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Computational modeling of
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spatial structure identifies tissue-
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Introduction: Local and regional recurrence after surgical intervention is a

significant problem in cancer management. The multistage theory of

carcinogenesis precisely places the presence of histologically normal but

mutated premalignant lesions surrounding the tumor - field cancerization, as a

significant cause of cancer recurrence. The relationship between tissue

dynamics, cancer initiation and cancer recurrence in multistage carcinogenesis

is not well known.

Methods: This study constructs a computational model for cancer initiation and

recurrence by combining the Moran and branching processes in which cells

requires 3 or more mutations to become malignant. In addition, a spatial

structure-setting is included in the model to account for positional relativity in

cell turnover towards malignant transformation. The model consists of a

population of normal cells with no mutation; several populations of

premalignant cells with varying number of mutations and a population of

malignant cells. The model computes a stage of cancer detection and surgery

to eliminate malignant cells but spares premalignant cells and then estimates the

time for malignant cells to re-emerge.

Results: We report the cellular conditions that give rise to different patterns of

cancer initiation and the conditions favoring a shorter cancer recurrence by

analyzing premalignant cell types at the time of surgery. In addition, the model is

fitted to disease-free clinical data of 8,957 patients in 27 different cancer types;

From this fitting, we estimate the turnover rate per month, relative fitness of

premalignant cells, growth rate and death rate of cancer cells in each cancer type.

Discussion: Our study provides insights into how to identify patients who are

likely to have a shorter recurrence and where to target the therapeutic

intervention.

KEYWORDS

computational modeling, cancer initiation, cancer recurrence, field cancerization,
stochastic processes
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Introduction

Cancers are dynamic cells whose features favors cellular

proliferation, differentiation and movement while restricting cell

death and tissue stability (1). Surgery is a potent curative tool for

managing cancers, however, local recurrence has remained a

clinically significant problem in most cancer types (2–4). Local

recurrence rates could be as high as about 85% (5) for ovarian

cancer, or 30% in non-small cell lung cancer (NSCLC) (6, 7) and as

low as between 8% (8) to 16.5% (9) in breast cancer. Advanced

surgical techniques, chemotherapy, radiotherapy (4) as well as

endocrine therapy (10) are being used to minimize locoregional

recurrence but “minimal” improvements and treatment-related

mortality has highlighted the need for a better understanding and

strategy for local recurrence (11, 12).

Since its introduction in 1953 (13), field cancerization has been

recognized as a major cause of local recurrence (14). Field

cancerization is the presence of “histologically normal” cells

surrounding cancer cells that have acquired some but not all the

genetic and phenotypic traits required for malignancy in a tissue

(15, 16). These cancerized cells may have a survival or growth

advantage and does serve as a hotbed for recurrent tumors as only a

small number of additional steps are needed for cancer initiation.

Recent advances in molecular, genomic and bulk sequencing

techniques have supported the role of field cancerization (17). In

breast cancer, microsatellite markers, epigenetic aberrations,

transcriptomic deregulations and hTERT overexpression have

been detected in histologically normal mammary tissues (18, 19).

In head and neck cancer, loss of heterozygosity of chromosome 9p

and telomere dysregulation were commonly observed in benign

squamous hyperplasia (20, 21). In colon cancer patients with

Crohn’s ileocolitis, the same mutations of KRAS, CDKN2A, and

TP53 were observed within neoplasia and non-tumor epithelium

(22, 23). In Non-small cell lung cancer, miRNA dysfunction has

been shown at the level of the tumor and cancerized field (24).

Residual tumor (25), anesthesia choice (26) and CTCs (27) have

been shown to have minimal impact on cancer recurrence;

therefore, a proper understanding of the field cancerization

formation process will contribute to the estimation of the risk of

locoregional recurrence and the development of optimal treatment

in each tissue.

Several Theoretical studies have shed light on field cancerization

impacts on cancer initiation (15). Jeon et al. examined the

multistage clonal expansion model by employing the Poisson

process to consider the effects of premalignant cells on cancer

initiation (28). The model was applied clinically to predict the long-

term impact of ablative treatments on reducing esophageal

adenocarcinoma incidence in Barrett’s esophagus (29). Foo et al.

developed a spatial evolutionary framework to determine the size

distribution of histologically undetectable premalignant fields

during diagnosis (30). This model was applied to the head and

neck cancer and revealed that the patient’s age was a critical

predictor of the size and multiplicity of precancerous lesions (31).
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These findings are in agreement with bulk sequencing data that

shows the accumulation of cancer-related mutations as we age (32).

A 2-step tumor initiation model provides insights into the

relationship between different tissue kinetic parameters and the

incidence of recurrent cancers (33) by using public datasets from

the cancer genome atlas (TCGA), a valuable resource for genomic

and clinical data analysis (34, 35) but fails to account the varying

number of mutational hits required for carcinogenesis (36–38). The

cancer genome atlas (TCGA) is a rich computational resource for

the genomic and mutational data for different cancer types (34, 35)

and will be helpful in validating our understanding of

field cancerization.

This study developed a novel computational model of multi-

stage cancer initiation and recurrence with spatial structure. We

employed a combined stochastic model of Moran and a branching

process to represent tissue and tumor dynamics, respectively, in

order to observe cancer initiation and relapse after surgical

resection of the first tumor in silico. Particularly, we focused on

the relationship between the tissue compositions at the time of

surgery and the time until the emergence of recurrent tumors. This

model builds upon our previous work (33) by expanding the

number of mutation steps for carcinogenesis via adding cell types

as well as incorporating the spatial structure setting. Moreover,

based on the public clinical datasets for locoregional recurrence

rates, we succeeded in identifying tissue-specific carcinogenic

parameters for various cancer types. Our approach provided

insights on how to predict the time of recurrence from the tissue

dynamics at the time of surgery and how to intervene patients to

prevent the recurrence.
Materials and methods

Computational model

This model employs the multi-stage carcinogenesis concept. As

tissues might require anywhere between 2 to 8 driver mutations

(denoted by S) for malignant transformation (37), we first identify

different cell types that can lead to a malignant transformation

based on number of driver mutations. Let us visualize the dynamics

of 5 types of cells in a tissue (Figure 1). “Type 0”, “Type 1”, “Type

K”, “Type S-1” and “Type S” represent normal healthy cells with no

mutation; premalignant cells with one cancer-related mutation;

premalignant cells with K cancer-related mutation, premalignant

cells with S-1 cancer-related mutations and cancer cells with S

cancer-related mutations, respectively. Emergence of cancer cells

must be preceded by that of premalignant cells with mutations from

Type 1 cell to Type S-1 cell. Type K cell may or may not be present

depending on number of mutations required for carcinogenesis. We

assume that a normal healthy tissue consists of Type 0, Type 1, Type

K and Type S-1 cells undergoing cellular turnover with a small

probability of a mutation. Moran process is employed to consider

the tissue turnover dynamics, where the total number of Type 0,
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Type 1, Type K and Type S-1 cells is kept constant as N (39). The

turnover rate of a whole tissue is defined by d. Type S cells are

considered as uncontrolled, highly proliferating cancer cells. The

branching process is employed to consider the process of Type S

proliferation (40).

Initially, N Type 0 cells occupy the tissue. There is a rare chance

of a mutation every time a cell divides, and a daughter cell may

change into a Type 1 cell with a mutation rate, m1. Mutation rate, m,
refers to the sum total of the genomic or epigenetic factors affecting

change from one cell type to another (41). When a cell dies, a cell to

be divided in a tissue is selected depending on the cell fitness, r. The

fitness of Type 0, Type 1, Type K, and Type S-1 are denoted by r0, r1,

rK and rS-1, respectively. Cell fitness, r refers to the transcriptional

and metabolic potential of a cell type to “out-compete” other cell

types (42). A cell could divide to give rise to the same cell type or

mutate to another cell type. When a Type 1 cell divides with a

mutation, a daughter cell may change into a Type K cell with

mutation rate mK (if more mutations are needed) or a Type S-1 cell

with a mutation rate, mS-1 (if additional mutation steps are not

needed). Intermediate cell type, Type K, becomes Type S-1 after

sequential accumulation of mutations. Finally, a Type S-1 cell is

capable of mutating to become a malignant cell – Type S cell based

on the mutation rate from Type S-1 to Type S cell, mS. Once a Type S
cell appears, the cells proliferate indefinitely based on the growth

rate of Type S cells, rS, disrupting tissue dynamics and homeostasis.

Type S cancer cells are “super-competitors” with outstanding

metabolic prowess and assumed to increase exponentially with a

net growth rate of rS - dS > 0, where dS is a death rate.

We propose that the most important premalignant cells are the

Type 1 cell that have acquired the first driver mutation and the Type

S-1 cell that needs just one more driver mutation to become a

cancer cell. These cells look phenotypically normal and are not
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regarded as important clinically but their genetic features are

indispensable in cancer formation. As a result, the cell fitness of

these 2 cell types must be taken into account in all computational

analysis. For scenarios where additional mutations and more cell

types are needed, we approximate intermediate mutational steps

between Type 1 and Type S-1 by adjusting the values of mS-1 so that
a low mutation rate, mS-1, represents additional mutational steps. So,

our computational analysis will be executed to account for the most

important mutational events that affect cell fitness and all the

mutation rates that can affect the number of steps required for

carcinogenesis. In other words, we skip the state of Type K cell and a

mutation rate stands in for the number steps.

The net growth of Type 0, Type 1, and Type S-1 cells is zero

(equal frequency of cell division and death), while that of Type S

cells is positive. Type 0, Type 1, and Type S-1 cells consist of a

healthy tissue based on the Moran process, so r0, r1 and rS-1 are

parameters to determine status of dividing cell and which daughter

cell are obtainable at the time of a cell division. Alternatively, rS is

the growth rate, which determines the average number of increases

in Type S cells during a unit time. When the number of Type S cells

reaches 109 at the first time, all the Type S cells are discarded to

represent surgical resection, whereas the number of Type 0, Type 1

and Type S-1 cells in a tissue is preserved so that the time until the

emergence of the recurrent tumor is influenced by the frequency of

residual Type 0, Type 1 and especially, Type S-1 cells. Since the

conversion from the number of cells to the tumor volume is

frequently done using the following relationship as 109 cells in a 1

cm3 tumor, the time of surgery in this model is conducted when the

size of the tumor becomes 1 cm3. We describe it as “time of cancer

detection”. After the first treatment, the simulation continues until

the next Type S cell appears from the tissue and the number reaches

109 again, representing the recurrence of the tumor after surgery.
B

C

D

A

FIGURE 1

The illustrative representation of our models (A) The different cell types in our models with its own mutation rate (µ) and fitness (r). Type K cells may
not be applicable if only 3 mutations or less are needed for carcinogenesis. (B) In a normal tissue composed of Type 0, Type 1, Type K, and Type S-1
cells, cell turnover is conducted according to the Moran process, and the number of cells is kept constant. If a Type S cell emerges, it proliferates
without limit and can be detected and primed for surgery when the cancer cell number reaches 109. (C) At surgical intervention, all the Type S cells
are resected while the number of Type 0, Type 1, Type K (if present) and Type S-1 cells remaining in a tissue are preserved. The time until the next
Type S population reaches 109 is measured as time to recurrence. (D) The spatial structure integration in the model accounts for the positional
relation between a cell poised to die and the possible cells that can divide to replace the dead cells.
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Simulation framework

To integrate the Moran process and branching process, we

adopted stochastic simulations based on Gillespie’s algorithm (43)

as follows: We firstly considered three events: (i) cell turnover in a

healthy tissue as per Moran process, (ii) birth of a Type S cell as per

Branching process, and (iii) death of a Type S cell. The rates of each

event at time t is given by (i) dN (ii) rSXS(t), and (iii) dSXS(t),

respectively. Here rS, dS, and XS(t) are a proliferation rate, a death

rate, and the number of Type S cells at time t, respectively. Then an

average time until one of the three events happens, ΔT , is given by

ΔT =  
1

dN + rSXS(t) + dSXS(t)
:                                 (1)

Let us first consider the case where a cell turnover happens. The

probability that a cell turnover happens in ΔT is given by dN ∙ΔT . In

our model, a cell turnover in a healthy tissue is governed by a cell

death. When one of N cells is randomly selected as a cell to die, and

another cell is chosen to divide within the same time step to

complete cell turnover. In a healthy tissue, there are three types of

cells, corresponding to the number of acquired mutations, Type 0,

Type 1, and Type S-1.The number of each cell type is denoted by X0,

X1 and XS-1, respectively. In brief, there are several possibilities of

tissue composition transitions in the tissue dynamics and we

consider the six events that affect the cell type composition of a

tissue: (i) a type 0 cell increases by one while a type 1 cell decreases

by one (ii) a type 0 cell increases by one while a type S-1 cell

decreases by one (iii) a type 1 cell increases by one while a type 0 cell

decrease by one (iv) a type 1 cell increases by one while a type S-1

cell decreases by one (v) a type S-1 cell increases by one while a type

0 cell decreases by one; or (vi) a type S-1 cell increases by one while a

type 1 cell decreases by one. In such a condition, a Type 0 cell can

increase by one if either a Type 1 or Type S-1 cell dies and a Type 0

cell divides without a mutation. Then the probability for these

events leading to an increase in Type 0 cells are given by (i) X1
N ∙

r0X0(1−m1)
F , and (ii) XS−1

N ∙ r0X0(1−m1)
F . Here, F = r0X0 + r1X1 +   rS−1XS−1is

a scaling factor for selecting a dividing cell. The probability of a

Type 1 or Type S-1 cell death is given by X1
N and XS−1

N , respectively.

Taken together, the transition probability that the number of Type 0

cell increases by one and that of Type 1 decreases by one is given by

Pr½X0   !  X0 + 1   and  X1   !  X1 − 1  �

=
X1

N
∙
r0X0(1 − m1)

F
,                     (2)

and the probability that the number of Type 0 cell increases by

one and that of Type S-1 decreases by one is given by

Pr½X0   !  X0 + 1   and  XS−1   !  XS−1 − 1  �

=
XS−1

N
∙
r0X0(1 − m1)

F
:       (3)

A Type 1 cell can increase by one if either a Type 0 or Type S-1

cell dies, and either a Type 1 cell divides without mutation or a Type

0 cell divides with mutation to become a Type 1 cell. Then the

probabilities for these events leading to an increase in Type 1 cells

are given by (iii) X0
N ∙ r1X1(1−mS−1)+r0X0m1

F , and (iv) XS−1
N ∙ r1X1(1−mS−1)+r0X0m1

F .
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Taken together, the transition probability that the number of Type 1

cell increases by one and that of Type 0 decreases by one is given by

Pr½X1   !  X1 + 1   and  X0   !  X0 − 1  �

=
X0

N
∙
r1X1(1 − mS−1) + r0X0m1

F
,       (4)

and the probability that the number of Type 1 cell increases by

one and that of Type S-1 decreases by one is given by

Pr½X1   !  X1 + 1   and  XS−1   !  XS−1 − 1  �

=
XS−1

N
∙
r1X1(1 − mS−1) + r0X0m1

F
:     (5)

Similarly, a Type S-1 cell can increase by one if either a Type 0

or Type 1 cell dies, and either a Type S-1 cell divides without

mutation or a Type 1 cell divides with mutation. The probabilities

for the events leading to an increase in Type S-1 cells are given by

(v) X0
N ∙ rS−1XS−1(1−mS)+r1X1mS−1

F , and (vi) X1
N ∙ rS−1XS−1(1−mS)+r1X1mS−1

F . Taken

together, the transition probability that the number of Type S-1 cell

increases by one and that of Type 0 decreases by one is given by

Pr½XS−1   !  XS−1 + 1   and  X0   !  X0 − 1  �

=
X0

N
∙
rS−1XS−1(1 − mS) + r1X1mS−1

F
,     (6)

and the probability that the number of Type S-1 cell increases

by one and that of Type 1 decreases by one is given by

Pr½XS−1   !  XS−1 + 1   and  X1   !  X1 − 1  �

=
X1

N
∙
rS−1XS−1(1 − mS) + r1X1mS−1

F
:   (7)

In addition, a Type S cell can increase by one if a Type S-1 cell

divides with mutation. The probability is given by rS−1XS−1mS
F . Since a

Type S cell is not a component of a tissue, once a Type S appears by

mutation, another round of selection for a dividing cell is performed

according to the transition probabilities described above. This is

because malignant Type S cell disrupts 2D lattice structure and the

Moran process is no longer applicable to it.

Next, let us consider the case where Type S cell divides or dies.

The probabilities of Type S cell division or death is given by rSXS(

t)∙ΔTand dSXS(t)∙ΔT , respectively.

In summary, the time of one step in our simulation is calculated

using Eq. (1) and in one time step, one of the following three

processes occurs: (i) a cell turnover in a tissue, (ii) the birth of a

Type S cell, or (iii) the death of a Type S cell. Initially, all the cells are

Type 0. Once the number of Type S cells reaches 109, computational

surgical resection sets the number of Type S cells to be 0, keeping

the cell type composition in a tissue remained and computational

carcinogenic process restarts again. After that, the time until the

number of Type S cells reaches 109 is measured as recurrence time.
Spatial structure

Two-dimensional lattice structure (I � J) is introduced to a tissue

dynamics in our computational model. The transition probabilities
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are basically the same with or without spatial structure. The difference

is the choice of a dividing cell. If a cell at position 〈 i, j 〉 dies, 4

adjacent cells – 〈 i, j − 1 〉, 〈 i, j + 1 〉, 〈 i − 1, j 〉 and 〈 i + 1, j 〉 can

divide to replace it. The transition probabilities are calculated

according to the cell type at those positions. We assume wall

boundary condition to represent an asymmetric tissue structure.
Deterministic approximation of type S cell
growth

As for the calculation of the Type S growth, we assume that

when the number of cells is small, the stochastic effect should be

considered. When the number of Type S cells exceed twice as large

as the size of the normal tissue, 2N, growth can be regarded as a

deterministic process. Then, the time duration from when the

number of Type S cells is 2N to 109, Δts, is given by

Δts =  
1

(rS − dS)
ln

109

2N

� �
(8)
Clinical data

The data used in our analysis were from TCGA Pan-Cancer

Clinical Data Resource (34, 35) and are available in the cBio Cancer

Genomics Portal (44, 45). We adopt the clinical data of locoregional

recurrence from 8,957 patients with 27 different non-sarcoma, non-

hematological cancer types. From these datasets, the inclusion

criterium for our study was “disease-free” survival – patients with

no detectable malignant disease after surgery or total remission. We

excluded data of “progression-free” survival in order to eliminate

patients who survived with detectable disease possibly as a result of

treatment-resistant clones; and also excluded data containing

metastatic progression. We also included data from other

independent publications for extra validation. Sarcomas and

hematological cancers were excluded due to their non-conformity

to a 2-dimensional lattice structure.
Survival time analysis

Survival time analysis of clinical data is calculated using the

Kaplan–Meier method from disease-free intervals mentioned in

Clinical Data section. In this study, disease-free interval is defined as

the survival time without cancer recurrence of each patient, which

corresponds to the time to recurrence of each simulation trial.
Statistical analysis

The whole process of our model is conducted on C++.

Simulation codes have been deposited in a GitHub repository

(https://github.com/sharaf501/Heano-Lab-Codes). The survival
Frontiers in Oncology 05
time analysis and other statistical analysis is conducted on Prism

(version 9.4.1). Mantel-Cox (log-rank) test is used to compare

difference between survival curves. A p value less than 0.05 is

considered to be statistically significant.
Results

Cancer initiation patterns

Firstly, we conducted stochastic triplicate simulations for the

cancer initiation up to the time of cancer detection. We were

curious to know what effect the presence or absence of the spatial

structure would have on the model. We traced the time course of 4

cell populations – Type 0, Type 1, Type S-1 and Type S cells using a

combination of various parameter sets. Lower mutation rate from

Type 1 to Type S-1, mS-1, was additionally examined to account for

additional premalignant cell types between Type 1 and Type S-1. In

the model without spatial structure, we observed 3 patterns of

cancer initiation based on frequency of non-malignant cell

population at cancer detection (Figure 2A). Interestingly, all the

patterns show a progressive decline of Type 0 cells until the entire

tissue is dominated by Type 1, Type S-1 or both Type 1 and Type S-

1 cells. By combining various parameter sets in our simulation, we

extrapolated the varying distribution of the cancer initiation

patterns (Figure 2B and Supplementary Figure 1). Lower fitness

of Type 1 cells, r1 generally favored Type S-1 cells dominance when

fitness of Type S-1, rS-1, is high. Higher r1 values favored Type 1

dominance while equal fitness of Type 1 and Type S-1 cells yielded

Type 1 dominance or Type 1/S-1 co-dominance. Mutation rates

generally affected time to cancer detection and appearance of

dominance. We also extended the mutation rates from Type 1 to

Type S-1 cell type to denote other additional mutation steps and

found a consistent increase in cancer detection times but patterns

generally remained the same. In some cases where low fitness of

both Type 1 and Type S-1 were coupled with lower mutation rates,

Type S malignant cells failed to appear at extended times and

simulations were terminated. Most curiously, mutation rate from

Type 0 to Type 1, m1, did not affect the pattern of cancer initiation or

time to cancer detection (Supplementary Figure 1).
Parameter dependence of recurrence time

Next, we examined the time to recurrence after surgical

resection and the proportion of Type S-1 cells at the time of

surgery in varying parameter sets. We reasoned that since Type

S-1 cells needs only one more step for malignant transformation;

therefore, its proportion was thought to be critical for cancer

recurrence. To do this, we ran 1,000 simulations for each

parameter set and calculated the mean recurrence time

(Figures 3A–K). We also ran similar simulations at higher cell

number in a tissue, N, between 100 to 1,000 times to assess the effect

of tissue size on the parameter dependency (Figures 3B–L). We

found that higher fitness of Type 1 cells, r1 increased the mean
frontiersin.org
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recurrence time (Figures 3A, B), while mutation rate from Type 0 to

Type 1, m1, had no effect on mean recurrence time (Figures 3G, H).

Other parameters however, showed a negative correlation to the

mean recurrence time – higher parameter values resulted in shorter

mean recurrence time. Higher tissue cell number yielded an overall

shortening of mean recurrence time but parameter dependency

remained the same. We also observed a reduction in the proportion

of Type S-1 cells at the time of surgery when r1, rS and mS increases
(Figures 3A–L), while rS-1 and mS increases in the proportion of

Type S-1 cells (Figures 3C–J). Mutation rate from Type 0 to Type 1,

m1, had little effect on the proportion of Type S-1 cells

(Figures 3G, H).
Effect of spatial structure on cancer
initiation patterns

We then incorporated the spatial structure framework into the

model to investigate the effect of tissue positional influence in

cancer initiation patterns and time of cancer detection. After

triplicate simulations using various parameters, we identified

seven distinct patterns of cancer initiation (Figure 4A) based on

the composition of non-malignant cell population at cancer

detection. Figure 4B and Supplementary Figure 2 showed the

distribution of the patterns in a wide parameter range. Low r1
values showed Type 0 dominance at low rS-1 levels with failure to

detect cancer cells at very low mS-1 levels. With higher r1 values,

Type 1 cell types begin to dominate. When combined with high mS-
1, we saw Type 1/S-1 co-dominance (green region in Figure 2B).

When r1 and rS-1 are equal to fitness of Type 0 (r0), we saw Type 0/1
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co-dominance or Type 0/1/S-1 co-dominance depending on mS-1
values. We noticed a peculiar pattern of Type 0/S-1 co-dominance

(black region in Figure 2B) when rS-1, mS-1, and mS were high with

relatively lower r1 value. Type S-1 dominance (red region in

Figure 2B) was regarded as the most undesirable scenario due to

the abundance of Type S-1 cells, indicating shorter recurrence time.

We saw this pattern when rS-1, m1 and mS-1 were high, r1 was equal to
1.0 and mS was relatively small. Some parameter sets with low fitness

failed to yield Type S cells at extended time points during the

simulations. Here, the incorporation of the spatial structure to our

simulation framework had remarkable alterations to the cancer

initiation patterns and cancer detection time.
Effect of spatial structure on
recurrence time

Subsequently, we examined the mean recurrence time after

surgical resection and the proportion of Type S-1 lesions at the

time of surgery in a vast parameter range with the influence of the

spatial structure setting (Figure 5). Similarly, we ran 100 to 500

simulations to obtain mean recurrence time (Figures 5A–K) and to

check the effect of larger cell numbers (Figures 5B–L). Generally, we

saw that the integration of the spatial structure to our simulation

framework had noteworthy changes to the parameter dependency to

recurrence time. When the size of the normal tissue was small, the

effect of fitness advantage on the proportion of Type S-1 cells in a

tissue became larger. Our simulation results showed that an increase

in the cell fitness shortened the mean time to recurrence (Figures 5C–

F). However, an increase in r1 was found to reduce the recurrence
B

A

FIGURE 2

Patterns of tissue composition at cancer initiation (A) Simulation studies without spatial structure show three patterns of cancer initiation. For each
pattern, black, blue, green and red curves indicate Type 0, Type 1, Type S-1 and Type S cells, respectively. Each parameter set was simulated in
triplicate (Joined, dashed, and long-dashed lines). (B) Panel showing several patterns of tissue composition and time to detection using combination
of various parameter sets. Cell type “Dominance” indicates >90% of a particular cell type at cancer detection. “Co-dominance” refers to 2 cell
populations with >40% or 3 cell populations with >30% at cancer detection. Parameter values used are: N = 1,000; d = ds = 1.0; r0 = 1.0; r1 = 0.75,
1.00 and 1.25; rS-1 = 0.75, 1.00 and 1.25; rS = 1.5; m1 = 0.001 and 0.01; mS-1 = 0.000001, 0.00001, 0.0001, 0.001 and 0.01; mS = 0.001 and 0.01. Note:
Mutation rate, m1, does not impact the results and is not shown.
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time but begin to increase slightly at much higher levels regardless of

the tissue size. We also found a consistent reduction in the mean

recurrence time as mutation rates m1, mS-1 and mS increased

(Figures 5G–L). We also observed a reduction in the proportion of

Type S-1 cells at the time of surgery with a spatial structure.

Especially, when either rS or mS was small, and any of rS-1, m1, or
mS-1 was large, the proportion of Type S-1 increased (Figure 5).
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Fitting of recurrence time to clinical data

By using our computational model with spatial structure,

multiple runs of stochastic simulations were performed with

multiple parameter sets and in silico Kaplan–Meier curves were

made. The data points about the time when 0% to 100% of patients

experienced recurrence with an interval of 4% (time when 0%, 4%,
A B H
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FIGURE 3

Parameter dependence on recurrence time. Simulation studies without spatial structure are shown. Mean values obtained from 100 to 1,000
simulations are shown by dots, and standard deviations are indicated by bars. Pie charts in the panels indicate the proportion of Type S-1 cells in a
normal tissue at the time of first treatment. Blue, orange and grey represent small (XS-1 ≤ 0.1N), intermediate (0.1N< XS-1 ≤ 0.9N), and large (XS-1 >
0.9N) proportion of Type S-1 cells, respectively. Standard parameter values used in (A–L) are d = ds = 1.0, r0 = 1.0, r1 = 1.0, rS-1 = 1.2, rS = 1.0, m1 =
0.001, mS-1 = 0.001, mS = 0.001; and N = 1,000 in (A, C, E, G, I, K); and N = 10,000 in (B, D, F, H, J, L).
B

A

FIGURE 4

Patterns of tissue composition at cancer initiation with spatial structure. (A) Simulation studies with spatial structure show 7 patterns of cancer
initiation. For each pattern, black, blue, green and red curves indicate Type 0, Type 1, Type S-1 and Type S cells, respectively. Each parameter set
was simulated in triplicate (Joined, dashed, and long-dashed lines). (B) Panel showing patterns of tissue composition and time to detection using
combination of various parameter sets. The definitions of “Dominance” and “Co-dominance” are the same as those explained in Figure 2. Parameter
values used are: N = 2,500; d = ds =1.0; r0 = 1.0; r1 = 0.75, 1.00 and 1.25; rS-1 = 0.75, 1.00 and 1.25; rS = 1.5; m1 = 0.001 and 0.01; mS-1 = 0.000001,
0.00001, 0.0001, 0.001 and 0.01; mS = 0.001 and 0.01.
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8%,…, 100% of patients experienced recurrence) were employed to

compare between the in silico and published clinical data (44, 45) of

27 cancer types. In this analysis, we adopted random sampling for

parameters to obtain in silico recurrence data and determined the

best parameter set for each cancer type that minimized the mean of

squared logarithmic residuals (log-MSR) between outputs in silico

and in public. The accepted parameter set (Table 1) was used to

extrapolate recurrence time which were then fitted to clinical data

and disease-free survival curves were depicted (Figure 6).

Mantel-Cox test was used to compare between the curves of

simulated and clinical data revealing minimal statistical

nonconformity. According to the estimated parameters (Table 1),

we firstly deduced a tissue-specific turnover per month from dS.

Kidney chromophobe had the fewest cellular turnover cycles per

month while bladder urothelial carcinoma and colorectal

adenocarcinoma had the highest turnover cycles. Moreover,

colorectal adenocarcinoma, kidney chromophobe, renal clear cell

carcinoma, thyroid carcinoma, adenoid cystic carcinoma and acral

melanoma showed higher fitness of all their premalignant cells than

normal cells. Of note, the proliferation rate of the Type Smalignant

cells, rS, was estimated to be high in cholangiocarcinoma, liver

hepatocellular carcinoma, mesothelioma and upper tract urothelial

cancer while being relatively low in breast invasive carcinoma,

kidney chromophobe and skin cutaneous melanoma. Kidney

chromophobe had the lowest mutation rate from the final

premalignant cell stage to malignant cells while cervical squamous

cell carcinoma and prostate adenocarcinoma had the highest

mutation rate. Figure 7 showed the negative correlation between

mutational steps required for carcinogenesis (37) and overall
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mutation rates (mI) obtained from our studies by multiplying the

mutation rates for all steps.
Discussion

In this study, we constructed computational models with and

without spatial structure that described cell population dynamics in

both normal and cancer tissues. Using our models, we clearly

observed different patterns of cancer initiation and the residual

premalignant cells present at the time of cancer detection or surgical

intervention. Integrating the spatial structure setting to the model

revealed additional patterns of cancer initiation as against just three

in the model without spatial structure. Especially, the preservation

of intact normal cells was observed in the model with spatial

structure (Figures 2–4). According to the comprehensive analysis

of parameter dependence, we found that field cancerization at the

detection time depended on a combination of fitness and

mutation rates.

We also revealed the relationship between the proportion of

premalignant cells and recurrence time (Figures 3–5). The model

without spatial structure overemphasized the power of Type 1

fitness and its ability to limit Type S-1 and Type S appearance

which led to longer mean recurrence times as r1 increases

(Figures 3A, B). The same effect was seen in the mutation rate

from Type 0 to Type 1 which rendered m1 impotent in affecting

mean recurrence time (Figures 3G, H). All other fitness and

mutation parameters led to shorter recurrence time as their
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FIGURE 5

Parameter dependence on recurrence time with spatial structure. Simulation results with spatial structure are shown. Mean values obtained from
100 to 1,000 simulations are shown by dots, and standard deviations are indicated by bars. Pie charts in the panels indicate the proportion of Type
S-1 cells in a normal tissue at the time of first treatment. Blue, orange and grey represent small (XS-1 ≤ 0.1N), intermediate (0.1N< XS-1 ≤ 0.9N), and
large (XS-1 > 0.9N) proportion of Type S-1 cells, respectively. Standard parameter values used in (A–L) are d = ds =1.0, r0 = 1.0, r1 = 1.0, rS-1 = 1.2, rS =
1.0, m1 = 0.001, mS-1 = 0.001, mS = 0.001; and N = 2,500 in (A, C, E, G, I, K); and N = 10,000 in (B, D, F, H, J, L).
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effects became larger. Generally, with the spatial structure setting,

we found that recurrence time became shorter when mutation rates

or fitness of cancer cells were large, while the time became longer

when the fitness of premalignant cells or growth rate of cancer cells

were low (Figure 5). An exception would be the mean recurrence

time with r1 (Figures 5A, B) which was seen to shorten as r1 became

larger but to get longer as r1 became much larger. This could be due

to a tissue competition between Type 1 and Type S-1 cells which

subsequently delayed the emergence of Type S cells and hence, a

more favorable recurrence time.
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Moreover, we successfully estimated the characteristic

parameter sets of the computational model that best reproduced

the clinical data of disease-free survival in each cancer type. All the

non-sarcoma cancer types were successfully fitted with no statistical

deviation (Table 1). Even though some datasets like ESCA contains

2 different cancer types – esophageal adenocarcinoma and

esophageal squamous cell carcinoma, we obtained p values that

indicates no statistical difference. At the same time, we obtained

valuable information about cellular turnover per month (dS),

relative fitness of premalignant cells (r1, rS-1), a growth rate of
TABLE 1 Tumor-specific carcinogenic profiles and p values of survival curves (µ values are in log10 while SQ are log-SSR values).

Code Cancer Type (Data Source) SQ r1 rS-1 rS dS µ1 µS-1 µS µI
p

value

ACC Adrenocortical Carcinoma (TCGA, PanCancer Atlas) 0.616 1.003 0.958 5.578 3.436 -3.212 -3.979 -3.006 -10.197 0.9120

BLCA Bladder Urothelial Carcinoma (TCGA, PanCancer Atlas) 0.922 1.097 0.981 5.614 3.939 -2.876 -3.616 -3.223 -9.715 0.8857

BRCA Breast Invasive Carcinoma (TCGA, PanCancer Atlas) 0.983 0.945 0.948 2.967 1.887 -3.770 -2.228 -2.661 -8.658 0.1707

CESC Cervical Squamous Cell Carcinoma (TCGA, PanCancer
Atlas)

0.897 0.929 0.951 6.684 3.506 -3.842 -3.233 -2.098 -9.172 0.1213

CHOL Cholangiocarcinoma (TCGA, PanCancer Atlas) 0.847 0.988 1.011 7.170 3.765 -3.504 -2.759 -2.349 -8.612 0.7716

COAD Colorectal Adenocarcinoma (TCGA, PanCancer Atlas) 0.943 1.086 1.027 5.912 3.859 -3.176 -3.052 -4.347 -10.575 0.2783

ESCA Esophageal Adenocarcinoma (TCGA, PanCancer Atlas) 0.936 1.048 0.919 6.767 3.655 -4.114 -3.870 -2.411 -10.394 0.8862

HNSC Head & Neck Squamous Cell Carcinoma (TCGA, PanCancer
Atlas)

0.802 0.980 0.988 5.148 3.586 -2.735 -4.886 -2.656 -10.277 0.5908

KICH Kidney Chromophobe (TCGA, PanCancer Atlas) 0.401 1.070 1.024 2.308 1.558 -3.971 -2.542 -4.658 -11.170 0.9360

KIRC Kidney Renal Clear Cell Carcinoma (TCGA, PanCancer
Atlas)

0.786 1.081 1.064 3.655 2.713 -4.569 -3.445 -4.252 -12.265 0.1519

KIRP Kidney Renal Papillary Cell Carcinoma (TCGA, PanCancer
Atlas)

0.559 0.965 0.958 5.470 3.004 -3.182 -2.748 -3.374 -9.304 0.9880

LIHC Liver Hepatocellular Carcinoma (TCGA, PanCancer Atlas) 0.846 0.977 1.009 7.675 3.899 -4.620 -3.690 -4.252 -12.562 0.6744

LUAD Lung Adenocarcinoma (TCGA, PanCancer Atlas) 0.600 0.922 0.977 6.383 3.327 -3.068 -3.471 -2.821 -9.360 0.4484

LUSC Lung Squamous Cell Carcinoma (TCGA, PanCancer Atlas) 0.524 0.997 0.952 5.220 3.568 -4.174 -2.276 -3.258 -9.708 0.9767

MESO Mesothelioma (TCGA, PanCancer Atlas) 0.572 0.918 1.030 7.134 3.581 -3.287 -4.222 -3.561 -11.070 0.8411

OV Ovarian Serous Cystadenocarcinoma (TCGA, PanCancer
Atlas)

0.772 1.052 0.939 4.145 2.655 -3.483 -2.415 -3.502 -9.400 0.9710

PAAD Pancreatic Adenocarcinoma (TCGA, PanCancer Atlas) 0.736 0.988 0.996 3.145 1.654 -3.218 -2.875 -2.416 -8.509 0.8931

PRAD Prostate Adenocarcinoma (TCGA, PanCancer Atlas) 0.886 0.915 0.918 4.826 3.584 -2.286 -3.987 -2.189 -8.462 0.7336

STAD Stomach Adenocarcinoma (TCGA, PanCancer Atlas) 0.400 0.936 0.949 5.738 3.177 -3.377 -2.268 -3.389 -9.034 0.9442

SKCM Skin Cutaneous Melanoma (TCGA, Firehose Legacy) 0.805 1.016 0.980 2.848 1.818 -4.481 -3.607 -2.512 -10.601 0.5770

THCA Thyroid Carcinoma (TCGA, PanCancer Atlas) 0.764 1.020 0.980 6.541 3.525 -2.824 -4.268 -4.131 -11.222 0.7340

UCEC Uterine Corpus Endometrial Carcinoma (TCGA, PanCancer
Atlas)

0.892 0.948 0.984 3.965 2.083 -4.276 -3.824 -2.908 -11.007 0.1153

UVM Uveal Melanoma (TCGA, Firehose Legacy) 0.564 1.022 0.947 6.612 3.535 -3.397 -2.166 -4.000 -9.563 0.2663

ACYC Adenoid Cystic Carcinoma (MSK, Nat Genet 2013) 0.521 1.082 1.065 4.523 2.492 -2.754 -3.342 -4.046 -10.142 0.6316

MEL Acral Melanoma (TGEN, Genome Res 2017) 0.524 1.031 1.008 5.199 3.104 -2.572 -3.866 -2.487 -8.925 0.3385

OSCC Oral Squamous Cell Carcinoma (MD Anderson, Canc. Disc
2013)

1.033 0.901 0.990 8.090 3.700 -2.721 -2.602 -3.640 -8.964 0.9997

UTUC Upper Tract Urothelial Cancer (MSK, Eur Urol 2015) 0.628 0.938 1.009 7.470 3.800 -2.130 -3.672 -2.815 -8.617 0.5480
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cancer cells (rS) and mutation rates from one cell type to another

(m1, mS-1, mS) for each carcinogenesis. We have specified the growth

rate for each cancer using the rS values from our clinical fitting.

Interestingly, we observed relatively high growth rates of malignant

cells (Type S cells) in some common cancer types like lung and

colorectal cancers, whereas a relatively lower growth rate was

estimated in breast invasive carcinoma which was also a common

cancer type but was relatively asymptomatic in agreement with

several studies (46, 47). From the high mS-1 values, we elucidated

that uveal melanoma, breast invasive carcinoma, stomach

adenocarcinoma and lung squamous cell carcinoma had the

shortest time to reach late premalignant cell stage from the

earliest premalignant cell stage possibly indicating fewer

mutational steps. On the other hand, thyroid carcinoma and head

and neck carcinoma had small mS-1 values, indicating the multiple

steps in the carcinogenesis. Our data was in alignment with data

that estimated the number of hits required for carcinogenesis (37),

where liver, kidney and thyroid cancers had the lowest overall

mutational rates indicating more mutational requirements while

uterine, ovarian and lung cancers had higher overall mutational

rates indicating fewer mutational requirements (Figure 7).

Additionally, our findings successfully revealed average cellular

turnover rates per month by inferring our model with published

clinical data whose measurements were in months. Kidney

chromophobe and pancreatic cancer showed low turnover rates
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per month (about 1.5 times), possibly indicating low incidence rate.

On the other hand, bladder urothelial carcinoma, liver

hepatocellular carcinoma, colorectal adenocarcinoma and upper

tract urothelial carcinoma had the highest turnover rates (almost 4

times per month) which perhaps explained why they were the most

common cancers in men and women (48). This also corresponded

with data that suggested that number of cell division was a

significant risk factor for cancer (49).

We propose from our findings that certain cell populations,

specifically Type S-1 could be targeted to address the threat of

locoregional recurrence. With currently available tools and

advancements in personalized medicine, it is possible to prevent

recurrence by targeting a particular cell type or lesion. An example

in case in the outstanding success achieved using PD-1 Blockade in

mismatch repair–deficient, locally advanced rectal cancer which

recorded a 100% success (50). CRISPR-based mutation can also aid

in cell competition studies to identify cell fitness levels among the

known and unknown driver mutations to further provide

actionable data for more studies.

In this study, we estimated cell fitness as a single numerical

value with 1.0 indicating normal cells and other cells with ranges

from normal cells. In reality, this is an “oversimplification” as cell

fitness is a complex and dynamic concept which can be related to

both genetic (51) and non-genetic (52) alterations. Unfortunately,

studies on cell fitness with regards to known or even unknown
FIGURE 6

Fitting of model-derived in silico data to published clinical data for 27 cancer types. Thousands of stochastic runs were used to obtain parameter
sets that best fit survival curves of 27 non-sarcoma, non-hematologic cancer types. Blue curves indicate clinical data while red curves indicate
simulation data survival curves. p values between curves are found in Table 1. ACC, Adrenocortical Carcinoma; BLCA, Bladder Urothelial Carcinoma;
BRCA, Breast Invasive Carcinoma; CESC - Cervical Squamous Cell Carcinoma; CHOL – Cholangiocarcinoma; COAD, Colorectal Adenocarcinoma;
ESCA, Esophageal Adenocarcinoma; HNSC, Head & Neck Squamous Cell Carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney Renal Clear Cell
Carcinoma; KIRP, Kidney Renal Papillary Cell Carcinoma; LIHC, Liver Hepatocellular Carcinoma; LUAD, Lung Adenocarcinoma; LUSC, Lung
Squamous Cell Carcinoma; MESO – Mesothelioma; OV, Ovarian Serous Cystadenocarcinoma; PAAD, Pancreatic Adenocarcinoma; PRAD, Prostate
Adenocarcinoma; STAD, Stomach Adenocarcinoma; THCA, Thyroid Carcinoma; UCEC, Uterine Corpus Endometrial Carcinoma; UVM, Uveal
Melanoma; ACYC, Adenoid Cystic Carcinoma; MEL, Acral Melanoma; UTUC, Upper Tract Urothelial Cancer; OSCC, Oral Squamous Cell Carcinoma;
SKCM, Skin Cutaneous Melanoma.
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cancer-related mutations are lacking. Also, order of mutations in

premalignant cells and a comprehensive study of cell-based or

animal model mutational requirements for certain cancers are

unavailable. These limit the tools with which we can perform

additional validation of our model. Mutation rates were chosen to

include processes involved with DNA repair, epigenetics, infection

and role of external agents. Each of these could independently affect

the model but we chose to combine them. In the current analysis,

hematologic or liquid cancers were not included partly because of

their dynamic nature and lack of 2D lattice arrangement but mainly

the difficulty in assessing exact cell numbers. Even though certain

tumor markers for certain malignancies may be used to quantify cell

number, the threshold for detection and overall utility is not fully

assured. The model without spatial structure might be applicable in

this scenario as well as for sarcomas. Moreover, we did not stratify

or independently differentiate demographic information such as

age, sex or race for each cancer type. Possible extension of the

analysis may be to perform age or other parameter dependent

analysis. Furthermore, we did not specify the order of mutations for

malignant transformation in our model, which albeit gave us a good

fit with clinical data. The order of mutations is quite important as

revealed from data accrued from colorectal cancer progression (53).

Considering multiple mutational orders could be beneficial

especially those leading to histologically ‘abnormal’ benign

lesions. Barrett’s Esophagus (BE) is a notable example where

whole genome sequencing found similar mutational events

between esophageal adenocarcinoma and non-dysplastic BE (54)

thereby suggesting different mutational order (55). Reports that

prior diagnosis of BE affords a better prognosis (56) with only about
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5% of BE patients developing esophageal adenocarcinoma (57)

further strengthens the different order of mutation concept.

One challenge for cancer management is late diagnosis. Our

model computes a cancer detection stage of 1cm3 – 109 cells. To

evaluate the effect of late diagnosis, we changed the cancer detection

time to 1010 and assess parameter dependence on recurrence time.

We observed a reduction in time to recurrence indicating that late

diagnosis might contribute to shorter recurrence time

(Supplementary Figure 3). Another challenge to the usage of this

model is the variability of proportion of locoregional recurrence out

of total recurrence rate among various cancer types. It is common

knowledge that recurrence can occur at a distant area from the

original issue – metastasis; our model however, does not take this

into account. As a result, the utility of this model is high for certain

cancer types but unfortunately, subdued for other cancer types.

Consequently, malignancies where locoregional recurrence

accounts for a high proportion of total recurrence such as thyroid

cancer with 94% (58), oral squamous cell carcinoma with 90% (59),

cholangiocarcinoma with 85% (60), prostate cancer with 81% (61),

liver cancer with 78% (62), mesothelioma with 74% (63), head &

neck squamous cell carcinoma with 69% (64), and ovarian cancer

with 68% (65) could reap great benefit from this model. On the

other hand, cancers where distant metastasis accounts for a major

proportion of total recurrence such as kidney cancers with 73%

(66), skin cutaneous melanoma with 71% (67) and bladder

urothelial cancer with 66% (68) might feel the need to

complement our model with additional tools to increase its

precision. Interestingly, we can get some insight from recurrence

pattern of breast cancer. In patients undergoing conservative breast
BA

FIGURE 7

Relationship between integrated mutation rate and number of mutation hits required for cancer initiation (A) Published data for number of
mutational hits required for carcinogenesis (37) in some cancer types was plotted against corresponding integrated mutation rate (m1∙mS−1∙mS). The
linear regression was performed, and the regression line and the p value are shown. (B) Predicted number of mutations for unpublished cancer types
as per equation from (A) ACC, Adrenocortical Carcinoma; BLCA, Bladder Urothelial Carcinoma; BRCA, Breast Invasive Carcinoma; CESC, Cervical
Squamous Cell Carcinoma; CHOL – Cholangiocarcinoma; COAD, Colorectal Adenocarcinoma; ESCA, Esophageal Adenocarcinoma; HNSC, Head &
Neck Squamous Cell Carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney Renal Clear Cell Carcinoma; KIRP, Kidney Renal Papillary Cell
Carcinoma; LIHC, Liver Hepatocellular Carcinoma; LUAD, Lung Adenocarcinoma; LUSC, Lung Squamous Cell Carcinoma; MESO – Mesothelioma;
OV, Ovarian Serous Cystadenocarcinoma; PAAD, Pancreatic Adenocarcinoma; PRAD, Prostate Adenocarcinoma; STAD, Stomach Adenocarcinoma;
THCA, Thyroid Carcinoma; UCEC, Uterine Corpus Endometrial Carcinoma; UVM, Uveal Melanoma; ACYC, Adenoid Cystic Carcinoma; MEL, Acral
Melanoma; UTUC, Upper Tract Urothelial Cancer; OSCC, Oral Squamous Cell Carcinoma; SKCM, Skin Cutaneous Melanoma.
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surgery only, locoregional recurrence accounts for 62% of all cancer

recurrence (69). However, in a study with data for different surgical

intervention types, locoregional recurrence rates were 42.9% and

19% of total recurrence in breast conservative surgery and total

mastectomy respectively (70). This could perhaps be due to the

elimination of the cancerized field by total mastectomy which

conservative surgery is unable to achieve.

In conclusion, this model reveals parameter combinations that fit

clinical data and contributes to the ever-growing knowledge about

cancer initiation and recurrence. The model shows elucidate cancers

which have premalignant cells with high fitness are likely to have a

short recurrence time. This approach can be a valuable tool in the

management of cancer especially in the field of personalized molecular

medicine to target patients who are at highest risk of recurrence.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Author contributions

SDA, MT, and HH conceived the idea of the study. SDA, MT, and

HH developed simulation codes. SDA conducted computational

simulations. SDA and HH contributed to the interpretation of the

results. HH supervised the conduct of this study. All authors reviewed

the manuscript draft and revised it. All authors approved the final

version of the manuscript to be published.
Frontiers in Oncology 12
Funding

This work was supported by JSPS KAKENHI Grant Number

16H06279 (PAGS), AMED under Grant Number JP22ck0106700,

and National Cancer Research Fund 2020-A-7 (HH).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2023.1116210/

full#supplementary-material
References
1. Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development.
Annu Rev Pathol (2006) 1:119–50. doi: 10.1146/annurev.pathol.1.110304.100224

2. Uramoto H, Tanaka F. Recurrence after surgery in patients with nsclc. Transl
Lung Cancer Res (2014) 3(4):242–9. doi: 10.3978/j.issn.2218-6751.2013.12.05

3. Hiller JG, Perry NJ, Poulogiannis G, Riedel B, Sloan EK. Perioperative events
influence cancer recurrence risk after surgery. Nat Rev Clin Oncol (2018) 15(4):205–18.
doi: 10.1038/nrclinonc.2017.194

4. Mahvi DA, Liu R, Grinstaff MW, Colson YL, Raut CP. Local cancer recurrence:
The realities, challenges, and opportunities for new therapies. CA Cancer J Clin (2018)
68(6):488–505. doi: 10.3322/caac.21498

5. Corrado G, Salutari V, Palluzzi E, Distefano MG, Scambia G, Ferrandina G.
Optimizing treatment in recurrent epithelial ovarian cancer. Expert Rev Anticancer
Ther (2017) 17(12):1147–58. doi: 10.1080/14737140.2017.1398088

6. Karacz CM, Yan J, Zhu H, Gerber DE. Timing, sites, and correlates of lung cancer
recurrence. Clin Lung Cancer (2020) 21(2):127–35.e3. doi: 10.1016/j.cllc.2019.12.001

7. Sonoda D, Matsuura Y, Kondo Y, Ichinose J, Nakao M, Ninomiya H, et al.
Comparison of local therapy in patients with lung oligo-recurrence of non-Small-Cell
lung cancer. J Surg Oncol (2021) 123(8):1828–35. doi: 10.1002/jso.26453

8. Holleczek B, Stegmaier C, Radosa JC, Solomayer EF, Brenner H. Risk of loco-
regional recurrence and distant metastases of patients with invasive breast cancer up to
ten years after diagnosis - results from a registry-based study from Germany. BMC
Cancer (2019) 19(1):520. doi: 10.1186/s12885-019-5710-5

9. Holloway CMB, Shabestari O, Eberg M, Forster K, Murray P, Green B, et al.
Identifying breast cancer recurrence in administrative data: Algorithm development
and validation. Curr Oncol (2022) 29(8):5338–67. doi: 10.3390/curroncol29080424

10. Pan H, Gray R, Braybrooke J, Davies C, Taylor C, McGale P, et al. 20-year risks
of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med
(2017) 377(19):1836–46. doi: 10.1056/NEJMoa1701830
11. KimHG, Kim HS, Yang SY, Han YD, Cho MS, Hur H, et al. Early recurrence after
neoadjuvant chemoradiation therapy for locally advanced rectal cancer: Characteristics
and risk factors. Asian J Surg (2021) 44(1):298–302. doi: 10.1016/j.asjsur.2020.07.014

12. Nakauchi M, Vos E, Tang LH, Gonen M, Janjigian YY, Ku GY, et al. Outcomes
of neoadjuvant chemotherapy for clinical stages 2 and 3 gastric cancer patients:
Analysis of timing and site of recurrence. Ann Surg Oncol (2021) 28(9):4829–38.
doi: 10.1245/s10434-021-09624-5

13. Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified
squamous epithelium; clinical implications of multicentric origin. Cancer (1953) 6
(5):963–8. doi: 10.1002/1097-0142(195309)6:5<963::aid-cncr2820060515>3.0.co;2-q

14. Sinjab A, Han G, Wang L, Kadara H. Field carcinogenesis in cancer evolution: What
the cell is going on? Cancer Res (2020) 80(22):4888–91. doi: 10.1158/0008-5472.CAN-20-1956

15. Curtius K, Wright NA, Graham TA. An evolutionary perspective on field
cancerization. Nat Rev Cancer (2018) 18(1):19–32. doi: 10.1038/nrc.2017.102

16. Willenbrink TJ, Ruiz ES, Cornejo CM, Schmults CD, Arron ST, Jambusaria-
Pahlajani A. Field cancerization: Definition, epidemiology, risk factors, and outcomes. J
Am Acad Dermatol (2020) 83(3):709–17. doi: 10.1016/j.jaad.2020.03.126

17. Rahal Z, Sinjab A, Wistuba II, Kadara H. Game of clones: Battles in the field of
carcinogenesis. Pharmacol Ther (2022) 237:108251. doi: 10.1016/j.pharmthera.2022.108251

18. Heaphy CM, Griffith JK, Bisoffi M. Mammary field cancerization: Molecular
evidence and clinical importance. Breast Cancer Res Treat (2009) 118(2):229–39.
doi: 10.1007/s10549-009-0504-0

19. Gadaleta E, Thorn GJ, Ross-Adams H, Jones LJ, Chelala C. Field cancerization in
breast cancer. J Pathol (2022) 257(4):561–74. doi: 10.1002/path.5902

20. Califano J, Ahrendt SA, Meininger G, Westra WH, Koch WM, Sidransky D.
Detection of telomerase activity in oral rinses from head and neck squamous cell
carcinoma patients. Cancer Res (1996) 56(24):5720–2.
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2023.1116210/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2023.1116210/full#supplementary-material
https://doi.org/10.1146/annurev.pathol.1.110304.100224
https://doi.org/10.3978/j.issn.2218-6751.2013.12.05
https://doi.org/10.1038/nrclinonc.2017.194
https://doi.org/10.3322/caac.21498
https://doi.org/10.1080/14737140.2017.1398088
https://doi.org/10.1016/j.cllc.2019.12.001
https://doi.org/10.1002/jso.26453
https://doi.org/10.1186/s12885-019-5710-5
https://doi.org/10.3390/curroncol29080424
https://doi.org/10.1056/NEJMoa1701830
https://doi.org/10.1016/j.asjsur.2020.07.014
https://doi.org/10.1245/s10434-021-09624-5
https://doi.org/10.1002/1097-0142(195309)6:5%3C963::aid-cncr2820060515%3E3.0.co;2-q
https://doi.org/10.1158/0008-5472.CAN-20-1956
https://doi.org/10.1038/nrc.2017.102
https://doi.org/10.1016/j.jaad.2020.03.126
https://doi.org/10.1016/j.pharmthera.2022.108251
https://doi.org/10.1007/s10549-009-0504-0
https://doi.org/10.1002/path.5902
https://doi.org/10.3389/fonc.2023.1116210
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Abubakar et al. 10.3389/fonc.2023.1116210
21. Boscolo-Rizzo P, Da Mosto MC, Rampazzo E, Giunco S, Del Mistro A,
Menegaldo A, et al. Telomeres and telomerase in head and neck squamous cell
carcinoma: From pathogenesis to clinical implications. Cancer Metastasis Rev (2016)
35(3):457–74. doi: 10.1007/s10555-016-9633-1

22. Galandiuk S, Rodriguez-Justo M, Jeffery R, Nicholson AM, Cheng Y, Oukrif D,
et al. Field cancerization in the intestinal epithelium of patients with crohn’s ileocolitis.
Gastroenterology (2012) 142(4):855–64.e8. doi: 10.1053/j.gastro.2011.12.004

23. Cappellesso R, Lo Mele M, Munari G, Rosa-Rizzotto E, Guido E, De Lazzari F, et al.
Molecular characterization of “Sessile serrated” adenoma to carcinoma transition in six early
colorectal cancers. Pathol Res Pract (2019) 215(5):957–62. doi: 10.1016/j.prp.2019.02.001

24. Pirlog R, Cismaru A, Nutu A, Berindan-Neagoe I. Field cancerization in nsclc: A
new perspective on micrornas in macrophage polarization. Int J Mol Sci (2021) 22
(2):746-761. doi: 10.3390/ijms22020746

25. Syk E, Torkzad MR, Blomqvist L, Ljungqvist O, Glimelius B. Radiological
findings do not support lateral residual tumour as a major cause of local recurrence of
rectal cancer. Br J Surg (2006) 93(1):113–9. doi: 10.1002/bjs.5233

26. Sessler DI, Pei L, Huang Y, Fleischmann E, Marhofer P, Kurz A, et al.
Recurrence of breast cancer after regional or general anaesthesia: A randomised
controlled trial. Lancet (2019) 394(10211):1807–15. doi: 10.1016/S0140-6736(19)
32313-X

27. Zhou KQ, Sun YF, Cheng JW, Du M, Ji Y, Wang PX, et al. Effect of surgical
margin on recurrence based on preoperative circulating tumor cell status in
hepatocellular carcinoma. EBioMedicine (2020) 62:103107. doi: 10.1016/
j.ebiom.2020.103107

28. Jeon J, Meza R, Moolgavkar SH, Luebeck EG. Evaluation of screening strategies
for pre-malignant lesions using a biomathematical approach. Math Biosci (2008) 213
(1):56–70. doi: 10.1016/j.mbs.2008.02.006

29. Curtius K, Hazelton WD, Jeon J, Luebeck EG. A multiscale model evaluates
screening for neoplasia in barrett’s esophagus. PloS Comput Biol (2015) 11(5):
e1004272. doi: 10.1371/journal.pcbi.1004272

30. Foo J, Leder K, Ryser MD. Multifocality and recurrence risk: A quantitative
model of field cancerization. J Theor Biol (2014) 355:170–84. doi: 10.1016/
j.jtbi.2014.02.042

31. Ryser MD, Lee WT, Ready NE, Leder KZ, Foo J. Quantifying the dynamics of
field cancerization in tobacco-related head and neck cancer: A multiscale modeling
approach. Cancer Res (2016) 76(24):7078–88. doi: 10.1158/0008-5472.CAN-16-1054

32. Evans EJJr., DeGregori J. Cells with cancer-associated mutations overtake our
tissues as we age. Aging Cancer (2021) 2(3):82–97. doi: 10.1002/aac2.12037

33. Takaki M, Haeno H. Mathematical modeling of locoregional recurrence caused
by premalignant lesions formed before initial treatment. Front Oncol (2021) 11:743328.
doi: 10.3389/fonc.2021.743328

34. Wang Z, Jensen MA, Zenklusen JC. A practical guide to the cancer genome atlas
(Tcga). Methods Mol Biol (2016) 1418:111–41. doi: 10.1007/978-1-4939-3578-9_6

35. Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, et al.
An integrated tcga pan-cancer clinical data resource to drive high-quality survival
outcome analytics. Cell (2018) 173(2):400–16.e11. doi: 10.1016/j.cell.2018.02.052

36. Martincorena I, Raine KM, Gerstung M, Dawson KJ, Haase K, Van Loo P, et al.
Universal patterns of selection in cancer and somatic tissues. Cell (2017) 171(5):1029–
41 e21. doi: 10.1016/j.cell.2017.09.042

37. Anandakrishnan R, Varghese RT, Kinney NA, Garner HR. Estimating the
number of genetic mutations (Hits) required for carcinogenesis based on the
distribution of somatic mutations. PloS Comput Biol (2019) 15(3):e1006881.
doi: 10.1371/journal.pcbi.1006881

38. Iranzo J, Martincorena I, Koonin EV. Cancer-mutation network and the
number and specificity of driver mutations. Proc Natl Acad Sci U.S.A. (2018) 115
(26):E6010–E9. doi: 10.1073/pnas.1803155115

39. Moran P. The statistical processes of evolutionary theory. Oxford: Clarendon (1962).

40. Athreya KB, Ney PE, Ney P. Branching processes. Courier Corporation, New
York: Dover Publications (2004).

41. Piraino SW, Furney SJ. Beyond the exome: The role of non-coding somatic
mutations in cancer. Ann Oncol (2016) 27(2):240–8. doi: 10.1093/annonc/mdv561

42. Lawlor K, Perez-Montero S, Lima A, Rodriguez TA. Transcriptional versus
metabolic control of cell fitness during cell competition. Semin Cancer Biol (2020)
63:36–43. doi: 10.1016/j.semcancer.2019.05.010

43. Gillespie DT. A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J Comput Phys (1976) 22(4):403–34.

44. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cbio
cancer genomics portal: An open platform for exploring multidimensional cancer
genomics data. Cancer Discovery (2012) 2(5):401–4. doi: 10.1158/2159-8290.CD-12-0095

45. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative
analysis of complex cancer genomics and clinical profiles using the cbioportal. Sci
Signal (2013) 6(269):pl1. doi: 10.1126/scisignal.2004088

46. Nakabayashi N, Hirose M, Suzuki R, Suzumiya J, Igawa M. How asymptomatic
are early cancer patients of five organs based on registry data in Japan. Int J Clin Oncol
(2018) 23(5):999–1006. doi: 10.1007/s10147-018-1287-2
Frontiers in Oncology 13
47. Zeng H, Ran X, An L, Zheng R, Zhang S, Ji JS, et al. Disparities in stage at
diagnosis for five common cancers in China: A multicentre, hospital-based,
observational study. Lancet Public Health (2021) 6(12):e877–e87. doi: 10.1016/S2468-
2667(21)00157-2

48. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J
Clin (2022) 72(1):7–33. doi: 10.3322/caac.21708

49. Tomasetti C, Vogelstein B. Cancer etiology. variation in cancer risk among
tissues can be explained by the number of stem cell divisions. Science (2015) 347
(6217):78–81. doi: 10.1126/science.1260825

50. Cercek A, Lumish M, Sinopoli J, Weiss J, Shia J, Lamendola-Essel M, et al. Pd-1
blockade in mismatch repair-deficient, locally advanced rectal cancer. N Engl J Med
(2022) 386(25):2363–76. doi: 10.1056/NEJMoa2201445

51. Jain IH, Calvo SE, Markhard AL, Skinner OS, To TL, Ast T, et al. Genetic screen
for cell fitness in high or low oxygen highlights mitochondrial and lipid metabolism.
Cell (2020) 181(3):716–27.e11. doi: 10.1016/j.cell.2020.03.029

52. Fennell KA, Vassiliadis D, Lam EYN, Martelotto LG, Balic JJ, Hollizeck S, et al.
Non-genetic determinants of malignant clonal fitness at single-cell resolution. Nature
(2022) 601(7891):125–31. doi: 10.1038/s41586-021-04206-7

53. Yang L, Wang S, Lee JJ, Lee S, Lee E, Shinbrot E, et al. An enhanced genetic
model of colorectal cancer progression history. Genome Biol (2019) 20(1):168.
doi: 10.1186/s13059-019-1782-4

54. Weaver JMJ, Ross-Innes CS, Shannon N, Lynch AG, Forshew T, Barbera M,
et al. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis.
Nat Genet (2014) 46(8):837–43. doi: 10.1038/ng.3013

55. Smyth EC, Lagergren J, Fitzgerald RC, Lordick F, Shah MA, Lagergren P, et al.
Oesophageal cancer. Nat Rev Dis Primers (2017) 3:17048. doi: 10.1038/nrdp.2017.48

56. Thrift AP. Global burden and epidemiology of Barrett oesophagus and
oesophageal cancer. Nat Rev Gastroenterol Hepatol (2021) 18(6):432–43.
doi: 10.1038/s41575-021-00419-3

57. Sharma P. Barrett Esophagus: A review. JAMA (2022) 328(7):663–71.
doi: 10.1001/jama.2022.13298

58. Kim H, Kim TH, Choe JH, Kim JH, Kim JS, Oh YL, et al. Patterns of initial
recurrence in completely resected papillary thyroid carcinoma. Thyroid (2017) 27
(7):908–14. doi: 10.1089/thy.2016.0648

59. Wang B, Zhang S, Yue K, Wang XD. The recurrence and survival of oral
squamous cell carcinoma: A report of 275 cases. Chin J Cancer (2013) 32(11):614–8.
doi: 10.5732/cjc.012.10219

60. Hu LS, Zhang XF, Weiss M, Popescu I, Marques HP, Aldrighetti L, et al.
Recurrence patterns and timing courses following curative-intent resection for
intrahepatic cholangiocarcinoma. Ann Surg Oncol (2019) 26(8):2549–57.
doi: 10.1245/s10434-019-07353-4

61. Wilt TJ, Jones KM, Barry MJ, Andriole GL, Culkin D, Wheeler T, et al. Follow-
up of prostatectomy versus observation for early prostate cancer. N Engl J Med (2017)
377(2):132–42. doi: 10.1056/NEJMoa1615869

62. Zhang H, Liu F, Wen N, Li B, Wei Y. Patterns, timing, and predictors of
recurrence after laparoscopic liver resection for hepatocellular carcinoma: Results from
a high-volume hpb center. Surg Endosc (2022) 36(2):1215–23. doi: 10.1007/s00464-
021-08390-5

63. Kostron A, Friess M, Crameri O, Inci I, Schneiter D, Hillinger S, et al. Relapse
pattern and second-line treatment following multimodality treatment for malignant
pleural mesothelioma. Eur J Cardiothorac Surg (2016) 49(5):1516–23. doi: 10.1093/
ejcts/ezv398

64. Murakami N, Matsumoto F, Yoshimoto S, Ito Y, Mori T, Ueno T, et al. Patterns
of recurrence after selective postoperative radiation therapy for patients with head and
neck squamous cell carcinoma. BMC Cancer (2016) 16:192. doi: 10.1186/s12885-016-
2229-x

65. Harter P, Sehouli J, Vergote I, Ferron G, Reuss A, Meier W, et al. Randomized
trial of cytoreductive surgery for relapsed ovarian cancer. N Engl J Med (2021) 385
(23):2123–31. doi: 10.1056/NEJMoa2103294

66. Speed JM, Trinh QD, Choueiri TK, Sun M. Recurrence in localized renal cell
carcinoma: A systematic review of contemporary data. Curr Urol Rep (2017) 18(2):15.
doi: 10.1007/s11934-017-0661-3

67. Cho SI, Lee J, Jo G, Kim SW, Minn KW, Hong KY, et al. Local recurrence and
metastasis in patients with malignant melanomas after surgery: A single-center analysis
of 202 patients in south Korea. PloS One (2019) 14(3):e0213475. doi: 10.1371/
journal.pone.0213475

68. Ozbir S, Girgin C, Kara C, Dincel C. Local and systemic recurrence patterns of
urothelial cancer after radical cystectomy. Kaohsiung J Med Sci (2014) 30(10):504–9.
doi: 10.1016/j.kjms.2014.03.011

69. Elsayed M, Alhussini M, Basha A, Awad AT. Analysis of loco-regional and
distant recurrences in breast cancer after conservative surgery. World J Surg Oncol
(2016) 14:144. doi: 10.1186/s12957-016-0881-x

70. Huang J, Tong Y, Chen X, Shen K. Prognostic factors and surgery for breast
cancer patients with locoregional recurrence: An analysis of 5,202 consecutive patients.
Front Oncol (2021) 11:763119. doi: 10.3389/fonc.2021.763119
frontiersin.org

https://doi.org/10.1007/s10555-016-9633-1
https://doi.org/10.1053/j.gastro.2011.12.004
https://doi.org/10.1016/j.prp.2019.02.001
https://doi.org/10.3390/ijms22020746
https://doi.org/10.1002/bjs.5233
https://doi.org/10.1016/S0140-6736(19)32313-X
https://doi.org/10.1016/S0140-6736(19)32313-X
https://doi.org/10.1016/j.ebiom.2020.103107
https://doi.org/10.1016/j.ebiom.2020.103107
https://doi.org/10.1016/j.mbs.2008.02.006
https://doi.org/10.1371/journal.pcbi.1004272
https://doi.org/10.1016/j.jtbi.2014.02.042
https://doi.org/10.1016/j.jtbi.2014.02.042
https://doi.org/10.1158/0008-5472.CAN-16-1054
https://doi.org/10.1002/aac2.12037
https://doi.org/10.3389/fonc.2021.743328
https://doi.org/10.1007/978-1-4939-3578-9_6
https://doi.org/10.1016/j.cell.2018.02.052
https://doi.org/10.1016/j.cell.2017.09.042
https://doi.org/10.1371/journal.pcbi.1006881
https://doi.org/10.1073/pnas.1803155115
https://doi.org/10.1093/annonc/mdv561
https://doi.org/10.1016/j.semcancer.2019.05.010
https://doi.org/10.1158/2159-8290.CD-12-0095
https://doi.org/10.1126/scisignal.2004088
https://doi.org/10.1007/s10147-018-1287-2
https://doi.org/10.1016/S2468-2667(21)00157-2
https://doi.org/10.1016/S2468-2667(21)00157-2
https://doi.org/10.3322/caac.21708
https://doi.org/10.1126/science.1260825
https://doi.org/10.1056/NEJMoa2201445
https://doi.org/10.1016/j.cell.2020.03.029
https://doi.org/10.1038/s41586-021-04206-7
https://doi.org/10.1186/s13059-019-1782-4
https://doi.org/10.1038/ng.3013
https://doi.org/10.1038/nrdp.2017.48
https://doi.org/10.1038/s41575-021-00419-3
https://doi.org/10.1001/jama.2022.13298
https://doi.org/10.1089/thy.2016.0648
https://doi.org/10.5732/cjc.012.10219
https://doi.org/10.1245/s10434-019-07353-4
https://doi.org/10.1056/NEJMoa1615869
https://doi.org/10.1007/s00464-021-08390-5
https://doi.org/10.1007/s00464-021-08390-5
https://doi.org/10.1093/ejcts/ezv398
https://doi.org/10.1093/ejcts/ezv398
https://doi.org/10.1186/s12885-016-2229-x
https://doi.org/10.1186/s12885-016-2229-x
https://doi.org/10.1056/NEJMoa2103294
https://doi.org/10.1007/s11934-017-0661-3
https://doi.org/10.1371/journal.pone.0213475
https://doi.org/10.1371/journal.pone.0213475
https://doi.org/10.1016/j.kjms.2014.03.011
https://doi.org/10.1186/s12957-016-0881-x
https://doi.org/10.3389/fonc.2021.763119
https://doi.org/10.3389/fonc.2023.1116210
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Computational modeling of locoregional recurrence with spatial structure identifies tissue-specific carcinogenic profiles
	Introduction
	Materials and methods
	Computational model
	Simulation framework
	Spatial structure
	Deterministic approximation of type S cell growth
	Clinical data
	Survival time analysis
	Statistical analysis

	Results
	Cancer initiation patterns
	Parameter dependence of recurrence time
	Effect of spatial structure on cancer initiation patterns
	Effect of spatial structure on recurrence time
	Fitting of recurrence time to clinical data

	Discussion
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


