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Background:Mitochondrial metabolism andmitochondrial structure were found

to be altered in high-grade serous ovarian cancer (HGSOC). The intent of this

exploration was to systematically depict the relevance between mitochondrial

metabolism-related genes (MMRGs) and the prognosis of HGSOC patients by

bioinformatics analysis and establish a prognostic model for HGSOC.

Methods: First of all, screened differentially expressed genes (DEGs) between

TCGA-HGSOC and GTEx-normal by limma, with RNA-seq related HGSOC

sourced from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue

Expression (GTEx) database. Subsequently, expressed MMRGs (DE-MMRGs)

were acquired by overlapping DEGs with MMRGs, and an enrichment analysis

of DE-MMRGs was performed. Kaplan-Meier (K-M) survival analysis and Cox

regression analysis were conducted to validate the genes’ prognostic value,

Gene Set Enrichment Analysis (GSEA) to elucidate the molecular mechanisms of

the risk score, and CIBERSORT algorithm to explore the immuno landscape of

HGSOC patients. Finally, a drug sensitivity analysis was made via the Drug

Sensitivity in Cancer (GDSC) database.

Results: 436 HGSOC-related DE-MMRGs (222 up-regulated and 214 down-

regulated) were observed to participate in multiple metabolic pathways. The

study structured a MMRGs-related prognostic signature on the basis of IDO1,

TNFAIP8L3, GPAT4, SLC27A1, ACSM3, ECI2, PPT2, and PMVK. Risk score was the

independent prognostic element for HGSOC. Highly dangerous population was

characterized by significant association with mitochondria-related biological

processes, lower immune cell abundance, lower expression of immune

checkpoint and antigenic molecules. Besides, 54 drugs associated with eight

prognostic genes were obtained. Furthermore, copy number variation was

bound up with the 8 prognostic genes in expression levels.

Conclusion: We have preliminarily determined the prognostic value of MMRGs

in HGSOC as well as relationship between MMRGs and the tumor

immune microenvironment.

KEYWORDS

high grade serous ovarian cancer (HGSOC), mitochondrial metabolism, prognosis,
tumor immune microenvironment (TME), bioinformatics
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1 Introduction

Ovarian cancer (OvCa) is the most deadly gynecological

malignant tumor in the world. It is estimated that OvCa will

witness an increase of 19,880 cases in the US by 2022, accounting

for approximately 1.306% of all cancers and 12,810 deaths (1).

HGSOC is the most prevalent and most aggressive histotype of

OvCa. The majority of patients with HGSOC are detected at

advanced stages, and the five-year survival rate is only 20% to

30%. Due to the lack of effective methods, early screening is not

effective and therefore, most HGSOC is detected at advanced stages,

which leads to a high death rate from OvCa (2). As well as invading

adjacent organs directly, OvCa can spread throughout the

abdominal cavity through implantation (3), which makes optimal

cytoreductive surgery difficult. Even in countries with abundant

resources, for example, the United States and Canada, the 5-year

survival rate of advanced-stage OvCa is merely 47%.

Mitochondria are central organelles at the crossroad of various

energetic metabolisms. Glycolysis was initially considered a

s ignificant metabol ic pathway in tumor metabol i sm

reprogramming (i.e., the Warburg effect). However, increasing

attention has been paid to the importance of mitochondria in

oncogenesis, tumor progression, and neoplastic dissemination in

recent years (4). During the metabolic transformation of

mitochondria in tumor cells, mitochondria produce enough

energy for the boosted metabolic demands and create the basis

for the assembly of intracellular organelles, cytoskeletons, and

membranes in newly formed cancer cells. The growth and spread

of multiple human cancers are remarkably affected by inhibition of

metabolic reprogramming (5, 6). Mitochondrial metabolism is

required for tumor growth, indicating that targeting

mitochondrial biosynthetic, bioenergetic, and redox functions

may be effective in tumor treatment (7).

Changes in the mitochondrial genome (mtDNA) are associated

with chemotherapeutic resistance and metastatic progression in

some types of cancer (8). For example, Ni et al. found that

platinum-sensitive recurrent HGSOC patients had more

synonymous mutations whereas platinum-resistant recurrent

HGSOC patients had more mtDNA somatic missense mutations

based on the identification results of 569 germline mutations and 28

mtDNA somatic mutations (9). An increasing amount of data

indicates that changes in microRNAs that regulate mtDNA-

encoded mitochondrial proteins (mitomiRs) or nuclear-encoded

mitochondrial proteins (mito-associated miRs) expression can be

used as cancer biomarkers for cancer diagnosis and prognosis (8).

Therefore, we propose mitochondrial metabolism as a new

therapeutic strategy for OvCa.

In this study, we downloaded the mRNA expression profile and

corresponding clinical data of OvCa patients from TCGA database

and the sequencing data of normal ovarian tissues from GTEx

database. The differentially expressed genes related to

mitochondrial metabolism in OvCa were obtained by differential

analysis, and the prognostic model of OvCa was constructed and

verified, which provided a new idea for predicting the prognosis

of OvCa.
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2 Materials and methods

2.1 Data source

RNA sequencing (RNA-seq) data and clinical message for 376

HGSOC patients were attained from The Cancer Genome Atlas

(TCGA) database. HGSOC’s RNA-seq data of control samples (88

healthy ovarian tissues) were downloaded from the Genotype-

Tissue Expression (GTEx) database. The external validation set

GSE26193 (Affymetrix Human Genome U133 Plus 2.0 Array) (10–

12) contains 107 ovarian tumor samples expression profile data and

survival information (survival time and survival status).

Additionally, MSigDB was utilized to obtain the 1234

mi tochondr i a l me tabo l i sm- r e l a t ed gene s (MMRGs ;

Supplementary Table 1).
2.2 Differential expression analysis

Differentially expressed genes (DEGs) were identified between

TCGA-HGSOC (n = 376) and GTEx-normal (n = 88) (HGSOC vs.

normal) making use of the R package limma, based on |log2 fold

change (FC)| > 1 and false discovery rate (FDR) < 0.05.

Moreover, overlap analysis was applied to identify elements

belonging to MMRGs in the list of DEGs, which were referred to as

differentially expressed MMRGs (DE-MMRGs).
2.3 Functional annotation of the
DE-MMRGs

We used R package clusterProfiler to analyze the primary

mechanisms of the obtained DE-MRRGs, which contains Gene

ontology (GO) enrichment and Kyoto Encyclopedia of Genes and

Genomes (KEGG). This research contrasted and categorized the

DE-MRRGs to see their biological characteristics after GO

enrichment analysis (13). The KEGG is a whole network that

assists us to learn the functional interpretation of genes (14). GO

includes biological processes (BP), the cellular component (CC),

and molecular function (MF). The standard P< 0.05 was set up and

the results were visualized using R package gplots.
2.4 Risk model construction, evaluation,
and validation

We used 375 HGSOC samples containing complete survival

information (survival time and survival status) from TCGA-

HGSOC as the training set, mainly for prognostic gene screening

and risk model validity assessment. Cox regression analysis

associated with K-M survival analysis was adopted to identify the

best prognostic genes. Briefly, the identified DE-MMRGs were

brought into a univariate Cox regression analysis to filter

variables to do with the HGSOC survival based on P< 0.05. Then,

K-M was performed for the variables that met the above conditions.
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The specimens were divided into high- and low-expression groups

by median gene expression in HGSOC patients, the divergence in

overall survival (OS) between them were examined by log-rank, and

variables satisfying the P< 0.05 were further brought into

multivariate Cox analysis to output the supreme variable quantity

for making prognostic signature. The research used a risk scoring

system to appraise the performance of multi-gene prognostic

signature. The formula was,

risk   score = h0(t)exp(b1 � gene1 + b2 � gene2 +⋯ bn � genen)

A validity of the prognostic signature-based risk score for

forecasting the prognosis of HGSOC patients was evaluated and

valued in the training set and stand-alone external validation set.

Risk scores were counted for every HGSOC sample in the

corresponding dataset of prognostic genes by the above formula.

The samples were split into high- and low risk populations in view

of the mid-values of risk scores in dataset apiece. The mid-values of

risk scores were computed using the MEDIAN function. K-M. ROC

curves, which were constructed to appraise the accuracy and

particularity of the risk score in forecasting patients’ OS at the

first and third year respectively, assessed the differences in OS

between the two subgroups.
2.5 Construction of nomogram

The 326 TCGA-HGSOC samples containing complete clinical

information were selected as the basis for this part of the study.

Clinical characteristics included stage, race, grade, age, and tumor

residual disease. Univariate Cox analyses and multivariate Cox

analyses were took advantage to test whether the risk score plays

a Prognostic role independently of clinical characteristics or not.

Univariate Cox with P<0.05 was subjected to further multivariate

Cox. Variables with P< 0.05 generated by multivariate Cox analysis

were regarded as independent prognostic factors for HGSOC.

Nomogram was then constructed based on the identified

independent factors of prognosis. The calibration curve’s 45

dashed lines represent the best predictions of the nomogram.
2.6 Gene set enrichment analysis of
differentially expressed genes

We took advantage of GSEA to determine the denote of DEGs

set between high and low risk scoring groups with eight-MMRGs-

based signature through MSigDB c5.go.v7.4.symbols.gmt and

c2.cp.kegg.v7.4.symbols.gmt. GSEA project was carried out by

GSVA project. The (NES)| > 1, P< 0.05, q< 0.25 was considered

to be statistically significant.
2.7 Immuno-infiltration correlation analysis

To observe the differences in immune cells in HGSOC samples

from high and low risk populations, we used the CIBERSORT
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algorithm for reliable immune infiltration estimation based on the

TCGA dataset (n = 375). Only samples with inverse convolution P<

0.05 of CIBERSORT were able to enter in the subsequent analysis.

In this study, a total of 323 TCGA-HGSOC samples met the above

criteria, 163 of which were in the highly dangerous population and

160 in the low-risk population. SIGLEC15, CD274, HAVCR2,

CTLA4, PDCD1LG2, LAG3, TIGIT, and PDCD1 were selected as

immune checkpoint-associated transcripts, and MICB, HLA-B,

HLA-C, HLA-DRB5, HLA-DPA1, HLA-DRB1, HLA-DPB1,

HLA-DQB2, HLA-DQA1, MICA, HLADQA2, HLA-DRA, HLA-

DQB1, and HLA-A were selected as antigen molecule-related

transcripts, and these 22 genes were extracted and expressed in

high- and low risk populations. Moreover, Contacts between

prognostic gene expression levels in the two groups and immune

cells were estimated using Spearman method. The |cor| > 0.3, P<

0.05 was set as the standard of significance.
2.8 Drug sensitivity analysis

In order to further study the drug sensitivity of prognostic genes

in HGSOC, a ridge regression model was constructed to forecast the

drug IC50 based on cell line expression profiles from the Drug

Sensitivity in Cancer (GDSC) database and TCGA gene expression

profiles using the pRRophetic algorithm based on 375 cancer

samples in the high- and low risk populations described above.

The relationship between prognostic genes and drugs was detected

according to the Spearman method. The |cor| > 0.3, P< 0.05 was set

as the standard of significance.
2.9 CNVs analysis of gene signature

CNVs data participated in this study of the selected target genes.

The study searched the copy number variation configuration file

from TCGA portal. The percentage of CNV types (amplification

and deletion) for each target gene was assessed. And the correlation

with expression vocabulary of target genes and their CNVs was

analyzed according to Spearman. The P< 0.05 was set as the

standard of significance.
2.10 Statistical analysis

The study conducted the statistical analyses and the Wilcox was

used to detect different levels of immune cells, immune checkpoints,

and antigenic elements between high- and low risk population. P<

0.05 was considered statistically significant.
3 Results

3.1 Analysis of DE-MMRGs

Differential analysis was performed on 376 HGSOC and 88

healthy ovarian tissues. In the aggregate, 7214 DEGs were
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confirmed (HGSOC vs. healthy; Supplementary Table 2). In

comparison to healthy ovarian samples, 3768 genes were up-

regulated in HGSOC samples and 3446 genes were down-

regulated in HGSOC samples (Figure 1A). The heatmap

demonstrated the expression pattern of up- and down-regulated

Top 50 DEGs between the two groups (Figure 1B).

Subsequently, an overlap analysis was performed among the

HGSOC-related DEGs and the obtained 1234 MMRGs
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(Supplementary Table 1), and the total number of 436 common

genes were confirmed (Figure 2). Meanwhile, 222 genes were up-

regulated and 214 genes were down-regulated in HGSOC

(Supplementary Table 3), which were uniformly defined as HGSOC-

related DE-MMRGs.

GO and KEGG enrichment analysis reveals the underlying

molecular mechanisms of DE-MMRGs. The top 5 terms enriched

in the three categories of the GO system were displayed in Figure 3A.
B

A

FIGURE 1

Identification of DEGs between HGSOC and normal samples. (A) Volcanic map of 7214 DEGs between 376 HGSOC and 88 healthy ovarian tissues.
Red plots: up-regulated in HGSOC samples; green plots: down-regulated in HGSOC samples; gray plots: normally expressed mRNAs. (B) Heatmap
of 100 DEGs (including Top 50 up- and down-regulated genes) between the two groups. Red: up-regulation; green: downregulation.
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In the GO-BP category, “electron transport chain” was the most

significantly enriched term (adj. P = 2.69E-74, count = 75);

“generation of precursor metabolites and energy” (adj. P = 3.33E-

73) was the term involved in the most of DE-MMRGs (count = 107);

also, these genes were significantly associated with “cellular

respiration” (adj. P = 4.39E-64, count = 75), “aerobic respiration”

(adj. P = 3.09E-61, count = 68), and “energy derivation by oxidation

of organic compounds” (adj. P = 2.39E-56, count = 78); moreover,

multiple metabolism-related processes (“fatty acid metabolic

process”, etc.) were also significantly enriched. Based on the results

of the CC and MF category analysis, DE-MRRGs may function as

“electron transfer activity”, “primary active transmembrane

transporter activity” in cellular components such as “mitochondrial

respirasome”, and “inner mitochondrial membrane protein

complex”. More results of GO enrichment analysis could be found

in Supplementary Table 4. KEGG analysis enriched a total of 71
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pathways (Supplementary Table 5). “Oxidative phosphorylation”

(adj. P = 2.07E-34, count = 51) was the most enriched pathway;

“Chemical carcinogenesis-reactive oxygen species” (adj. P = 2.07E-34,

count = 63) was the pathway involving the most DE-MMRGs

(Figure 3B). Furthermore, these genes were associated with

multiple metabolic pathways, such as “Carbon metabolism”, “Fatty

acid degradation”, and “Pyrimidine metabolism”.
3.2 Analysis of a mitochondrial
metabolism-related prognostic signature

We matched the transcriptomic data of 375 HGSOC samples

containing survival information in the TCGA-HGSOC dataset as

the training set. To explore the relationship between the 436 DE-

MRRGs and the prognosis of HGSOC patients, we made a
BA

FIGURE 3

The GO and KEGG enrichment analysis of the 436 DE-MMRGs. (A) The top 5 terms enriched in the three categories of the GO system. (B) KEGG
analysis enriched a total of 71 pathways. The top20 KEGG signal path was shown in the figure.
FIGURE 2

Venn diagram of DEGs and the 1234 MMRGs. Blue area: 7214 HGSOC-related DEGs; red area: 1234 MMRGs; cross area: 436 common genes.
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TABLE 1 45 DE MRRGs significantly related to the prognosis of HGSOC patients.

id HR HR.95L HR.95H pvalue

TNFAIP8L3 1.577028831 1.220180577 2.038239241 0000500868

ECI2 0.731979874 0.597509048 0.896713679 0.002589998

NDUFV2 0.732921933 0.591890845 0.907556799 0.004378423

GPAT4 1.4790496 1.128214437 1.938982207 0004608334

PLA2R1 1 507083529 1.125594634 2.01786744 0.005878864

MED19 0673204675 0.50773129 0.892607061 0.005972281

SBF1 1.322092067 1.078422761 1.620818382 0.007223725

DNPH1 0.800429055 0.679416864 0.94299495 0.007772581

MED20 0 710559608 0.549478821 0.918861542 0.009184894

COA6 0 762670172 0.622029843 0.935109141 0.009185404

ACSM3 0 804624911 0.679113453 0.953332973 0.011994878

PNPLA7 1443225453 1.078429584 1 931419298 0 013592239

ACACB 1.42134615 1.074701158 1.879801527 0.013699658

NDUFB1 0.803070406 0.674411632 0.956273657 0.013821786

OSBPL5 1.356522911 1.061295217 1.733876096 0.014890436

PLGRKT 0.79437078 0.658101966 0.958855874 0 016505749

TIAM2 1.604775648 1.088009738 2.366986976 0.017062432

NR1D1 1 254156665 1.040919624 1.511076269 0.017230592

ALDH1L1 1 511132739 1.075777704 2.122671017 0.017253486

ARV1 0756724885 0.601328992 0.952278303 0.017458342

GPAT3 1 400414768 1.059745307 1.850597036 0.01788487

NDUFS5 0 801741096 0.667131437 0.963511459 0.01845595

RXRA 1.296560628 1.042822707 1.612037647 0.019422187

PTGIS 1.121033006 1.01801108 1.234480671 0.020184539

MIR210 1.235778762 1.032317775 1.479340166 0.02108282

ID01 0.910204947 0.839422586 0.986955867 0.022735806

PDK4 1 207284466 1.024672491 1.422440628 0.024370011

LTA4H 1.277063625 1.031817911 1.58060011 0.024585384

DGKD 1.394191068 1.040508403 1.868095181 0.026017471

MIGA2 1.332532009 1.031312492 1.7217299 0.028106974

PON3 0 821537668 0.689081153 0979455231 0.028424665

ACSS3 1.244013576 1.023263712 1.512386065 0.028473333

PPT2 0.744393863 0.57067223 0.970999103 0.029479794

NDUFB6 0.808208585 0.665641298 0.981310984 0.031515999

VAPA 0.697103774 0.501022307 0.969924224 0.032259677

PMVK 0788906781 0.634037525 0 981604218 0.033463157

COX8A 0.80619569 0.658819946 0.986538878 0.036479495

CSNK2B 0800333879 0.648759839 0.987321162 0.037610617

SLC27A1 1.19333812 1.008830328 1.411591058 0.039155115

(Continued)
F
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univariate Cox regression analysis of the training set. 45 of the 436

DE-MRRGs were markedly to do with the prognosis of HGSOC

patients (Table 1). Further, K-M curves have been performed to

explore the correlation above 45 genes and the overall survival (OS)

of HGSOC patients. Results indicated that the expression of 25

genes significantly differentiated the clinical outcomes of HGSOC

patients (Figure 4). Specifically, relatively low expression of ACLY,

GPAT4, NR1D1, PLA2R1, PNPLA7, PTGIS, RXRA, SBF1,

SLC27A1, SREBF1, TIAM2, and TNFAIP8L3 in HGSOC patients

was conspicuously related to better OS (P< 0.05); whereas, high

expression of ACSM3, CHCHD2, COA6, DNPH1, ECI2, IDO1,

MED19, MED20, NDUFB6, NDUFS5, NDUFV2, PMVK, and

PPT2 was notably linked to good prognosis in HGSOC patients.

Ultimately, a prognostic signature consisting of IDO1, TNFAIP8L3,

GPAT4, SLC27A1, ACSM3, ECI2, PPT2, and PMVK was

constructed (Table 2).
Frontiers in Oncology 07
3.3 Evaluation and confirmation of
risk model

Every HGSOC’s risk scores of training set samples were counted in

the light of previously described formula. Figure 5A showed that the

incidence of death in HGSOC patients was climbing with an increasing

risk score. The 375 HGSOC patients were then divided into high (n =

188)- and low (n = 187)-risk groups based on the midpoint of the risk

score (median value = 0.993972) (Supplementary Table 6),with a high-

risk score indicating a poor prognosis (P = 1.495e-10; Figure 5B). Time-

dependent ROC curves displayed that the risk score had AUCs of

0.639, 0.645, and 0.698 respectively in predicting OS in TCGA-HGSOC

patients (Figure 5C), indicating that our risk model possessed tolerable

prognostic predictive performance. Moreover, the heatmap illustrated

the relationship between the seven prognostic genes and risk score,

with ECI2, PPT2, ACSM3, PMVK, and IDO1 negatively associated
TABLE 1 Continued

id HR HR.95L HR.95H pvalue

PRKD1 1.277738511 1.010880692 1.615042916 0.040315362

CHCHD2 0.787843192 0.626451359 0.990814188 0.041463179

ALOX5AP 1 105273568 1.00387219 1.216917524 0.041481975

ACLY 1.270552585 1.003558586 1.608579604 0.04664848

SREBF1 1.186672143 1.002285889 1.404979148 0.04698176

NDUFA5 0.753869808 0.568967727 0.998861024 0.049079356
f

FIGURE 4

K-M survival curves between high and low expression of single gene in 25 DE-MRRGs.
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with risk score levels; while SLC27A1, GPAT4, and TNFAIP8L3 were

overexpressed in the highly dangerous population (Figure 5D). In

agreement with the training set, we achieved comparable results in the

external validation set, namely the GSE26193 dataset (Figures 5E–H),

further evidencing the stability of the model. The expression levels of

eight prognostic genes were further explored in different stage and risk

groups. Except for

GPAT4 and TNFAIP8L3 were significantly differently

expressed among stage I stage, II, stage III, and stage IV, the

other 6 prognostic genes were not significantly different among

different stages (Figure 6A). In addition, the expression levels of

prognostic signatures in the two risk groups were also analyzed, and

found that GPAT4, SLC27A1, and TNFAIP8L3 were higher

expressed in the high-risk group compared to low-risk group,

while ACSM3, ECI2, IDO1, PMVK, and PPT2 were Lower

expressed in the high-r i sk group than the low-r isk

group (Figure 6B).

Next, the GSE26193 dataset (n = 107) from the GEO database

was took advantage of an external independent verification set to

assess the general applicability of the prognostic feature. Similarly,

we worked out the exposure score for every HGSOC sample based

on the equation and obtained the corresponding median value

(median value = 0.2512079). All GSE26193-HGSOC specimens

were categorized into high (n = 54)- and low (n = 53)-risk groups

(Supplementary Table 7). The risk model was also applied to the

independent external validation set. Risk scores and suffer existence

were presented in Figure 5E, with patients in the low risk population

having a much longer time to subsist relative to the highly

dangerous population. The small risk rating was associated with a

good prognosis fpr patients analyzed by K-M survival analysis (P =

7.9e-04; Figure 5F). Then, the validity assessment analysis of the risk

score in the GSE26193 dataset reported AUCs of 0.731, 0.637, and

0.678 respectively (Figure 5G), indicating that the risk model

enjoyed a more satisfactory predictive performance.

In conclusion, the above evidence suggested that the prognostic

signature was constructed based on the eight MMRGs with a larger

number of reliable predictive effectiveness and acceptable

universal utilization.
Frontiers in Oncology 08
3.4 Independent prognostic survey

To assess whether or not the venture rating could predict the

prognosis of patients clinical features in the clinical of HGSOC. The

risk score, tumor residual disease, stage and age were meaningful

relevance with prognosis in HGSOC patients (Figure 7A). The

above 4 variables were incorporated. Ultimately, tumor residual

disease, age, and risk score were considered the independent

prognostic factors for HGSOC patients based on P<

0.05 (Figure 7B).

Subsequently, we developed a nomogram model capable of

predicting first-year, third-year, and fifthyear OS in TCGA-HGSOC

patients (Figure 7C). The calibration curve demonstrated that the

survival of patients predicted by the nomogram model coincided

with the actual observations, especially the OS of patients at 3

years (Figure 7D).
3.5 Preliminary exploration of the risk
score-related molecular mechanisms

GO terms and KEGG pathways were obtained by performing

GSEA on the risk score by the the R package clusterProfiler, which

were differentially enriched between high and low risk. On the

ground of NES values, we defined entries with NES > 1 as

terms enriched, and entries of NES< -1 as terms/pathways. It

indicated that “ELECTRON TRANSPORT CHAIN”, and

“MITOCHONDRIAL TRANSLATION” were markedly enriched

in the highly dangerous population; and “ACTOMYOSIN

STRUCTURE, “AMEBOIDAL TYPE CELL MIGRATION”, as

well as “AMINOGLYCAN METABOLIC PROCESS” were

markedly enriched in the low risk population (Figure 8A;

Supplementary Table 8). KEGG enrichment analysis revealed

(Supplementary Table 9) that the highly dangerous population

was notably related to “OXIDATIVE PHOSPHORYLATION”,

“PARKINSONS DISEASE PROTEASOME”, “HUNTINGTONS

DISEASE”, and “AUTOIMMUNE THYROID DISEASE”;

nevertheless, the low risk population was markedly correlated
TABLE 2 IDO1, TNFAIP8L3, GPAT4, SLC27A1, ACSM3, ECI2, PPT2, and PMVK consist the prognostic signature.

id coef HR HR.95L HR.95H pvalue

TNFAIP8L3 0.402461741 1.495501708 1.142916309 1.956858383 0.00334942

ECI2 -0.182903646 0.8328484 0.666118778 1.04131047 0.1085393

GPAT4 0.317123862 1.373172645 1.041450305 1.810555055 0.024585929

ACSM3 -0.174297566 0.840046891 0.704657815 1.001448878 0.051917479

ID01 -0.142984877 0.866767177 0.792024122 0.94856371 0.001885684

PPT2 -0.235623034 0.790078451 0.590589727 1.056950249 0.112529203

PMVK -0.173628381 0.840609226 0.66476785 1.062963364 0.147051031

SLC27A1 0.193186182 1.213108632 1.005431702 1.463682266 0.043746933
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FIGURE 5

Evaluation and validation of an eight-gene-based risk model. (A, E) Relationship between the survival status/risk score rank and survival time (days)/
risk score rank of each HGSOC sample. (B, F) (K–M) survival curves of the high- and low risk populations. (C, G) ROC curves for 1-, 3-, and 5-year
overall survival. (D, H) The relationship between the eight prognostic genes and risk score. (A–D), training set. (D–H), GSE26193 set.
Frontiers in Oncology frontiersin.org09

https://doi.org/10.3389/fonc.2023.1144430
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Meng et al. 10.3389/fonc.2023.1144430
with “FOCAL ADHESION”, “PATHWAYS IN CANCER”, and

“NEUROTROPHIN SIGNALING PATHWAY” (Figure 8B).
3.6 Immune landscapes for HGSOC based
on the risk score

GSEA illustrates that the highly dangerous population is

conspicuously related to A, B, C, and D, and the low-risk
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population with cell adhesion processes, suggesting that the risk

score probably had a bearing on the patient ’s immune

microenvironment. The CIBERSORT algorithm demonstrated

distinctly different immune-cell inflows patterns. Highly

dangerous population showed high infiltration of B cells naive, T

cells CD4 memory, B cells memory period, and Monocytes;

nevertheless, the low risk population showed T cells CD4 memory

activated, T cells gamma delta and Mast cells activated were

dramatically increased in the population of low risk (Figure 9A).

Subsequently, relationship between prognostic genes and 22
B

A

FIGURE 6

The expression differences of eight prognostic signatures in different stages and different risk groups. (A) The expression levels of eight prognostic
signatures in patients at different stages (ANOVA). (B) The expression levels of eight prognostic signatures in high and low-risk groups (Wilcoxon test).
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immunology cells (Supplementary Table 10) (Supplementary

Table 11) was examined separately througt Spearman correlation

analysis. The results revealed that in the highly dangerous

population (Figure 9B) , IDO1 was negatively linked to

Macrophages M2 (cor = -0.33041, P = 1.84E-05); TNFAIP8L3

expression was weakly negatively correlated with Macrophages

M0 (cor = -0.30582, P = 7.19E-05). In the low-risk population

(Figure 9C), IDO1 was minimally linked to Macrophages M0 (cor =

-0.31751, P = 4.29E-05) and proactively linked to Dendritic cells

activated (cor = 0.342078, P = 9.54E-06). The levels of expression

with five immune checkpoint molecules were distinctly different,

with the levels of delivery on CD274, LAG3, PDCD1, TIGIT, and

SIGLEC15 in low-risk population distinctly higher than in high-risk

population (Figure 9D). On the contrary, the performance rating of

HLA-A, HLA-C, HLA-B, and MICA in high risk population were

evidently lower than in low risk population. (Figure 9E).
3.7 Correlation of prognostic gene
show and GDSC drug sensitivity in
HGSOC patients

The links between the expression of seven prognostic genes in

HGSOC and drug sensitivity were shown in Figure 10. The total

number of the drugs obtained on the basis of the significance standard

of |cor| > 0.3 and P< 0.05 is 54. Specifically, ACSM3 was minimally

linked to CCT007093 (cor = -0.31769, P = 3.07E-10) and proactively

linked to five drugs, with CGP.60474 being the strongest positive

correlation (cor = 0.385081, P = 1.06E-14); ECI2 was correlated with 12

drugs with AZD6244 (cor = 0.346171, P = 5.37E-12) and EHT.1864
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(cor = -0.392, P = 3.18E-15) being the strongest positive and negative

associations; Sorafenib (cor = 0.331065, P = 4.83E-11) and BMS.708163

(cor = 0.304605, P = 1.72E-09) were positively associated with GPAT4

whereas PD.173074 (cor = -0.41038, P = 1.15E-16) was negatively

associated with GPAT4; IDO1 was associated with up to 27 drugs, with

the strongest positive association being CCT007093 (cor = 0.470611,

P< 0.0001) and the strongest negative association with AZD6244 (cor =

-0.46356, P< 0.05); PMVK was associated with BIBW2992 (cor =

-0.44437, P = 1.40E-19) and X681640 (cor = 0.327402, P = 8.09E-11);

PPT2 was only associated with ATRA (cor = - 0.34039, P = 1.26E-11); a

total of 9 drugs were associated with SLC27A1, with the most relevant

drugs being Mitomycin.C (cor = 0.390702, P = 4.00E-15) and FH535

(cor = -0.36538, P = 2.75E-13); 5 drugs (AZD6482, CI.1040,

Bryostatin.1, AZD6244, and XMD8.85) were associated with

TNFAIP8L3, and all showed a negative relationship with it. (cor

range: -0.38199 to -0.3025, all P< 0.05). More particulars were

available in Supplementary Table 12.
3.8 CNV analysis of prognostic genes

The above systematic analysis showed that aberrantly expressed

prognostic genes in SOC could significantly interfere with the clinical

results of HGSOC patients. Then, the study further explored the

biological mechanisms of abnormal expression of seven prognostic

genes (TNFAIP8L3 not matched to CNV information) from the copy

number level dimension. As shown in Figure 11A, the 7 prognostic

genes were dominated by amplified variants, with PMVK having the

highest amplified variant rate of 0.418 and ECI2 having the highest

deletion variant rate, but which is only 0.182. Detailed CNV rates of the
A B

DC

FIGURE 7

Independent prognostic investigation of the risk score. (A, B) Univariate (A) and multivariate (B) Cox regression analyses of risk score, age, stage, and tumor
residual disease (all P< 0.05). (C) A nomogram for predicting the 1-, 3-, and 5-year OS in TCGA-HGSOC patients. (D) Calibration curve.of nomogram.
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7 genes were available in Supplementary Table 13. Meanwhile, the

study detected a notable association of copy number variation and

description levels of the 7 prognostic genes (Figure 11B; Supplementary

Table 14), suggesting that genomic copy number alteration affects the

expression quantity of gene in RNA-seq. Consequently, the aberrant

expression of these genes in HGSOC were variant likely because of the

number of copies.
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4 Discussion

Ovarian epithelial cancer is the fifth most prevalent cause of

cancer mortality in women and the main cause of gynecologic cancer

deaths in the United States (15). Mitochondria plays an important

role in oncogenesis, tumor progression, and tumor dissemination.

Changes of mitochondrial metabolic pathways to regulate
B

A

FIGURE 8

Biological processes and signaling pathways of DEGs between high and low risk groups. The results of Gene Ontology (A) and KEGG enrichment
analysis (B) showed differences between high and low risk groups.
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bioenergetics or anabolism contributes to the metabolic

reprogramming of tumor cells (10). Inhibiting mitochondrial

metabolism has become increasingly popular in the treatment of

cancer. In our analytical process, the DEGs between HGSOC and

GTEx-normal samples were systematically investigated. 8 MMRGs

(IDO1, TNFAIP8L3, GPAT4, SLC27A1, ACSM3, ECI2, PPT2, and

PMVK) associated with the prognosis of HGSOC patients were

detected by Cox proportional hazards regression analysis and

survival analysis. Meanwhile, by analyzing the expression changes
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of 8 MMRGs between high-risk and high-risk groups, we know that

SLC27A1, GPAT4, and TNFAIP8L3 were highly expressed in the

prognosis of high-risk patients, which may be tumor promoting

factors for OvCa. ECI2, PPT2, ACSM3, PMVK, and IDO1 were low

expressed in the prognosis of high-risk patients, which may be tumor

suppressor factors. Subsequently, in order to validate the prognostic

model, the GSE26193 dataset was used and the expression of the 8

MMRGs was evaluated using CNVs analysis. The results proved the

feasibility of constructing a prognostic model with these MMRGs.
A

B

D

E

C

FIGURE 9

Analysis of the immune microenvironment between high- and low risk populations (A) V mparison of the immune cell fraction difference between
the high and low-RS groups. (D) Expression profile of 8 genes. (E) The expression levels of the five immune checkpoint molecules.
FIGURE 10

Bubble heatmap of the relationship between expression of 8 prognostic genes and drug sensitivity in HGSOC.
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To release active immunosuppressive metabolites, indoleamine

2,3-dioxygenase (IDO1) catabolize the first step of tryptophan (Trp)

catabolism along the kynurenine pathway (KP) and produce a

significant effect (16). The tryptophan-kynurenine pathway and

IDO1 have been recognized as pivotal mechanisms in immune

escape of cancer, and inhibition of the latter might be a promising

cancer treatment strategy (17). T cell proliferation is arrested with

tryptophan depletion, and the general control nondepressible-2

(GCN2) kinase is activated to induces the stress response (16).

Additionally, kynurenine (Kyn) encourages CD4+ T cell

differentiation into immunosuppressive regulatory T (Treg) cells by

activating aryl hydrocarbon receptor (AHR) (18).When CD8+ T cells

are infiltrated and other immunosuppressive pathways are activated

in tumors, IDO1 is expressed by stromal cells in TME and induced by

IFN (19, 20). The boosted IDO1 activity has been proven to promote

the development of an immunosuppressive microenvironment in

cancer that inhibits antitumor immune responses (21). In this study,

we found that IDO1 was associated with up to 27 drugs, with the

strongest positive association with CCT007093 (cor = 0.470611, P<

0.0001) and the strongest negative association was with AZD6244.

Therefore, inhibition of IDO1 activity may enhance the sensitivity of

OvCa cells to chemotherapy agents andmay serve as a potential target

for anti-ovarian cancer therapy.

Enoyl-CoA (D) isomerase 2 (ECI2) encodes an enzyme involved

in lipid metabolism, and researches indicate that a decrease in ECI2

expression results in decreased glucose utilization, fatty acid

accumulation, and downregulation of cell cycle-associated genes,

thus exerting a significant effect on glucose and lipid metabolism

(22, 23). ECI2 probably mediates the interactions between

mitochondria and peroxisomes (24). Currently, the exact role

played by ECI2 in OvCa awaits further exploration.

It is known that Tumor necrosis factor-alpha-induced protein

8-like 3 (TIPE3, also called TNFAIP8L3) can strengthen the

transduction of signals by phosphatidylinositol-3-kinase (PI3K).

Therefore, inflammation, infection, immunity, and the occurrence

and development of cancer are among the pathophysiological

processes that they participate in (25–28).. Researches have

discovered that the TIPE3 expression elevated in esophageal

cancer (25), lung cancer (29), breast cancer (30), OvCa (31), and
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glioblastoma (32). The expression of TIPE3 has a positive

correlation with tumor size, pathological stage, lymph node

metastasis and other malignant clinicopathological characteristics

(30, 32, 33). Thus, TIPE3 can serve as a new marker of

intraperitoneal and lymphatic metastases (31). Additionally, the

overexpression of TIPE3 in platinum-resistant EOC has been linked

to dissatisfactory survival and metastasis. Compared with platinum-

sensitive disease, TIPE3 may predict EOC platinum-resistance and

poor outcome (28).

Recently, researches have revealed that reprogramming of lipid

metabolism is crucial in tumor microenvironments, which involved

regulating cancer cell malignant biological behavior (34–36). Fatty

acids (FA) played an important role in hyperplastic tumors by

sustaining cell renewal and mitosis (37). SLC27A1/FATP1 is an

integral membrane protein that has a vital effect on lipid

metabolism via the regulation of long-chain fatty acid uptake

(38). Also, SCL27As (SCL27A1-6) significantly influences the

malignant tumors progression. By downregulating SLC27A2,

cisplatin resistance in lung cancer may be induced via the Bmi1-

ABCG2 pathway, which can lead to cisplatin chemotherapy

resistance in OvCa (39). However, a study of OvCa found that

the decrease in FATP1 levels was related to LPL and mitochondrial

b-HAD levels. The malignant metabolic alteration in cancer may

result from a decrease in FATP1 expression (40). Nevertheless, we

do know little about the function of SLC27A in OvCa.

By interacting with medium-chain fatty acids on the outer

mitochondrial membrane, ACSM3, a subunit of CoA ligases,

produces acyl-CoA (41) and plays a remarkable part in the

progression of many diseases (42). In this study, we found that

ACSM3 takes part in the first step of fatty acid metabolism.

Compared to high expression of ACSM3, low levels of ACSM3

expression in OvCa patients may be associated with poorer overall

survival. Shu et al. confirmed that ACSM3 expression was

dependent on TP53 in OvCa, and there was a negative correlation

between mRNA expression of ACSM3 and TP53 activation.

Knockdown of ACSM3 can enhance the sensitivity of OvCa

patients to paclitaxel and docetaxel (42). So ACSM3 expression

can be used to predict the OvCa’s response to taxane. Another study

reported that overexpression of ACSM3 suppress proliferation,
BA

FIGURE 11

Correlation of biomarker expression levels with methylation and copy number variation levels correlation. (A) Copy number variation pattern of 7
gene signatures. (B) Pearson correlation between CNV and mRNA.
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migration, and invasion of OvCa cells by inhibiting integrin b1/
AKT signal pathway (43). According to the results of the above-

mentioned studies, combined with the results of several studies, we

believe that ACSM3, as a tumor suppressor gene, may prove to be

an ideal therapeutic target for treating OvCa. However, detailed

molecular mechanisms underlying ovarian tumor-suppressive

effects of ACSM3 need further investigation.

Immunotherapy has emerged as a promising strategy to treat

various types of cancers (44). In order to regulate immune responses,

PD-L1 is expressed on various immune cells, consisting of T cells, B

cells, NK cells, macrophages, monocytes, and dendritic cells (45). PD-

1 suppresses cytotoxic T-cells (CTLs) and stimulates regulatory T-

cells (Tregs) through interactions with PD-L1, and inflammation and

autoimmune diseases can be prevented by preventing excessively

active immune responses (46). Anti-(programmed cell death)PD-1/

PD-L1 therapy demonstrates great efficacy in combating various

cancers which include but are not limited to hematological tumor,

skin cancer, lung cancer, liver cancer, bladder cancer and kidney

cancer, but further researches on PD-1/PD-L1 therapy in OvCa

remains to be done (47)..

Interestingly, it has been shown that LAG3 and PD1, which are

co-expressed by tumor antigens CD8+T cells, were damaged in the

interferon -g and tumor necrosis factor -a production, whereas the

LAG3 and PD1 blocking restore the effect function of human

ovarian tumor antigen T cells at higher levels than a single

additive blocking LAG3 or PD1 alone. Their results reveal that

the association of LAG3 with PD1 leads to their rapid trafficking to

the immunological synapse, resulting in a synergistic inhibitory

effect on T cell signaling (48).

Siglec15 belongs to the sialic acid-binding immunoglobulin-like

lectin family (49, 50) and shares a high degree of structural homology

with PD-L1 (51). There was a broad upregulation of Siglec15 in many

human cancer cells and tumor-infiltrating immune cells (47, 51).Wang

et al. found that Siglec15 suppresses immune function by inhibiting

CD8+ T cell proliferation, and Siglec15 inhibitors are effective in

reversing this suppression (49). Another study has confirmed that

blocking Siglec15 by monoclonal antibody can inhibit tumor growth in

mice to a certain extent (52). Therefore, further study of Siglec15-

related immunotherapy and its regulatory mechanism may provide a

new perspective for the treatment of OvCa.

The T-cell immunoglobulin and ITIM domain (TIGIT) is a

renowned immune checkpoint molecules inhibiting T-cell functions.

TIGIT is only expressed on lymphocytes and in particular on natural

killer (NK) cells, effector and regulatory CD4+ T cells and CD8+ T cells

(53). As a negative checkpoint on the immune response to tumors,

TIGIT shares similar functions with PD-1. A study of OvCa found that

TIGIT increased the CD4+ Treg response and mediated

immunosuppression in the OvCa model; Therefore, blocking TIGIT

played a therapeutic role in OvCa models, so there is potential

therapeutic benefit from inhibiting TIGIT (54).
5 Conclusions

Cellular metabolic flexibility plays an important role in the

effectual hyperplasia and aggressiveness of HGSOC. We constructed
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a MMRGs-related prognostic signature based on IDO1, TNFAIP8L3,

GPAT4, SLC27A1, ACSM3, ECI2, PPT2, and PMVK, and

preliminarily determined the prognostic value of MMRGs in

HGSOC by bioinformatics analysis. Researching OvCa through the

lens of MMRGs and the TME allows a new perspective for the study

of OvCa. Additionally, according to our study, the metabolic biology

of cancer cells differs from that of healthy cells, which lay a solid

foundation for subsequent targeted therapies of mitochondria-related

genes in OvCa. Thus, these eight genes are likely to have an effect on

mitochondrial metabolism related to OvCa, but we will further

investigate the role of these eight genes played in treating HGSOC.
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A comprehensive analysis of the expression, epigenetic and genetic changes of HNF1B
and ECI2 in 122 cases of high-grade serous ovarian carcinoma. Oncol Lett (2021) 21
(3):185. doi: 10.3892/ol.2021.12446

24. Fan J, Li X, Issop L, Culty M, Papadopoulos V. ACBD2/ECI2-mediated
peroxisome-mitochondria interactions in leydig cell steroid biosynthesis. Mol
Endocrinol (2016) 30(7):763–82. doi: 10.1210/me.2016-1008

25. Fayngerts SA, Wu J, Oxley CL, Liu X, Vourekas A, Cathopoulis T, et al. TIPE3 is
the transfer protein of lipid second messengers that promote cancer. Cancer Cell (2014)
26(4):465–78. doi: 10.1016/j.ccr.2014.07.025
Frontiers in Oncology 16
26. Li Q, Yu D, Yu Z, Gao Q, Chen R, Zhou L, et al. TIPE3 promotes non-small cell
lung cancer progression via the protein kinase b/extracellular signal-regulated kinase 1/
2-glycogen synthase kinase 3b-b-catenin/Snail axis. Transl Lung Cancer Res (2021) 10
(2):936–54. doi: 10.21037/tlcr-21-147

27. Niture S, Moore J, Kumar D. TNFAIP8: inflammation, immunity and human
diseases. J Cell Immunol (2019) 1(2):29–34.

28. Padmavathi G, Banik K, Monisha J, Bordoloi D, Shabnam B, Arfuso F, et al.
Novel tumor necrosis factor-a induced protein eight (TNFAIP8/TIPE) family:
functions and downstream targets involved in cancer progression. Cancer Lett (2018)
432:260–71. doi: 10.1016/j.canlet.2018.06.017

29. Wang G, Guo C, Zhao H, Pan Z, Zhu F, Zhang L, et al. TIPE3 differentially
modulates proliferation and migration of human non-small-cell lung cancer cells via
distinct subcellular location. BMC Cancer (2018) 18(1):260. doi: 10.1186/s12885-018-
4177-0

30. Lian K, Ma C, Hao C, Li Y, Zhang N, Chen YH, et al. TIPE3 protein promotes
breast cancer metastasis through activating AKT and NF-kB signaling pathways.
Oncotarget (2017) 8(30):48889–904. doi: 10.18632/oncotarget.16522

31. Liu T, Gao H, Chen X, Lou G, Gu L, Yang M, et al. TNFAIP8 as a predictor of
metastasis and a novel prognostic biomarker in patients with epithelial ovarian cancer.
Br J Cancer (2013) 109(6):1685–92. doi: 10.1038/bjc.2013.501

32. Yuan F, Liu B, Xu Y, Li Y, Sun Q, Xu F, et al. TIPE3 is a regulator of cell apoptosis
in glioblastoma. Cancer Lett (2019) 446:1–14. doi: 10.1016/j.canlet.2018.12.019

33. Gao JF, Zhang H, Lv J, Fan YY, Feng D, Song L. Effects of the long and short
isoforms of TIPE3 on the growth and metastasis of gastric cancer. BioMed
Pharmacother (2020) 124:109853. doi: 10.1016/j.biopha.2020.109853

34. Xiang Y, Miao H. Lipid metabolism in tumor-associated macrophages. Adv Exp
Med Biol (2021) 1316:87–101. doi: 10.1007/978-981-33-6785-2_6

35. Li H, Wan J. Lipid metabolism in tumor-associated fibroblasts. Adv Exp Med
Biol (2021) 1316:117–31. doi: 10.1007/978-981-33-6785-2_8

36. Wang W, Bai L, Li W, Cui J. The lipid metabolic landscape of cancers and new
therapeutic perspectives. Front Oncol (2020) 10:605154. doi: 10.3389/fonc.2020.605154

37. Serpa J, Caiado F, Carvalho T, Torre C, Gonçalves LG, Casalou C, et al. Butyrate-
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