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Plasma-only circulating tumor
DNA analysis detects minimal
residual disease and predicts
early relapse in hepatocellular
carcinoma patients undergoing
curative resection
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Lei Cai1, Guolin He1, Hangyu Liao1, Cheng Zhang1, Shunjun Fu1,
Tingting Chen3, Jinping Cai3, Xuefeng Zhong3, Chunzhu Chen3,
Mengli Huang3, Yuan Cheng1* and Mingxin Pan1*

1Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical
University, Guangzhou, China, 2Department of Pancreatobiliary Surgery, The First Affiliated Hospital,
Sun Yat-Sen University, Guangzhou, China, 3Medical Affairs, 3D Medicines, Inc., Shanghai, China
Background: Minimal residual disease (MRD) is considered an essential factor

leading to relapse within 2 years (early relapse) after radical surgery, which is

challenging to be detected by conventional imaging. Circulating tumor DNA

(ctDNA) provides a novel approach for detecting MRD and predicting clinical

outcomes. Here, we tried to construct a fixed panel for plasma-only ctDNA NGS

to enable tumor-uninformed MRD detection in hepatocellular carcinoma (HCC).

Methods: Here, we performed the followings: (i) profiling genomic alteration

spectrum of ctDNA from the Chinese HCC cohort consisting of 493 individuals

by NGS; (ii) screening of MRDmonitoring genes; and (iii) performance evaluation

of MRD monitoring genes in predicting early relapse in the ZJZS2020 cohort

comprising 20 HCC patients who underwent curative resection.

Results: A total of 493 plasma samples from the Chinese HCC cohort were

detected using a 381/733-gene NGS panel to characterize the mutational

spectrum of ctDNA. Most patients (94.1%, 464/493) had at least one mutation

in ctDNA. The variants fell most frequently in TP53 (45.1%), LRP1B (20.2%), TERT

(20.2%), FAT1 (16.2%), and CTNNB1 (13.4%). By customized filtering strategy, 13

MRDmonitoring genes were identified, and any plasma sample with one or more

MRDmonitoring genemutations was consideredMRD-positive. In the ZJZS2020

cohort, MRD positivity presented a sensitivity of 75% (6/8) and a specificity of

100% (6/6) in identifying early postoperative relapse. The Kaplan-Meier analysis

revealed a significantly short relapse-free survival (RFS; median RFS, 4.2 months

vs. NR, P=0.002) in the MRD-positive patients versus those with MRD negativity.

Cox regression analyses revealed MRD positivity as an independent predictor of

poor RFS (HR 13.00, 95% CI 2.60-69.00, P=0.002).
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Conclusions: We successfully developed a 13-gene panel for plasma-only MRD

detection, which was effective and convenient for predicting the risk of early

postoperative relapse in HCC.
KEYWORDS

hepatocellular carcinoma, circulating tumor DNA, minimal residual disease, plasma-
only, early relapse
Introduction

Liver cancer is the second leading cause of cancer death, and its

incidence is growing worldwide (1–4). Over a million people per

year are expected to be liver cancer patients by 2025 (5).

Hepatocellular carcinoma (HCC) is the main type of primary

liver cancer, comprising approximately 90% of patients. Although

hepatectomy is a widely accepted treatment option for HCC

patients with good liver function, the relapse rate of up to 60%-

70% within 5 years after surgery remains a severe problem (6–8).

Relapse in multiple solid tumors, including HCC, can be

divided into early relapse (≤2 years) mainly caused by minimal

residual disease (MRD) following resection, and late relapse (>2

years) caused by de novo tumors arising in a microenvironment

predisposed to carcinogenesis (9–14). Early relapse has been

reported to account for over 60% of all relapsed HCC events (9,

15–19). Consequently, there has been much interest in detecting

and eliminating MRD to prevent relapse or for early treatment of

degeneration. Current postoperative surveillance methods are not

sensitive or specific enough to detect MRD, such as monitoring

clinical symptoms, tumor markers, and routine imaging. As a result,

improving current therapeutic strategies and preventing recurrence

might be achieved by establishing more precise MRD

detection approaches.

Circulating cell-free DNA (cfDNA) is extracellular nucleic acid

fragments released into the bloodstream due to apoptosis and

necrosis from both healthy and malignant cells. There has been

strong evidence that postoperative tumor-derived cfDNA (ctDNA)

detection is correlated with MRD and could identify patients at high

risk of relapse (20–23). Currently, there are two available ctDNA

detection strategies for monitoring MRD: tumor-informed and

tumor-uninformed (also referred to as tumor-agnostic, tumor-

naïve, or plasma-only) assay.

The tumor-informed approach relies on tumor tissue

sequencing to identify tumor-derived alterations for the design of

patient-specific targeted gene panels for ctDNA tracking, which has

presented effectiveness for monitoring MRD in some solid tumors

after curative-intent treatment, including colon, lung, and pancreas

cancer (24–27). A potential limitation is that tumor heterogeneity in

both space and time can affect its performance and might generate

some false negative results (28, 29). Additionally, designing

individualized next-generation sequencing (NGS) panels also

lengthens the turnaround time versus the fixed NGS panel. The

tumor-agnostic approach only requires plasma cfDNA sequencing
02
with a fixed panel, which endows it with the advantages of

noninvasiveness, convenience, cost-effectiveness, and rapid

turnaround time. The method’s drawback is the lack of

sensitivity, which can be improved by incorporating serial

longitudinal surveillance samples and examining a variety of

biomarkers, such as ctDNA mutation and ctDNA methylation.

Given the attractive advantages and redeemable disadvantages, this

approach has increasingly been investigated in multiple solid

tumors. Excitingly, one recent study reported that plasma-only

MRD detection presented favorable sensitivity and specificity for

predicting recurrence in colorectal cancer patients undergoing

curative-intent surgery, comparable to the tumor-informed

approach (30). However, few studies have examined whether a

plasma-only ctDNA assay can identify MRD in HCC with clinically

meaningful specificity and sensitivity.

In this study, we first performed a plasma-only ctDNA assay

integrating genomic signatures to identify gene candidates

associated with MRD in two cohorts. We then determined

whether these genes could reliably identify MRD and predict

early relapse in postoperative patients with HCC.
Materials and methods

Study design and population

There are three major phases in this study: (i) profiling genomic

alteration spectrum of HCC using ctDNA from the Chinese HCC

cohort; (ii) screening of MRD monitoring genes via excluding the

genes mutated at high frequency in ctDNA of the ZJ2020 cohort

with patients having relapse-free survival (RFS) more than 2 years

after radical resection from the comprehensive mutational

spectrum of ctDNA in the Chinese HCC patient cohort; and (iii)

performance evaluation of MRD monitoring genes in predicting

early relapse in the ZJZS2020 cohort comprising HCC patients

underwent curative surgical resection. The study design and the

CONSORT participant flow diagram are summarized in

Supplementary Figure 1.

The Chinese HCC patient cohort consisted of 493 patients from

the Zhujiang Hospital of Southern Medical University and the First

Affiliated Hospital, Sun Yat-Sen University, who underwent

plasma-based NGS using a 381/733-gene panel (3D Medicines

Inc. Shanghai, China) between January 6, 2017 and June 2, 2020.

The gene lists of these two panels were attached in Supplementary
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Tables 1, 2. The Venn diagram revealed 294 shared genes between

these two panels (Supplementary Figure 2).

The ZJ2020 cohort included 24 operable HCC patients who

underwent radical hepatectomy at the Zhujiang Hospital of

Southern Medical University from May 25, 2010 to October 23,

2020, and remained disease-free for greater than two years

postoperatively. Of 24 patients, 10 received transcatheter arterial

chemoembolization (TACE) after surgery. The blood samples (≥10

ml per case) were collected within 1-4 weeks after surgery or

completion of TACE if they received TACE. The plasma ctDNA

was analyzed using a 381/733-gene NGS panel.

The ZJZS2020 cohort consisted of 20 operable HCC patients

who had curative resection at the Zhujiang Hospital of Southern

Medical University from July 8, 2019 to December 28, 2020. The

blood samples were collected about one week after surgery and

submitted to NGS with a 381/733-gene panel.

In the two surgery cohorts, ZJ2020 and ZJZS2020,

clinicopathological data were collected through review of the

medical records using a standardized case report form, including

age, sex, liver function, tumor stage, maximum tumor diameter,

tumor number, etiology, alpha-foetoprotein (AFP) level,

microvascular invasion (MVI), and portal vein tumor

thrombus (PVTT).

This study was conducted following the principles of the

Declaration of Helsinki and approved by the Ethics Committee of

the Zhujiang Hospital of Southern Medical University (Approval

number 2022-KY-150-01). Written informed consent was obtained

from all participants in this study.
Blood sample processing and
cfDNA isolation

Whole blood (2 × 10 ml) from every patient was drawn into

cell-free DNA BCT tubes (Streck). Blood samples were centrifuged,

and cfDNA was extracted and quantified using the QiAmp

Circulating Nucleic Acid Kit (Qiagen) and the Qubit dsDNA HS

Assay Kit (Thermo Fisher Scientific), respectively, as per the

manufacturer’s instructions.
Library preparation and targeted capture

cfDNA libraries were constructed and barcoded with unique

molecular identifiers (UMI). The libraries were then PCR-amplified

and purified for target enrichment. For targeted capture, indexed

libraries were subjected to probe-based hybridization with the

customized NGS panel.
DNA sequencing, data processing, and
variant calling

The captured libraries were subjected to 100-bp paired-end

sequencing on an Illumina NovaSeq 6000. The average effective

sequencing depth for the 381-gene and 733-gene NGS panels was
Frontiers in Oncology 03
5161× (range, 1840-10664) and 6337× (range, 2194-14250),

respectively. Raw reads were mapped to the reference human

genome hg19. An in-house developed software was applied to

generate a duplex consensus sequence by incorporating a dual

UMI at the end of the DNA fragments. An in-house loci-specific

variant detection model based on a binary test was also used to

improve specificity, especially for variants with low allele frequency.

Following these steps, the variants were filtered by supporting read

count, strand bias, base quality, and mapping quality. Variant

calling was also optimized to identify variants at short tandem

repeat regions. Single-nucleotide polymorphism (SNPs) and indels

were annotated using ANNOVAR. Only missense, stopgain,

frameshift, and non-frameshift indel mutations were retained.
Statistical analysis

Gene mutation analysis was performed by R package maftools

(31). Wilcoxon test was adopted to estimate differences between

continuous variables. The difference in proportions between groups

was assessed using the Chi-square test. Kaplan-Meier analysis with

a log-rank test was conducted to compare RFS between groups. Cox

regression analyses were applied to identify variables associated

with RFS. Statistical analysis was performed using R version 4.0.3.

All results were considered statistically significant when the P value

was less than 0.05.
Results

Mutational landscape in HCC by
ctDNA profiling

A total of 493 plasma samples from Chinese patients with HCC

were detected to characterize the mutational spectrum of ctDNA,

wherein 285 plasma samples were tested with the 381-gene panel,

and 208 were determined with the 733-gene panel. Most patients

(94.1%, 464/493) had at least one mutation in ctDNA. The top 30

mutated genes are shown in Figure 1. The top five most frequently

mutated genes were TP53 (45.1%), LRP1B (20.2%), TERT (20.2%),

FAT1 (16.2%), and CTNNB1 (13.4%) (Figure 1A). Variant

classification showed that the missense mutations were the most

common (Figure 1B). SNPs were the most common variant types.

Among the single-nucleotide variation (SNV) class, C > T was the

most common base substitution (Figure 1C). The median variant

number per sample was 4 (range, 1-33) (Figure 1D). The pathway

analysis showed that the top affected pathways were TP53, TGF-b,
NRF2, Cell_cycle, RTK-RAS, and PI3K which occurred in a

substantial number of HCC plasma samples (Figure 1E). Besides,

the analysis of mutation interactions identified one mutually

exclusive and 28 co-occurring events in the top 25 highly mutated

genes (Figure 2A). We also used the OncodriveCLUST algorithm to

identify potential driver mutations in HCC. The top six driver genes

ordered according to z-score were RBM10, CHEK2, KRAS, BARD1,

EZH2, and IDH1 (Figure 2B).
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Screening of MRD monitoring genes

It has been well documented that early relapse after surgery is

primarily due to MRD (9–12). Thus we subtracted the genes

mutated at high frequency in ctDNA of the ZJ2020 cohort from

the comprehensive mutational spectrum of ctDNA in the Chinese

HCC cohort to screen for MRD monitoring genes. Baseline

characteristics of the ZJ2020 cohort are listed in Supplementary

Table 3. This cohort comprised 24 HCC patients with RFS more

than 2 years after radical resection. As of May 8, 2019, the median

postoperative follow-up was 35.5 months. Twenty-one patients

remained on RFS, and three experienced recurrence at

postoperative 34.7, 46.4, and 52.8 months, respectively. We

identified ≥1 mutation in 23 of 24 (95.8%) patients. The most

frequently mutated genes included FAT1, FAM135B, BRCA2,

ERBB2, LRP1B, TSC2, AR, ARID1A, ATM, MSH6, NOTCH3, RB1,

and SPEN, with each being mutated in at least 10% of patients

(Figure 3A). These 14 genes were considered to be unrelated to early

relapse and were filtered out from the 27 genes with a mutation

frequency of > 5% in the Chinese HCC cohort (32). The remaining

13 genes were regarded as MRD monitoring genes. As shown in
Frontiers in Oncology 04
Figure 3B, these 13 genes were TP53, TERT, CTNNB1, APC,

RMB10, NTRK3, NOTCH1, NOTCH2, NF1, CREBBP, GLI3,

CDKN2A, and EZH2. Any plasma sample with one or more

MRD monitoring gene mutations was considered MRD-positive

and otherwise MRD-negative (33, 34).
The predictive value of MRD status for
early relapse

We further evaluated the predictive value of MRD status for

early postoperative relapse in the ZJZS2020 cohort comprising 20

HCC patients who underwent R0 resection. Table 1 presents the

baseline characteristics of this cohort. Patients were predominantly

male (n=17, 85%), and the median age was 57.5 years (range, 42-

76). Most patients presented HBV infection (14/20, 70.0%), Child-

Pugh A (19/20, 95.0%), and a single tumor (15/20, 75.0%). About

half of the patients had cirrhosis (11, 55.0%) and MVI (12/20,

60.0%) and were at BCLC stage C (10/20, 50.0%). The AFP level of

≥ 400 ng/mL was observed in three patients (15.0%). We identified

≥ 1 mutation in 19 of 20 (95.0%) patients. Based on the definition of
B C D

E

A

FIGURE 1

Mutational landscape by ctDNA profiling in the Chinese HCC cohort. (A) The ratio of the top 30 genes in the number of mutations. (B) Frequency of
different mutation classifications. (C) Frequency of SNV class. (D) Variant number per HCC samples. (E) The number of mutated genes contained in
the number of mutated samples per pathway. HCC, hepatocellular carcinoma; SNV, single nucleotide variation.
BA

FIGURE 2

Identification of mutation interactions and cancer driver genes in the Chinese HCC cohort. (A) The co-occurrence or exclusive associations between
top 25 mutation genes. (B) Detecting cancer driver genes based on positional clustering in HCC. Each dot represents a gene, and the size of the dot
represents the number of clusters (mentioned inside square brackets) within which a fraction (X-axis) of total variants is accumulated. HCC,
hepatocellular carcinoma.
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BA

FIGURE 3

Screening of MRD monitoring genes. (A) The top 30 frequently mutated genes in the ZJ2020 cohort with HCC patients having RFS more than 2
years after radical resection. (B) The 14 genes with a mutation frequency of >10% in the ZJ2020 cohort are filtered out from the 27 genes with a
mutation frequency of >5% in the Chinese HCC cohort, and the remaining 13 genes are used as MRD monitoring genes. HCC, hepatocellular
carcinoma; MRD, minimal residual disease; RFS, relapse-free survival.
TABLE 1 Basic characteristics of HCC patients in the ZJZS2020 cohort.

Clinicopathologic factors MRD-negative (N=14) MRD-positive (N=6) Total (N=20) P value

Sex 0.231

Female 3 (21.4%) 0 (0.0%) 3 (15.0%)

Male 11 (78.6%) 6 (100.0%) 17 (85.0%)

Age 0.231

<50 3 (21.4%) 0 (0.0%) 3 (15.0%)

≥50 11 (78.6%) 6 (100.0%) 17 (85.0%)

HBV 0.213

Negative 3 (21.4%) 3 (50.0%) 6 (30.0%)

Positive 11 (78.6%) 3 (50.0%) 14 (70.0%)

HCV 0.026

Negative 14 (100.0%) 4 (66.7%) 18 (90.0%)

Positive 0 (0.0%) 2 (33.3%) 2 (10.0%)

Largest tumor diameter 0.583

<5cm 4 (28.6%) 1 (16.7%) 5 (25.0%)

≥5cm 10 (71.4%) 5 (83.3%) 15 (75.0%)

Tumor number 0.583

Multiple 3 (21.4%) 2 (33.3%) 5 (25.0%)

Single 11 (78.6%) 4 (66.7%) 15 (75.0%)

Liver cirrhosis 0.774

No 6 (42.9%) 3 (50.0%) 9 (45.0%)

Yes 8 (57.1%) 3 (50.0%) 11 (55.0%)

AFP 0.231

≤400 ng/ml 11 (78.6%) 6 (100.0%) 17 (85.0%)

>400 ng/ml 3 (21.4%) 0 (0.0%) 3 (15.0%)

(Continued)
F
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MRD status, 20 patients were divided into two subgroups, MRD-

positive (6, 30%) and MRD-negative (14, 70%) subgroups. The

specific mutational information of 6 MRD-positive patients is listed

in Table 2. Patient baseline characteristics were well balanced

between subgroups. With a median postoperative follow-up of

14.1 months (range, 5.5-22.1 months), six MRD-positive cases

and two of 14 MRD-negative cases had experienced an early

relapse. MRD status presented a sensitivity of 75% (6/8) and a

specificity of 100% (6/6) in identifying early postoperative relapse.

Kaplan-Meier plots indicated that the MRD-positive patients had a

significantly poor RFS (mRFS, 4.2 vs. NR months, P=0.002)

compared with the MRD-negative patients (Figure 4A).

Univariable analysis revealed that MRD status was the only

significant variable to predict PFS (HR=13.00, 95% CI 2.60-69.00,

P=0.002) (Figure 4B).
ctDNA dynamic monitoring

Of 20 patients in the ZJZS2020 cohort, two patients (Patients A

and B) underwent longitudinal assessment of MRD status

(Figures 5A, B). Patient A is a 76-year-old male with HCV

positivity, and his surgical pathological examination demonstrated

a grade II-III HCC with MVI and no definite nerve invasion. AFP

was restored to the normal level from 7.05ug/L before the operation.

The blood collected seven days after surgery was subjected to

ctDNA analysis using the 381-gene panel. NF1 mutation with a

variant allele fraction (VAF) of 0.0050933 was observed in the

plasma sample, suggesting that this patient was MRD-positive. This
Frontiers in Oncology 06
patient was subsequently followed up, and his AFP level was

examined every 1-2 months. On postoperative month 8, the AFP

level increased to 11.68 ug/L; ctDNA analysis presented the

mutations in three MRD monitoring genes (NF1, TP53, and

CTNNB1) with the maximal VAF of 0.0345581; and the imaging

evaluation showed no sign of abnormality. On postoperative month

9.6, computed tomography (CT) scanning revealed multiple

metastases of both lungs and mediastinal lymph node metastases,

and AFP level was increased up to13.97 mg/L, suggesting disease

progression. Meanwhile, ctDNA analysis identified mutations in

four monitoring genes, including TERT, TP53, CTNNB1, and

EZH2, and the maximal VAF of 0.232117 was obviously higher

than that of the previous two tests.

Patient B is a 57-year-old male with HBV-positive liver

cirrhosis. The postoperative pathology revealed a grade II-III

HCC with MVI and hepatic capsule invasion. The analysis of

ctDNA from the plasma collected seven days after surgery

showed no mutations in the MRD monitoring genes, and the

patient was MRD-negative. CREBBP mutation with a VAF of

0.0050933 was detected by ctDNA analysis on postoperative

month 6, suggesting that the patient’s MRD status converted

from negative to positive, while the imaging evaluation showed

no sign of abnormality. The AFP level remained normal after

surgery. The PIVKA-11, a potential biomarker complementary to

AFP for HCC diagnosis, remained stable in the first six months after

surgery and then increased rapidly, reaching 1146.71 mAU/ml in

the tenth postoperative month. At 11 months after surgery, the

PET-CT imaging results showed changes in the upper part of the

right femur and increased metabolism, which was more considered
TABLE 1 Continued

Clinicopathologic factors MRD-negative (N=14) MRD-positive (N=6) Total (N=20) P value

MVI 0.56

No 5 (35.7%) 3 (50.0%) 8 (40.0%)

Yes 9 (64.3%) 3 (50.0%) 12 (60.0%)

PVTT 0.214

No 5 (35.7%) 4 (66.7%) 9 (45.0%)

Yes 9 (64.3%) 2 (33.3%) 11 (55.0%)

BCLC 0.239

A 3 (21.4%) 0 (0.0%) 3 (15.0%)

B 5 (35.7%) 2 (33.3%) 7 (35.0%)

C 6 (42.9%) 4 (66.7%) 10 (50.0%)

Child pugh 0.127

A 14 (100.0%) 5 (83.3%) 19 (95.0%)

B 0 (0.0%) 1 (16.7%) 1 (5.0%)

CNLC 0.836

I 4 (28.6%) 2 (33.3%) 6 (30.0%)

III 10 (71.4%) 4 (66.7%) 14 (70.0%)
HBV, hepatitis B virus; HCV, hepatitis C virus; AFP, alpha-foetoprotein; MVI, microvascular invasion; PVTT, portal vein tumor thrombosis; BCLC, Barcelona Clinic Liver Cancer Staging;
CNLC, China Liver Cancer Staging.
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TABLE 2 The specific mutational information of six MRD-positive HCC patients.

ID Gene Chromosome Exon c.dot p.dot frequency Variant Type

69168 CREBBP chr16 Exon31+1424 c.6596A>T p.Q2199L 0.003217 Substitution

69168 EZH2 chr7 Exon10-30 c.1209_1211del p.E404del 0.00552 Deletion

69168 TP53 chr17 Exon5+1 c.376T>G p.Y126D 0.003066 Substitution

79060 TP53 chr17 Exon6+48 c.607G>A p.V203M 0.002152 Substitution

52813 NF1 chr17 Exon47-68 c.6995C>G p.S2332* 0.005093 Substitution

63144 EZH2 chr7 Exon2-56 c.62C>G p.S21* 0.003297 Substitution

63144 GLI3 chr7 Exon15+1996 c.4427del p.N1476Tfs*12 0.003307 Deletion

63144 NF1 chr17 Exon3-13 c.276del p.K92Nfs*11 0.003922 Deletion

65536 APC chr5 Exon16-3556 c.7090del p.M2364Cfs*10 0.003487 Deletion

65536 GLI3 chr7 Exon15+1996 c.4427del p.N1476Tfs*12 0.003692 Deletion

92916 TERT chr5 c.-124C>T 0.010394 Substitution

92916 TP53 chr17 Exon7-36 c.747G>T p.R249S 0.010289 Substitution

92916 TP53 chr17 IVS3-2 c.97-2A>T 0.00618 Substitution
F
rontiers in On
cology
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HCC, hepatocellular carcinoma; MRD, minimal residual disease.
BA

FIGURE 4

The predictive value of MRD status for early relapse. (A) Kaplan-Meier curves comparing RFS between MRD-positive and -negative patients with
HCC. (B) The univariate Cox regression analyses reveal that only MRD status is significantly associated with RFS. HCC, hepatocellular carcinoma;
MRD, minimal residual disease; RFS, relapse-free survival.
BA

FIGURE 5

ctDNA dynamic monitoring. The dynamical changes in the number of MRD monitoring gene variants, the level of AFP/PIVKA-II in plasma samples,
and imaging results of HCC patients A (A) and B (B) during HCC progression. HCC, hepatocellular carcinoma; MRD, minimal residual disease; AFP,
alpha-foetoprotein; PIVKA-II, a protein induced by vitamin K absence or antagonist II.
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for metastasis and disease recurrence; the ctDNA results still

represented MRD-positive. These results showed that serial

ctDNA monitoring provides dynamic information on somatic

variants with pathogenic effects in tumors and might be superior

to single detection to evaluate disease progression.
Discussion

In this study, we profiled genomic alterations by targeted NGS of

ctDNA from Chinese HCC patients and identified MRD monitoring

genes by filtering out the genes unrelated to early relapse to define

MRD status. Evaluation of the prognostic value of MRD status in an

independent cohort showed that MRD positivity was an independent

prognostic factor for poor RFS. Additionally, the data of two patients

undergoing multiple ctDNA tests suggest that the serial longitudinal

MRD status tracking may be superior to single testing in predicting

postoperative relapse of HCC patients.

Genomic profiles of ctDNA have been shown to be closely

associated with types and stages of malignant tumors, suggesting

that ctDNA could contribute to cancer diagnosis and personalized

treatment (35, 36). The genomic characterization of plasma ctDNA of

HCC patients has been reported by several studies, but these studies

focus primarily on limited genes or in a small subset. For instance, in

Caucasian populations, IKEDA et al. (37) reported the spectrum of

genomic mutations in ctDNA from 14 HCC patients by a 68-gene

NGS panel, and all patients had somatic alterations, of which the

most predominant somatic mutations were in TP53 (57%), followed

by CTNNB1 (29%), PTEN (7%), CDKN2A (7%), ARID1A (7%), and

MET (7%). In Chinese populations, Cai and colleagues (38) analyzed

the mutation profiles of plasma ctDNA from three HCC patients by a

574-gene NGS panel, highlighting that ctDNA may be able to

overcome tumor heterogeneity and monitor therapeutic efficacy in

real time. Yan et al. (39) utilized a 354-gene NGS panel to profile the

genomic landscape of ctDNA from 26 HCC patients and found a

positive ctDNA detection rate of 96.2%, wherein TP53 (50.00%) was

the most common mutant gene, followed by AXIN1 (11.54%), BCOR

(11.54%), CTNNB1 (11.54%), FANCE (11.54%), FANCM (11.54%),

and NCOR1 (11.54%). Here we characterized the genomic alteration

spectrum of ctDNA from 493 Chinese HCC patients by the 381/733-

gene NGS panel. To our knowledge, this is the most comprehensive

targeted NGS analysis of ctDNA in Chinese HCC. Consistently, TP53

was the most commonly mutated gene (45%). It is worth noting that

the detection rate of ctDNA in the above studies of others and ours is

higher than 90%. The high ctDNA detection rate may be attributed to

the high vascular nature of HCC or/and the decreased hepatic

clearance of ctDNA, because the liver is the main organ responsible

for cfDNA clearance (40). Meanwhile, the high ctDNA detection rate

also suggested that NGS-based ctDNA detection is technically feasible

for identifying genomic variations in patients with HCC.

Furthermore, the mutation profiling of ctDNA showed similar

mutation frequencies for multiple known HCC drivers, including

TP53, TERT, CTNNB1, CDKN2A, ARID1A, RB1, and LRP1B (41–

43), compared to those of tissue samples reported byWang et al. (44),

supporting biological plausibility and feasibility of plasma ctDNA

testing among patients with HCC.
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MRD is considered an important factor generating early

postoperative relapse, and ctDNA detection based on the tumor-

informed or tumor-agnostic approach has been proven an effective

method for detecting MRD in various tumor types (24–27, 30, 45,

46). While the published research on ctDNA detection in HCC is

mainly based on tumor-informed approaches. For example, Zhu

et al. (20) applied a tumor-informed ctDNA detection approach in

HCC patients by a 197-gene panel and identified that postoperative

ctDNA positivity was significantly associated with tumor

recurrence. Similarly, Cai et al. (14) identified that postoperative

ctDNA could indicate MRD more accurately than the conventional

protein biomarkers AFP and DCP and was an independent

prognostic factor for both RFS and overall survival. These

findings show that tumor-informed ctDNA testing is feasible for

monitoring MRD, but its broad application is inevitably

constrained by the inherent limitations of the strategy, such as

the inability to detect emerging mutations, long and much labor-

intensive processing, and the resulting high cost. Here we tried to

construct a fixed panel to detect MRD. The MRD monitoring genes

that made up this fixed panel were identified by removing the genes

with a mutation frequency of ≥ 10% in ctDNA of the ZJ2020 cohort

with patients having RFS over 2 years after radical resection from

the genes with a mutation frequency of ≥ 5% in ctDNA of Chinese

HCC cohort. A total of 13 genes were identified as MRDmonitoring

genes. Among these 13 genes, TP53, TERT, CTNNB1, APC, and

CDKN2A were well-defined driver genes for HCC (41–43, 47). The

remaining eight genes have also been experimentally verified to be

associated with HCC. RBM10, a member of the RNA binding motif

gene family, plays a regulatory role in alternative splicing. As a

tumor suppressor, its downregulation has been linked to tumor

progression, metastasis, and poor prognosis in multiple human

cancers, including HCC (48–50). NTRK3, located on chromosome

15q25, has been wildly reported as a tumor suppressor implicated in

the modulation of cell growth, invasion, and migration in a diverse

array of tumors, including HCC (51–53). NOTCH1 and NOTCH2

are the key regulators of stem cell proliferation, differentiation, and

apoptosis. Numerous studies have revealed that NOTCH1 and

NOTCH2 are involved in the development of HCC, and their

activation contributes to HCC cell growth and aggressiveness and

poor overall survival of HCC patients (54–57). NF1, one of the

largest human genes, is located on chromosome 17, band q11.2.6.

Recently, Lu et al. (58) identified NF1 as a critical driver for

lenvatinib resistance in HCC, whose loss reactivates the PI3K/

AKT and MAPK/ERK signaling pathways. CREBBP, encoding an

acetyltransferase, is one of the most frequently mutated genes in

small cell lung cancer. In the last few years, some studies

documented that CREBBP activation is associated with the early

recurrence of HCC, and targeting CREBBP attenuates HCC

progression (59, 60). GLI3, a member of the Hedgehog signaling

pathway, is upregulated in a variety of tumor types (61). The

positive correlation of Gli3 with tumor progression has been

observed in HCC (62), pancreatic cancer (63), colon cancer (64),

ovarian cancer (65), breast cancer (65), and bladder cancer (66).

EZH2 is the catalytic subunit of polycomb repressive complex 2,

which methylates histone H3 lysine 27, silencing a number of

tumor-suppressor genes, including E-cadherin. Available data
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have supported EZH2 involved in metastatic spread and tumor

angiogenesis. Several recent studies not only linked this role of

EZH2 to HCC development but also bridged its pro-oncogenic

function to the decrease of PD-L1 and shaping of tumor

immunosuppressive microenvironment, suggesting that HCC

patients with EZH2 mutations should be treated with

immunotherapy carefully (67–69). MRD positivity was defined as

≥ one MRD monitoring gene mutation in this fixed panel.

We further evaluated the predictive value of MRD status for post-

surgery relapse in an independent HCC cohort and showed that

patients who were MRD-positive postoperatively had a significantly

high risk of early relapse versus those with negative MRD. The

prognostic value of MRD positivity has been well-established as an

independent prognostic factor for poor RFS. MRD status’s sensitivity

and specificity to predict early postoperative relapse were 75% and

100%, respectively. These results showed that this panel provides a

cost-effective and feasible approach to monitoring MRD and

predicting early postoperative relapse. However, our data also

indicated that in some cases, MRD detection at a single

postoperative time point was insufficient to predict the prognosis of

HCC patients, which might result from inadequate ctDNA release

from MRD right after curative resection. Serial MRD monitoring

could overcome this limitation and provide a full picture of MRD

dynamics during the course of HCC.

Our study has several limitations. First, this is a retrospective

study, and the screening strategy for MRD monitoring genes is

developed by ourselves, which is reasonable but may not be strict

enough. Nevertheless, our results are still beneficial to promoting a

standardized sequencing process and a rigorous strategy for

identifying MRD monitoring genes. Second, the cohort for MRD

performance evaluation is relatively small, and serial ctDNA

sampling is in a few patients. Further prospective studies focusing

on large serial samplings will be needed to evaluate the performance

of this fixed panel in detail.

Conclusion

In summary, this study demonstrates the feasibility of MRD

evaluation based on a tumor-agnostic liquid biopsy approach for

HCC patients and reports promising data. The established 13-

gene panel can reliably predict early relapse after radical

hepatectomy, contributing to the personalized management of

HCC patients.
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