaluating PTC lymph node metastasis.

3.2.3 CT for predicting invasive and thyroid
lymph node metastasis

Cross-sectional imaging studies such as CT and MRI also help

physicians to evaluate lymph node metastases before surgery,

especially in areas that are difficult to evaluate with ultrasound

(e.g., posterior pharynx, mediastinum, and low-level IV lymph node

sites). The surgeon must know the lesion site, morphological

density, capsule invasion, and lymph node metastasis of the

thyroid nodule (10). Shen Shasha (51) used wavelet transform

technology to analyze CT venous phase images of thyroid cancer.

The results showed that the sensitivity of the training group and the

verification group to predict central lymph node metastasis was

62.84% and 64.95%, respectively. And SMALL AREA LOW GREY

LEVEL EMPHASIS (SALGLE) can be used as an independent

predictor of risk factors. Su (52) retrospectively analyzed arterial

and venous CT-enhanced images of 27 patients with lateral neck

lymph node metastasis and 32 patients with non-lateral neck lymph

node metastasis of thyroid cancer and adopted ROC curve analysis

and multiple Logistic regression analysis. Based on histogram

analysis and grey co-occurrence matrix (GLCM), the research

results showed that Kurtosis had the best diagnostic area under

the curve (0.884) and specificity (92.59%). Conversely, the average

grey intensity had the best diagnostic sensitivity (90.62%). Arterial

stage mean grey intensity (P=0.006, OR=24.297) and venous stage

kurtosis (P=0.014, OR=19.651) were independent predictors of

cervical lymph node metastasis. Hejunlin (53) retrospectively

studied the plain and enhanced CT images of 197 patients with

PTC and selected 107 features of plain, arterial and venous phases.

SelectKBest in Python was used to construct the random forest

algorithm. It is concluded that the imaging features of the above

three stages can predict CLNM, and the prediction performance of

the plain scan stage is better than that of the arterial and venous

phases. ZhaoHongbo (54) retrospectively analyzed 173 lymph

nodes by plain CT and double-phase enhanced CT. Of these, 89

were transferred, and 84 were not. He adopted the R language

algorithm built into Darwin’s scientific research platform. He

selected six features of the arterial phase and five features of the

venous phase for algorithm analysis, which showed the best

efficiency. Y.Zhou (55) retrospectively analyzed the dual-energy
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CT iodinogram (DECT) of 255 lymph nodes, of which 143 were

non-metastatic and 112 were metastatic. By using LASSO

dimension reduction, Logistic modeling, and nomogram decision

analysis, he concluded that DECT imaging analysis was superior to

CT imaging features in preoperative diagnosis of cervical lymph

node metastasis in PTC patients.
3.3 Molecular level

There are few studies on ultrasonic radiomics at the molecular

level. Zhou Shichong’s research (56) shows that the changes in

protein molecules likely constitute the molecular basis of the

differences in radiomics characteristics. Luo Peng’s study further

proved that immunohistochemical markers cytokeratin 19 (CK-

19), galectin-3 (Gal-3), thyroid peroxidase (TPO), and high

molecular weight cytokeratin (HMWCK) play an essential role

in the molecular diagnosis of thyroid nodules. Gu’s study (57)

showed that the accuracy of thyroid peroxidase and galectin-3

prediction models were 81.4% and 82.5% in the training cohort

and 84.2% and 85.0% in the validation cohort, respectively. As a

diagnostic marker, the Gal-3 protein has been shown to play a

fundamental role in thyroid carcinoma (58). In papillary cancer

cells, the expression of antisense oligonucleotides was inhibited,

and the malignancy was significantly reduced, while normal

thyroid cells transfected with Gal-3 cDNA acquired a malignant

phenotype (59, 60). The depth of this research provides a

promising approach for future research.
3.4 Deep learning

In terms of deep learning, Hui Zhou (61) designed the basic

convolutional neural network (CNN) model, transfer learning (TL)

model, and a newly designed model named thyroid deep learning

Radiomics (DLRT), and compared with radiologists; the results

showed that the AUC of the above three radiomics models was

greater than that of radiologists. The overall performance of

DLRT is the best. Ilah Shin (62) developed two models: artificial

neural network (ANN) and support vector machine (SVM)

based classifier models. Compared with radiologists, the three

models’ sensitivity, specificity, and accuracy were 32.3%, 90.1%,

and 74.1%, respectively. 41.7%, 79.4%, and 69.0%. And 24.0%,

84.0%, and 64.8%.
3.5 The prognosis

Because PTC is often associated with good long-term mortality,

making disease-free survival for recurrent or persistent disease the

focus and endpoint of risk stratification, rather than mortality,

would help personalize treatment and management to benefit more

patients. Although promising, these results are preliminary and

require further validation on larger, independent data sets before

clinical use.
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4 Common problems of radiomics
and improvement methods

Most radiomics studies are retrospective, single-center, and

small-sample studies In the future, prospective, multicenter, and

large-sample studies are needed to verify its feasibility and serve as a

clinical diagnostic tool to help diagnose thyroid nodules (63).

Most studies only divide ROI on the maximum cross-section of

nodules, and the heterogeneity analysis of the whole tumor needs to

be strengthened. Therefore, in further research, we should adopt the

segmentation method with good repeatability and high reliability.

Recently, researchers have used three-dimensional texture analysis,

which maps the lesions in each layer of the tumor to make up the

VOI of the tumor. This method avoids the subjectivity of physicians

to a large extent, and the measured values are more stable, fully

reflecting the heterogeneity of tumors. Studies have shown that ADC

values calculated by full-volume ROI have higher diagnostic efficiency

than those calculated by single-layer solid component ROI.
4.1 Lack of unified standards for
radiomics steps

Image acquisition, image due to different hospital equipment

including ultrasound, CT, MRI, and PET - CT model, parameters,

and thus will be affected by the corresponding input data. Image

group research needs in numerous hospitals data find strictly

conform to the data into a set of conditions to ensure consistency,

and doing so will lead to reducing the amount of data. Therefore,

radiomics research needs to find a compromise point between the

data volume and the inclusion specification to guarantee the essential

data volume and support the study of large samples, multi-features,

multi-sequences, and multi-methods. Therefore, all clinical and

scientific researchers must collaborate to establish an open scientific

research database. The Databases can link massive amounts of

radiomics data from millions of patients (hopefully with all other

relevant data) to form vast networks of fast learning. Still, there are

also considerable data management hurdles (64).
4.2 Black box problem

Trained algorithm models usually have high accuracy, but due

to the complexity of algorithm data, we cannot have an in-depth

understanding of the inner work of these models, and there are

unexplained black box problems (65). Traditional medical decisions

are based on the knowledge of pathophysiology, but without

understanding the underlying principles, clinicians and patients

find it difficult to accept them. In addition, without biological

experiments and clinical studies, it is difficult for regulators to

approve the application of AI-aided diagnostic tools. The model

lacks interpretability and cannot estimate the importance of each

feature to its prediction result, let alone explain whether there is an

interactive relationship between individual elements. Therefore,
Frontiers in Oncology 07
there is still room for improvement in applying artificial

intelligence. It cannot wholly replace physicians in the process of

diagnosing and treating patients. The black box algorithm’s

opaqueness is combined with many ethical issues, which has

become a hot research issue (66).

5 Summary and prospect

Although radiomics still faces many problems before it is widely

used in clinical practice, the advantages of high reproducibility and

easy implementation of radiomics indicate that it has great potential

in clinical application. Radiomics can provide more guidance for

the diagnosis, treatment, and prognosis of thyroid diseases by in-

depth mining image information. As an emerging research method,

it is an essential direction for the future development of radiomics

to find a validated and reliable algorithm after repeated testing and

refining with prospective, multi-centre, and large samples, which

lays a solid foundation for precision medicine.
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