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Xerna™ TME Panel is a
machine learning-based
transcriptomic biomarker
designed to predict therapeutic
response in multiple cancers
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Mokenge Malafa3, Hong Liu4, Arthur M. Krieg4, Jeeyun Lee5,
Rafael Rosengarten2*† and Laura Benjamin1*

1OncXerna Therapeutics, Inc., Waltham, MA, United States, 2Genialis, Inc., Boston, MA, United States,
3Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute,
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Introduction:Most predictive biomarkers approved for clinical usemeasure single

analytes such as genetic alteration or protein overexpression. We developed and

validated a novel biomarker with the aim of achieving broad clinical utility. The

Xerna™ TME Panel is a pan-tumor, RNA expression-based classifier, designed to

predict response to multiple tumor microenvironment (TME)-targeted therapies,

including immunotherapies and anti-angiogenic agents.

Methods: The Panel algorithm is an artificial neural network (ANN) trained with

an input signature of 124 genes that was optimized across various solid tumors.

From the 298-patient training data, the model learned to discriminate four TME

subtypes: Angiogenic (A), Immune Active (IA), Immune Desert (ID), and Immune

Suppressed (IS). The final classifier was evaluated in four independent clinical

cohorts to test whether TME subtype could predict response to anti-angiogenic

agents and immunotherapies across gastric, ovarian, and melanoma datasets.

Results: The TME subtypes represent stromal phenotypes defined by

angiogenesis and immune biological axes. The model yields clear boundaries

between biomarker-positive and -negative and showed 1.6-to-7-fold

enrichment of clinical benefit for multiple therapeutic hypotheses. The Panel

performed better across all criteria compared to a null model for gastric and

ovarian anti-angiogenic datasets. It also outperformed PD-L1 combined positive

score (>1) in accuracy, specificity, and positive predictive value (PPV), and

microsatellite-instability high (MSI-H) in sensitivity and negative predictive

value (NPV) for the gastric immunotherapy cohort.
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Discussion: The TME Panel’s strong performance on diverse datasets suggests it

may be amenable for use as a clinical diagnostic for varied cancer types and

therapeutic modalities.
KEYWORDS

pan-tumor, immunotherapy, anti-angiogenic agent, diagnost ic assay,
predictive biomarker
Introduction

Over the past three decades, targeted therapies have expanded

the treatment options for cancer patients and oncologists (1, 2).

Nevertheless, the rate and duration of response to targeted therapy

varies widely among patients, both across and within clinical

indications (3–5). The potential for biomarkers to improve

patient outcomes and facilitate successful clinical development is

quantifiable (6, 7), encouraging efforts to identify patient subtypes

most likely to respond to targeted agents and to further optimize

chemotherapy regimens (8, 9). Increasingly, new biomarker

strategies take advantage of the convergence of high-throughput

data generation, such as next generation sequencing (NGS), with

the adoption of machine learning. The resulting cutting-edge

biomarkers may be better suited to predict therapeutic response

given the underlying complexity of cancer biology and the

heterogeneity inherent to patient populations.

Initially, most targeted therapies were designed to recognize and

inhibit the function of specific cancer drivers within tumor cells

when dysregulated by overexpression or genetic alteration.

Subsequent approved therapies also targeted biological processes

and functions carried out by non-tumor constituents of the tumor

microenvironment (TME), including pathological angiogenesis and

immune activity. While anti-angiogenics and immune checkpoint

inhibitors (ICIs) have been approved across dozens of cancer

indications, both drug classes display limited efficacy, with large

proportions of patients failing to receive meaningful clinical benefit,

and are associated with some serious toxicities (10–12).

Despite considerable efforts, a predictive biomarker

for anti-angiogenesis therapy remains elusive (13–15). Biomarkers

for ICI have fared better, with various approved tests for

analytes such as programmed death ligand 1 (PD-L1)

combined positive score (CPS), microsatellite instability (MSI) or

mismatch-repair deficiency (dMMR), and tumor mutational

burden (TMB) (16). However, these biomarkers present

limitations. Immunohistochemistry (IHC) assays for PD-L1 are

highly variable and inconsistent between commercial laboratories

and suppliers (17). MSI-H/dMMR prevalence varies substantially

across solid tumor types (18, 19). Nonetheless, some patients with

microsatellite stable (MSS) disease do respond to treatment so a

reliable assay to capture those subsets would be useful. Similar to

MSI-H, TMB assays are used to infer the potential antigenicity of

tumor cells, but do not account for the functional status of immune
02
cells in and around the microenvironment (20, 21). Other tests in

development employ genomic or transcriptomic signatures to

describe the state of a cancer’s immune susceptibility, typically

focusing on known immune pathway genes (22–24). However,

these tests have been limited in their ability to segregate

responders from non-responders (25).

An alternate strategy to expand the clinical utility of targeted

therapies is to model the biological state of the TME, in which

interdependent biological processes contribute to stromal and

tumor cross talk. We hypothesized that a TME phenotypic

framework based on the two dominant biologies of angiogenesis

and immune infiltration/activation could be developed as a

predictive biomarker for use in patient-selected studies involving

targeted therapies. A panel consisting of a complex 124-gene

signature and a machine learning algorithm was constructed,

trained, validated and tested following Good Machine Learning

Practice guidelines (26). The model was validated with independent

real world (observational data generated during routine clinical

practice) and clinical trial datasets that included patient response to

anti-angiogenesis or ICI therapies. Herein we describe the

evaluation of the Xerna™ TME Panel (OncXerna Therapeutics

Inc., Waltham, MA) to assess its potential as a commercially viable

regulated device for broad use in patient-selected clinical trials. Key

criteria for functionality included i) classification of patients into

subtypes that predict response based on the phenotype-mechanism-

of-action (MOA) theory; ii) generalization of TME features for

utility across solid cancers, rather than restricting the analysis to a

single cancer type; and iii) ability to classify the TME phenotypes of

newly generated patient data, in addition to historical data.
Methods

Training and validation dataset cohorts

The overall development of the Xerna™ TME Panel utilized

gene expression data and, where available, clinical outcome data,

from 2723 patient samples across nine datasets including five gastric

cancer, one ovarian, one colorectal (CRC), one melanoma, and one

combination of gastric/ovarian/CRC. Datasets were from the public

domain, commercially sourced, or proprietary. Demographic and

clinical attributes of commercial datasets are provided in

Supplementary Tables 1, 2.
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The training cohort consisted of 298 patients from the Asian

Cancer Research Group (ACRG) obtained from Gene Expression

Omnibus (GEO) (GSE62254). The ACRG dataset was selected for

training as it was sufficiently large, uniformly processed on the same

array platform, and included patients with a consistent treatment

history with no prior targeted therapy (27). Data was combined

from raw microarray expression (CEL) files and processed with

expresso function from affy R package using robust multi-array

average (RMA) background correction, quantile normalization, no

adjustment to the PM values, and median polish summarization

(28). Training labels corresponding to the four TME subtypes

(Figure 1) were assigned based on 2 previously described complex

signatures that represented pathological angiogenesis and TME

Immunology. These biological subtypes were previously defined

and characterized using a variety of orthogonal approaches (29).

“A” subtype tumors are characterized by a dense, pathological

vasculature lacking significant immune cell infiltration. “IA”

tumors have an immune infiltrated tumor microenvironment

marked by activated lymphocytes and M1 polarized macrophages.

Conversely, the “IS” tumors have a tumor microenvironment

composed of immune cell gene expression related to M2

polarized macrophages, myeloid-derived suppressor cells

(MDSCs), tumor-associated macrophages (TAMs), and regulatory

T cells (Tregs). IS tumors also possess a vascular phenotypes similar

to the A subtype. Finally the “ID” subtype, lacks significant gene

expression for either angiogenic or immune-related biologies and

has a microenvironment largely devoid of dense vasculature or

immune infiltration. Some of the signature genes were discovered

through the study of stromal biology in a VEGF-overexpressing

mouse, and therefore independent of any cancer-specific signal

(29). Additional signature genes were curated by expert review of

the experimental and clinical literature.

Validation datasets were procured to test whether the same

model could be used to stratify patients treated with different classes

of target therapy (immunogenic or antiangiogenic) in different
Frontiers in Oncology 03
cancer indications and (gastric, colorectal, ovarian cancer, and

melanoma) and using different types of gene expression data

(microarray, RNA Exome Sequencing, total RNA-Seq). Two

distinct real-world gastric cancer cohorts (RNA Exome

Sequencing) were obtained from Samsung Medical Center, one

treated with the anti-angiogenic agent ramucirumab (Gastric-

Angio), and the other treated with either pembrolizumab or

nivolumab monotherapy (Gastric-Immune). A clinical trial

dataset (total RNA-Seq) was provided by OncXerna Therapeutics

(NCT03030287) that had been derived from an ovarian cancer

cohort treated with navicixizumab and paclitaxel (Ova-Angio), and

one from Checkmate Pharmaceuticals (NCT02680184) from a

melanoma cohort (total RNA-Seq) treated with vidutolimod and

pembrolizumab (Mela-Immune) (Supplementary Table 1). All four

datasets included clinical outcomes defined using Response

Evaluation Criteria in Solid Tumours version 1.1 (RECIST 1.1).

Investigators obtained informed consent from each participant or

participant’s guardian and investigations were performed after

approval by a local Human Investigations Committee and in

accordance with an assurance filed with and approved by the

Department of Health and Human Services where appropriate.
Feature set optimization

Prior to model training, the gene signature that would serve as

model features was optimized by reducing the feature set to include

only those genes that were consistently expressed across datasets

representing various gene expression platforms (e.g. microarray vs.

total RNA-seq vs. RNA Exome sequencing) and different tissue

types (e.g. gastric vs. ovarian vs. colorectal cancers). A novel metric

of “feature transferability” was developed (30) to quantify the

consistency of each gene’s expression across variously sourced

datasets, and to set an empirical threshold with which to remove

genes from the feature set (Supplementary Figure 1B). The final
FIGURE 1

TME subtypes. Angiogenesis and immune activity are two of the dominant biological processes of the tumor microenvironment (TME). Juxtaposing
signature scores for each of these biologies on a cartesian grid reveals four stromal phenotypes: Angiogenic (A), red; Immune Active (IA), blue;
Immune Desert (ID), green; and Immune Suppressed (IS), purple. The x-axis represents the “immune” score while the y-axis represents the
“abnormal/pathological blood vessel” score. Each phenotype is characterized by distinct molecular and pathological features, some of which are
illustrated in the cartoon TMEs according to the cell-type legend. The color gradient on the latent space plot represents the probability estimate,
higher probability samples are located in the darker regions towards the corners, whereas the lower probability samples are towards the center.
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feature set consisted of 124 genes of which a subset of genes were

not weighted, roughly evenly split between the Angio and

Immune subsets.
Model training

An artificial neural network (ANN) of multilayer perceptron

type with two neurons in the hidden layer was trained on the ACRG

data using the final feature set and hyper parameters tuned using

repeated 10-fold cross validation. The training iterates until the loss

is not improving by at least 1e-4 for 10 consecutive iterations,

limited to at most 1000 iterations (epochs). The resulting model

consisted of three layers of nodes: an input layer, a hidden layer, and

an output layer. Except for the input nodes, each node is a neuron.

The neuron computes a weighted sum of its inputs, adds intercept

bias, and scales the sum using a hyperbolic tangent activation

function (tanh):

fi(x)   =   tanh(wi · xi   +   bi)

Here fi is the output of the ith node (neuron), wi · xi is a

weighted sum of input connections, and bi is the intercept bias. The

hyperbolic tangent activation function (tanh) introduces non-

linearity and scales the weighted sum of neuron inputs from (-∞,

∞) domain to (-1, 1) range.

Each normalized gene expression value is multiplied by weights

on the connections to the two neurons in the hidden layer. Hidden

neuron inputs are summed together, the intercept bias is added to

the weighted sum, and the value is scaled by the hyperbolic tangent

activation function (tanh). Likewise, the two outputs of the hidden

layer neurons are multiplied by weights on the connections to the

four output neurons. Output neuron inputs are summed together,

the intercept bias is added to the weighted sum, and the value is

normalized by the softmax function. The output of the model are

probabilities of the four TME subtypes. The output with the highest

probability estimate is chosen as the TME subtype, no minimum

threshold is required to be reached. The Xerna TME model

optimizes the multi-class cross-entropy loss function using the

Limited Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) solver.
Model validation

Model performance was determined by classifying patients

from real-world and clinical trial datasets and comparing the

patient TME subtypes to clinical response. The TME Panel

algorithm assigns samples to a TME subtype with an associated

probability estimate. The subtype designation and its probability

estimate can be used to determine the patient biomarker status. Best

Objective Response (BOR) was measured in all cohorts using

RECIST v1.1 criteria, and complete response (CR) or partial

response (PR) were considered as responders, while stable disease

(SD) or progressive disease (PD) were deemed non-responders.

Prior to evaluating model performance, each dataset was

normalized via a mapping function to the same distribution as
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the training data (Supplementary Methods). For any given dataset,

certain TME subtypes were considered “biomarker positive” based

on the mechanism of action of the particular therapy (defined in

Table 1 and in the Supplementary Methods). The model’s ability to

predict clinical response based on TME subtype was reported by

standard metrics: accuracy, the area under the receiver operator

curve (AUROC), sensitivity (recall), specificity, positive predictive

value (precision; PPV), and negative predictive value (NPV).
Enrichment analyses

Gene set enrichment analysis (GSEA) and variation analysis

(GSVA) were implemented by standard methods to examine the

relationship of TME Panel subtypes to biological phenotypes

(Supplemental Materials). GSVA, in particular, was applied to the

ACRG, Singapore and TCGA STAD datasets (Supplemental

Materials) to compare TME Panel classes to signatures of

angiogenesis, inflammatory response, and immune suppression,

as derived from manual curation of well-known, literature

validated genes from the MSigDB Hallmark database (31).
Results

Xerna™ TME Panel is a complex
transcriptomic model of tumor
microenvironment

The Xerna TME Panel was inspired by a previously described

complex signature of 3 subsets of genes representing different stages

of stromal development/remodeling stimulated by an adenovirally

expressed VEGF-A (29). Additional human immune-related genes

were incorporated from expert evidence-based analyses, which led

to a starting list that was further refined using bioinformatic tools

(methods and Supplemental Methods). The intersection of

angiogenesis and immune biologies were conceptualized as a

phenotypic landscape of the TME (Figure 1) (32). Preliminary

models using tumor sample gene expression data and z-score

(population-dependent) statistical analyses sorted samples into

one of the four phenotypes: angiogenic (A), immune active (IA),

immune desert (ID) and immune suppressed (IS).

Each biological phenotype was hypothesized to indicate a

therapeutic strategy based on the drug’s MOA. For example,

samples classified as the A or IS phenotypes which both show

features of cardiovascular/endothelial cell biologies (Figures 1, 2),

were hypothesized to have more favorable responses to an anti-

angiogenic, whereas IA or IS samples, with features of immune cell/

cytokine biology would be hypothesized to respond best to immune

based therapies. These were the a priori hypotheses that lead to

different definitions of a biomarker status in different

clinical contexts.

An in silico experimental design was conceived for the

construction, training, testing and independent evaluation of a

computational model that could predict TME subtypes (Figure 1)
frontiersin.org
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based on gene expression data from tumor samples. An artificial

neural network was trained on 298 real-world gastric cancer patient

samples collected by the ACRG consortium using an optimized 124

gene feature set. The final model that constitutes the TME Panel

consisted of: the input layer, i.e. gene signature (features); the

hidden layer, i.e. two neurons, each with weights for all genes;

and the output layer, i.e. four neurons representing the four TME

subtypes, and their associated probabilities (Figure 3A).

To better understand how the model learned to associate the

input gene set with the stromal phenotypes, the weights assigned to

individual genes on each of the two hidden neurons were examined

(see schematic representation in Figure 3B). Neuron 1 preferentially

gave high, positive weights to genes associated with immune

processes, and low, negative weights to genes associated with

angiogenesis. Conversely, neuron 2 generally gave high, positive

weights to angiogenesis-associated genes, and low, negative weights

to immune-related genes. These gene-biology associations were

never exposed to the algorithm during training. Rather, the ANN

model independently learned gene weights that corresponded to the

two biological processes represented in the feature set. Further

inspection of the hidden layer gene weights suggested these

biologies are interconnected, with some genes showing high,

positive weights, or low, negative weights on both neurons, which
Frontiers in Oncology 05
is consistent with our understanding of the crosstalk between

immune cells and vascular cells (33) as well as their common

embryonic lineage (Figure 3B).
The Xerna TME Panel subtypes are defined
by their expression of immune and
angiogenic related genes

The TME Panel learned the complex gene signature associated

with two distinct biological processes—immune and angiogenic—

whose intersection classifies four subtypes. To confirm that the

TME subtypes represented the inferred stromal phenotypes,

enrichment analysis was performed using gene sets derived from

the MSigDB Hallmarks collections. A subset of the Hallmark genes

was selected to represent each of the following biologies:

angiogenesis; inflammatory response; and immune suppression.

Activation scores were computed for these gene sets across three

independent datasets and compared between all pairwise TME

subtypes (Figures 2A–C).

The observed activation score patterns generally agreed with the

TME Panel subtype designations. The median angiogenesis

signature score was positive (median range of approximately 0.3
TABLE 1 Key performance characteristics of Xerna TME Assay across clinical cohorts.

Biomarker/Model ACC AUROC F1 Sensitivity Specificity Precision/PPV NPV

Gastric-Angio (n=48)
B+ = TME IS+A
ORR(B+) =50.0%
ORR(B−) = 30.8%
ORR enrichment = 1.6-fold

TME 0.60 (29/48) 0.61 0.54 0.58 (11/19) 0.62 (18/29) 0.50 (11/22) 0.69 (18/26)

Baseline 0.53 0.5 0.40 0.40 0.61 0.40 0.61

Ova-Angio (n=32)
B+ = TME IS+A
ORR(B+) = 62.0%
ORR(B−) = 26.3%
ORR enrichment = 2.4-fold

TME 0.69 (22/32) 0.66 0.62 0.62 (8/13) 0.74 (14/19) 0.62 (8/13) 0.74 (14/19)

Baseline 0.51 0.5 0.39 0.39 0.59 0.39 0.59

Gastric-Immune (n=73)
B+ = TME IS+IA
ORR(B+) = 34.4%
ORR(B−) = 4.9%
ORR enrichment = 7.0-fold

TME 0.68 (50/73) 0.83 0.49 0.85 (11/13) 0.65 (39/60) 0.34 (11/32) 0.95 (39/41)

IA ≥90% 0.85 (62/73) / / 0.54 (7/13) 0.92 (55/70) 0.58 (7/12) 0.90 (55/61)

PD-L1=>1 0.60 (44/73) / 0.45 0.92 (12/13) 0.53 (32/60) 0.30 (12/40) 0.97 (32/33)

MSI-H 0.85 (62/73) / 0.48 0.38 (5/13) 0.95 (57/60) 0.62 (5/8) 0.88 (57/65)

Baseline 0.70 0.5 0.17 0.17 0.82 0.17 0.82

Mela-Immune (n=38)
B+ = TME IS
ORR(B+) = 53.8%
ORR(B−) = 12.0%
ORR enrichment = 4.5-fold

TME 0.76 (29/38) 0.75 0.61 0.70 (7/10) 0.79 (22/28) 0.54 (7/13) 0.88 (22/25)

Baseline 0.62 0.50 0.27 0.27 0.74 0.27 0.74
fr
Data generated from Supplemental Table 2 for subjects that had both biomarker calls and drug response data. A simple baseline classifier served to represent the null model. The baseline classifier
randomly samples the class based on prior class probabilities and simulates drug response without a biomarker. For the Immune dataset, data were available for the industry-standard biomarker
PD-L1 CPS>1 as well, and its performance is given for comparison. Cells containing a “/” were not able to be calculated. Column headers represent standard machine learning performance
metrics:
Accuracy (ACC), Number of correct predictions/Total number of predictions.
Area Under the Receiver Operator Curve (AUROC), Degree to which model is capable of distinguishing between classes.
Sensitivity (Recall), True biomarker responders/Total actual responders.
Specificity, True biomarker non-responders/Total actual non-responders.
Positive Predictive Value (PPV or Precision), True biomarker responders/Total predicted biomarker responders.
Negative Predictive Value (NPV), True biomarker non-responders/Total predicted biomarker non-responders.
TME, Tumor Microenvironment.
ORR, Overall Response Rate.
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to 0.5) in A and IS subtypes, and negative (median range of

approximately -0.2 to -0.55) in IA and ID subtypes (Figure 2A).

The median inflammatory response activation scores were (median

range of approximately 0.45 to 0.2) in IA and IS subtypes compared

to (median range of approximately -0.2 to 0.-0.4) in A and ID

subtypes (Figure 2B). Furthermore, the immune suppression gene

set scores were highest among the IS subtype (Figure 2C). The

statistical significance of these patterns was inferred by pairwise t-

test, and is shown in Figures 2A–C.

The IS subtype was of special interest since these patients

express characteristics of both dominant biologies, and may be
Frontiers in Oncology 06
underserved by currently available targeted therapies. To better

understand the biological processes that defined the IS subtype,

differential gene expression analysis was performed on ACRG

patient samples from the IS subtype versus those from each of the

other TME classes, followed by gene ontology enrichment

(Figure 2D). Canonical immune-related GO biologies such as

“regulation of immune effector process” and “cytokine-mediated

signaling pathway” were differentially enriched between IS and A

subtypes, but were not distinct between IS and IA. Typical stromal-

related GO biologies such as “extracellular matrix organization”,

“angiogenesis”, etc., were differentially enriched between IS and IA
B C

D

A

FIGURE 2

Characteristics of the TME subtypes. (A–C) Activation scores (y-axis) were computed on patient samples from the ACRG, Singapore Cohort, and
TCGA-STAD (stomach adenocarcinoma) datasets for gene sets representing (A) angiogenesis and mesenchymal biology, (B) inflammatory response
and (C) immune suppression, respectively. The gene sets were manually derived subsets of the GSEA MSigDB Hallmark collections, and are listed in
the Supplementary Methods. In each plot, the datasets are colored according to the legend, and grouped by TME subtypes A, IA, ID and IS. All
pairwise comparisons between TME subtypes were analyzed for statistical differences in mean activation score by a t-test, with (*) indicating p-
value< 0.05, (***) indicating p-value< 0.0005, and “NS” indicating no significant difference. (D) Gene Ontology enrichment analysis confirmed the
distinct biologies of genes differentially expressed between samples in Supplementary Table 1 excluding Mela-Immune from the IS subtype versus
each of the A, IA and ID subtypes. The number of differentially expressed genes is shown beneath the contrast label. The top ten angiogenic and
immunogenic gene ontology process terms are respectively listed with an adjusted p-value of between<0.0025 and 0.0075.
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subtypes, but were similar between IS and A. IS samples were

differentially enriched for most of the GO biologies when compared

to the quiescent ID subtype. Thus, patient samples classified as IS

simultaneously displayed gene expression characteristics of two

orthogonal but potentially interfering biologies.

Model performance is reported in Table 1. Most responders to

anti-angiogenic agents were found among high angiogenesis TME

subtypes (Figures 4B, E), whereas most responders to ICIs were

found among high immune TME subtypes (Figure 4H). Most

responders to combination immune therapy were found in the

immune suppressed group (Figure 4K). These observations were

consistent with the hypothesis that underlying biological phenotype

could predict targeted therapy outcome. Generally, individual

hallmark GSVA signatures are not sufficiently predictive of drug

response (Figures 4C, F, I, L and Supplemental Figure 2), unlike the

collection of genes captured in the TME panel. However, these

hallmark GSVA signatures do reveal a general correspondence

between pathway enrichment and TME subtype, most evident in
Frontiers in Oncology 07
high expression of angiogenesis-related signatures in the A and IS

subtypes and high expression of immune-related signatures in the

IA and IS subtypes. Cell cycle and proliferation gene signatures were

most evident in the ID subtype.

To visualize the distribution of patient samples among the TME

subtypes and their associated probabilities, a “latent space plot” was

developed. In brief, each sample was graphed using the hidden

neuron 1 value on the X-axis and hidden neuron 2 value on the Y-

axis (Figures 4A, D, G, J). Since these axes were shown to correlate

with high weighting of genes associated with immune biology and

angiogenesis biology, respectively, the latent space plot is analogous

to the four stromal phenotypes shown in Figure 1, with the X-axis

generally representing an immune score and the Y-axis generally

representing an angiogenesis score. The distance of a sample from

the center of the plot is correlated with the TME output layer

probability estimate, with high probability estimate calls closer to

the corners, and low probability estimate calls closer to the center.

Additional patient data, including BOR, PD-L1 status, and other
B

A

FIGURE 3

ANN model training and examination. (A) A shallow artificial neural network model performed the best in initial benchmarking tests against various
other algorithms, specifically logistic regression and random forest. The model consisted of an input layer of genes and their (normalized)
expressions, a hidden layer with two nodes, and an output layer assigning probabilities that a given sample belongs to each of the four TME subtypes
(i.e. stromal phenotypes). See Supplemental Methods for additional details. (B) A schematic representation of a subset of the weights and associated
biological processes of matched genes across both neurons. For each node in the hidden layer—neuron 1 and neuron 2—gene weights are
represented as bars corresponding to the magnitude and direction of the values learned by the trained model. Genes curated as associated with
immune processes are colored blue while those associated with angiogenesis biology are colored red. Neuron 1 was characterized by high, positive
weights for immune genes, while Neuron 2 was characterized by high, positive weights for angiogenesis genes. The same gene order is displayed
for both neurons, illustrating how some genes are positive on both neurons, while others flip signs. A subset of the final geneset is shown.
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FIGURE 4

Model validation. (A) Patient tumor samples from the Gastric-Angio cohort projected on the latent space of the TME Panel classifier. The latent
space is a two-dimensional representation of the two neurons in the hidden layer of the model, with neuron 1 as the x-axis and neuron 2 as the y-
axis. The axis ticks correspond to neuron scores. The gray contours create a probability estimate gradient, as indicated in the legend. Each glyph is a
patient sample, colored according to RECIST score, according to the legend. (B) Tumor response tabulated based on RECIST score. Biomarker status
for each cohort is defined in Table 1. (C) Gene Set Variation Analysis (GSVA) showing enrichment of various pathways (rows) for each patient in the
Gastric-Angio cohort (columns). Patients are grouped on the x-axis by TME subtype and tumor response based on RECIST criteria, shown according
to the legend. GSVA signatures are grouped on the y-axis by general biological class with angiogenesis-related biology on top, immune-related
biology in middle, and cell cycle and proliferation-related biology at the bottom. TME subtypes that correspond to the biomarker-positive status for
each cohort are boxed in “grey” color. (D–L) Analyses of the other cohorts, as in (A–C). (M) Analysis of matched pre and post treatment samples.
Post treatment samples were taken Week 3 Day 1 of treatment. The arrows demonstrate how the sample has changed after treatment.
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known factors, can be layered on the visualization to facilitate

model interpretation.
The Xerna TME model enriches for
patient responses to tumor
microenvironment-directed therapies
in real-world and clinical trial cohorts
from multiple cancer types

Correlations of TME subtypes to clinical benefit were calculated

using data provided in Supplemental Table 2. Biomarker

designations for each cohort were determined prior to analyses

on the basis of the respective therapeutic mechanism-of-action.

Response to anti-angiogenic treatment
Gastric-Angio and Ova-Angio cohorts were analyzed to

determine if TME subtype classification could predict response to

anti-angiogenic therapies. Patients classified as high angiogenic

subtypes (A+IS) were expected to respond to ramucirumab or the

anti-VEGF/anti-DLL4 bispecific navicixizumab plus paclitaxel,

respectively. Thus, A+IS patients were designated as biomarker-

positive (B+). Of the 32 patients with response data in the Ova-

Angio, 13 were scored as B+ and the overall response rate (ORR;

ORR = CR+PR) was 62%, a 2.4x improvement over the B− group

(Table 1). TME panel analysis yielded an Area Under the Receiver

Operator Curve (AUROC) of 0.66 with sensitivity of 0.62,

specificity of 0.74 and NPV of 0.74. Disease control rate (CR+PR

+SD) was 100% among B+ patients. The Gastric-Angio dataset

included 22 B+ and 26 B− patients, with an ORR of 39.6%, a B+

response rate of 50.0% and a B− response rate of 30.8%. The TME

model yielded an AUROC of 0.61, with sensitivity of 0.58 and

specificity of 0.62. In these and all other assessment metrics, the

TME Panel performed superior to the null model in differentiating

responders from non-responders. A baseline response to paclitaxel

is expected in both cohorts, suggesting that enrichment of

responders to the anti-angiogenic agents in the B+ group may be

under-represented. Together these results indicate that patient

stratification with this biomarker facilitates the identification of

patients responsive to anti-angiogenic therapy.

Response to immune checkpoint inhibition (ICI)
In the Gastric-Immune cohort, patients with high immune axis

subtypes (IA+IS) were hypothesized to be more responsive to

treatment than those with low immune axis subtypes (A+ID).

Thus, in this case, IA+IS patients were designated as B+. Thirty-

two of 73 patients were characterized as B+, and 41 of 73 were B−.

The ORR was 20.6%, with response observed in 34.4% of B+

patients, and 4.9% among B− patients. The TME Panel predicted

response to ICI therapy with an AUROC of 0.83, with a sensitivity

(recall) of 0.85 and specificity of 0.65. The NPV, i.e., the ability of

the model to discriminate non-responders, was 0.95 (Table 1).

Overall, the TME Panel results were similar to those of the

canonical ICI biomarker PD-L1 CPS ≥ 1, results for which were

available in the patient sample metadata. When using MSS to
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further stratify patients, the ORR was 15.4%, with 32.1% in

biomarker-positive, and 2.7% in biomarker-negative. This

observation is noteworthy since historical rates of response in

MSS are low for ICIs; such patients are often not eligible for ICI

therapy. As expected, a high ORR was noted in MSI (5/8 or 62.5%),

with 100% ORR of biomarker-positive MSI compared to 25% in

biomarker-negative MSI (Table 1). Performance characteristics

could be further tuned by setting additional thresholds based on

TME subtype probability estimate. For example, defining B+ only as

a high probability estimate (≥90%) IA subtype resulted in an ORR

of 58% (7 responders out of 12 patients in this subset), with

sensitivity of 0.54 and specificity of 0.92 (Table 1). While using

this single subtype and threshold for biomarker positivity provides

the highest accuracy and precision for the TME panel, there is an

overall lower sensitivity. Therefore, depending on the desire to

maximize specificity, sensitivity, and/or precision, the employment

of different thresholds may provide a flexibility that should be

considered for future clinical development as a biomarker.

Response to combination
immunotherapy treatment

Patients participating in the Mela-Immune cohort were

refractory to ICI and given vidutolimod plus pembrolizumab.

With this treatment regimen, the IS subtype was hypothesized to

be associated with response and therefore identified as B+. Thirteen

of 38 patients were B+, and for them ORR was 53.8% (compared to

the overall ORR of 26.3%). The TME Panel yielded an AUROC of

0.75, sensitivity of 0.70, specificity of 0.79, and NPV of 0.88

(Table 1). Seven of the 10 partial or complete responders were

classified in the IS (B+) subtype, while the other three were observed

in the ID subtype. This distribution of responses among the IS and

ID phenotypes is consistent with the hypothesized MOA of

vidutolimod in activating an immune response through the TLR9

pathway. This cohort also allowed for the analysis of treatment

effects in 15 patients with paired pre- and post-treatment samples.

Of these, 5 patients transitioned from ID to the more immunogenic

states IA (n = 3) and IS (n = 2) (Figure 4M).
Xerna™ TME panel yields a clear decision
boundary between B+ and B−

The Xerna TME Panel was trained on features that are generally

involved in stromal and immune biologies, irrespective of the tissue

of origin of a tumor. Thus, the model was hypothesized to be

capable of classifying patient samples from any solid tumor into a

TME subtype that potentially can help to identify an appropriate

therapy. To date, nearly 5,500 samples from various datasets have

been analyzed by the TME panel, ranging from gastric, ovarian,

colorectal, melanoma, breast, liver to prostate cancer datasets. The

majority of patients (~80%) across the cancer types and datasets

were assigned to one of the four TME subtypes with high

probability estimate (≥ 0.8). In the event the biomarker status is a

sum of two TME subtypes, e.g. IA+IS, the combined B+ probability

estimate is higher still than the single subtype probability estimate.
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By its nature, the TME Panel yields a bimodal distribution of

biomarker positive versus negative calls for any particular

phenotype-MOA hypothesis with a clearly delineated decision

boundary (Figure 5A).

In the Gastric-Immune dataset, for example, B+ was defined as

a combined probability estimate of IA+IS > 50%, and this threshold

captured all but two true responders (Figure 5B, left). This stands in

contrast to a typical activation-score based model, or a (near-)

normal distribution of biomarker probabilities, in which the

greatest frequency of patients score in the middle, and which may

include a zone of no (or low) probability estimate in assigning

biomarker status (9). In one such example (Figure 5B, right), the T

cell inflamed 18-gene expression profile (GEP) was used to assess

patients that received pembrolizumab in various KEYNOTE trials

(22). In the KEYNOTE-059 gastric cancer study, which evaluated

the anti-tumor activity of pembrolizumab monotherapy in a similar

patient group as the Gastric-Immune RWD cohort, the authors

described the GEP as having a higher score in aggregate for

responders compared to non-responders, but did not define a

discrete threshold for biomarker-positive or -negative patients (25).
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Xerna™ TME panel is prognostic in a
CRC cohort

One challenge in assessing the predictive power of the TME

Panel, or any biomarker, is access to datasets with relevant

treatment and patient outcomes. However, one may gain a sense

of the model’s potential by examining its prognostic ability in

clinical settings in which certain disease phenotypes are known to

be associated with better/worse outcomes. For example, previous

work in CRC has shown that patients presenting with pathologically

angiogenic tumors have less favorable outcomes while immune

responsive tumors derive the most clinical benefit (34–37).

To test whether TME subtypes were prognostic of survival in

CRC, gene expression data annotated with survival was analyzed

from the CIT CRC dataset (Supplementary Methods,

Supplementary Figures 3A, B). In both early (0–2) and late (3-4)

stage CRC, the A subtype had the shortest recurrence free and

overall survival, respectively, while the IA subtype had the longest

RFS and OS. The IS subtype also showed less favorable clinical

prognosis, consistent with the poor outcomes associated with
B

A

FIGURE 5

Distribution of biomarker calls. For the Xerna TME Panel, biomarker score is a cumulative probability estimate of the TME subtypes considered
biomarker positive. (A) The distribution of TME Panel biomarker calls for both an immunotherapy (IA+IS = positive, A+ID = negative) and anti-
angiogenic (A+IS = positive, IA+ID = negative) for all datasets in Table 1, excluding Mela-Immune. Shading in light gray indicates sample density.
(B)Biomarker scores for two datasets. Shading in light gray indicates sample density. (Left) Biomarker scores for the Gastric-Immune dataset follow a
bimodal distribution. Samples with y ≥ 0 are designated as B+, and the rest are B-. (Right) The KEYNOTE/activation-score based model, including
144 patients with gastric cancer, does not follow a bimodal distribution, and may require a zone of no confidence in which patients cannot be
scored as biomarker positive or negative.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1158345
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Uhlik et al. 10.3389/fonc.2023.1158345
pathological angiogenesis. Thus for this dataset, the TME Panel was

prognostic for survival.
Discussion

Whether a TME-targeted cancer therapy yields a clinically

beneficial response depends on the biological context of each

patient’s TME. We set out to develop a biomarker panel that

could predict response to various approved and investigational

TME-targeted drugs, irrespective of the specific tumor type. To

accomplish this, we identified dominant biological processes that

define stromal phenotypes, established a complex gene signature

that could be measured robustly by RNA-sequencing, and trained

and validated a machine learning model to classify patients into one

of four TME subtypes. By analyzing multiple independent datasets

from real-world and clinical trial settings, we showed that the TME

subtypes could enrich for response and discriminate against non-

response based on the MOA of a particular therapy. The model

demonstrated the ability to enrich for therapy-responsive patient

subgroups in gastric cancer, ovarian cancer and melanoma, for both

angiogenesis inhibitors and immune modulators. Moreover, it has

potential as a prognostic marker as demonstrated with an example

in colorectal cancer, similar prognostic potential has been observed

in other tumor types (38), however, further validation is required.

Ongoing work will determine if the Xerna™ TME Panel can also be

used to predict therapeutic response in CRC and numerous

other indications.

The first key innovation of the TME panel was implementing an

approach to biomarker modeling that facilitated hypothesis testing

and interpretation (Figure 1). The idea was to model multiple

biological processes to classify patients into phenotypic

subgroups, where each subgroup then has an associated

therapeutic hypothesis, rather than attempt to derive a signature

retrospectively from drug responses. Transcriptomics data was

chosen as the most appropriate modality to classify TME

phenotypes due to the high throughput of this data type, as well

as the ability to generate consistent data with widely available

technologies. Several academic and for-profit companies have

successfully transitioned RNA-based gene expression signatures

into prognostic tools (39), such as the consensus molecular

subtype for characterization of colorectal cancer (40) and

MammaPrint (41) and Oncotype DX (42) assays for breast cancer

recurrence . Recent ly , another TME-focused complex

transcriptomic biomarker was described (43). Deriving a host of

immune and fibrotic signatures, it classified patients into four

distinct phenotypes that correlated with immunotherapy response

in melanoma, bladder, and gastric cancers. The investigators

concluded that the complexity and redundancy of features was

important for robust performance of the model, because no one

signature alone was consistently correlated with response in all

tested cohorts. Supplementary Figure 2 demonstrates the predictive

performance of GSVA genesets across the four validation cohorts.

In the majority of analyses the Xerna TME panel has superior

predictive performance. In the case of the Angiogenesis geneset

predictive performance in the Ova-Angio cohort is comparable to
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the Xerna TME panel, however, this same geneset does not yield

meaningful results when applied to the Gastric-Angio cohort. The

Xerna TME panel generally has superior performance to the GSVA

genesets and has a broader applicability to more diverse tissue types

(Supplementary Figure 2). This study further shows that

biomarkers representing complex biology may prove broadly

applicable for predicting response to cancer drugs.

The chosen model architecture, a shallow artificial neural net

with a two-neuron hidden layer, was chosen for its relative

simplicity to mitigate overfitting risk and enable interpretation (in

contrast, for example, to a deep neural network or graph-based

architecture), while still sufficient to learn non-linearities and the

interconnected relationship between angiogenesis and immune

biologies that was not hypothesized a priori. Unlike many other

RNA signature scoring methods that are computed on the

distribution of input data (“population-based”), such as a z-score

(44), the TME Panel can analyze new data inputs without adjusting

the training data distribution. Therefore it may be used in regulated

testing environments such as clinical devices in which the trained

algorithm must remain unchanged. The outputs are robust to

various technical and biological sources of variance, and binary,

enabling clear decision boundaries. Furthermore, a flexible

biomarker logic can be employed with the TME Panel via the

assignment of a single subtypes or combination of subtypes to

underlie therapeutic hypotheses. We propose that the use of a

machine learning approach, albeit a relatively simple one, is

essential to the model’s ability to (a) accurately classify

biologically relevant TME subtypes, with (b) high confidence

decision boundaries, for (c) retrospective and prospective data

without having to re-compute the underlying data distribution or

retrain the model. Each of these aspects of the TME Panel provides

significant advantages in its continued development as a precision

medicine platform.

Not only does the TME Panel classify patients into biologically

defined subgroups, but those phenotypes are also therapeutically

relevant for multiple diseases and classes of therapy. The broad

applicability of the Xerna TME panel to a wide range of tumor types

is achieved through several of its design elements. Firstly, as the

inspiration for the initial gene expression sets involved an

adenoviral-driven VEGF construct to drive a pathological

microenvironment in the absence of any tumor cells, this assured

that no tumor-specific features would dominate gene selection. This

also allowed for the establishment of biological classes defined solely

by the cells of the microenvironment, rather than by tumor cells,

which frequently dominate and confound gene signatures with their

expression profiles. The four biological subtypes defined by this

panel are common to all solid tumors, albeit likely with differing

prevalence across tumor types. Finally, the careful assessment and

curation of genes using feature transferability allowed genes to be

removed on the basis of having too low, high or variable of an

expression across a variety of tumor types, including colorectal,

gastric, and ovarian cancers.

TME classification yielded 1.6 to 7-fold enrichment (Table 1) of

clinical benefit for the indications evaluated in this study. This

includes the anti-angiogenic navicixizumab, in combination with

paclitaxel, in platinum-resistant ovarian cancer patients;
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monotherapy treatment with an immune checkpoint inhibitor in

MSS gastric tumors; and treatment of immune checkpoint-resistant

melanoma patients with the combination of the immunomodulator

vidutolimod and pembrolizumab. Additionally, in a pre-planned

analysis that was part of a Phase 2 gastric cancer combination study

(NCT0409641 (45)) with the anti-phosphatidylserine antibody

bavituximab and pembrolizumab, the TME Panel showed a 5.5-

fold enrichment of response when comparing the immune-high

subtypes (IA+IS) to immune-low subtypes (A+ID) (data

not shown).

While these analyses demonstrate potential to expand the use of

TME-targeted oncology drugs, there are still avenues to be explored

with the TME Panel. For example, a more complete understanding

of the immune desert “ID” phenotype may provide guidance for

therapies such as tumor vaccines or other immune modulators.

Gene set variation analysis of the four different cohorts identified a

preponderance of G2M cell cycle, Myc-driven biology and DNA

repair signatures in the ID subtype, suggesting that chemotherapies

alone could provide the best overall clinical benefit to patients with

this tumor subtype. Cell-cycle and proliferation signals prevalent in

the ID subtype may account for the responses observed in the

Gastric-Angio and Ova-Angio cohorts which included paclitaxel in

the treatment combination.

Across all tumor types tested, the prevalence of each of the four

TME subtypes are relatively common with 15-40% of samples

represented in each subtype. This contrasts with the majority of

NGS-supported companion diagnostics which identify rare DNA

alterations and support a single class of therapy. The TME Panel

can also be viewed as complementary to other tissue-derived DNA

and protein-based biomarkers and can be combined with other

platforms to refine therapeutic hypotheses. For example, a full NGS

characterization of tumors may be performed to evaluate specific

DNA mutations while RNA can be analyzed by the TME Panel,

thereby maximizing the information content of precious patient

samples. Combining the TME Panel outputs with other orthogonal

methods like IHC could help identify the subset of patients for

whom specific treatments are most beneficial. One such

hypothetical example includes using PD-L1 status in combination

with the Xerna TME immune-high subtypes (IA+IS) to predict the

best responders in the Gastric-Immune cohort. While the PD-L1-

positive ORR is 20.6% for the entire MSS portion of the cohort,

combining it with the immune status enables an identification of all

PD-L1 positive responders in the Immune-high subtypes (44%

ORR) vs. no responders (0% ORR) in the PD-L1-positive

Immune-low subtypes (data not shown). Using this approach, the

TME Panel could help unify patient profiling for immune-targeted

therapies, which currently relies on assays with disparate scoring

methods (MSS/MSI, MMR, TMB, and PDL-1). Finally, the TME

Panel may be used to address key therapeutic opportunities that

lack predictive biomarkers entirely, e.g. anti-angiogenic agents,

cancer vaccines or even chemotherapies.

A few caveats and limitations to the studies presented here

should be noted. First, the clinical cohorts analyzed are relatively

small in size (ranging from ~30-70 subjects) and larger cohorts will
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be important to continue to explore the predictive capabilities of

this panel. Secondly, the performance of this biomarker panel may

be suboptimal for some cohorts, especially the Gastric-Angio. In

combinations of microenvironment-targeted therapies, such as

ramucirumab (anti-VEGFR2 mAB) and paclitaxel, it may be

more difficult to ascertain the TME-specific effects of a therapy in

the midst of a chemotherapy. For example, in the RAINBOW trial

in second-line and beyond gastric cancer, paclitaxel provides an

approximate 16% response rate while its combination with

ramucirumab provides 28% (46). Therefore, enrichment of

responses in the biomarker-positive TME subtypes are likely to be

diminished since the chemotherapy provides some significant

clinical benefit on its own. Finally, the use of archival tissues

(which were employed in the Gastric-Angio and Ova-Angio

cohorts) may not be as optimal as pre-treatment biopsies (used

for the Gastric-Immune and Mela-Immune cohorts) since

intervening therapies may have an effect on the tumor

microenvironment. A better biomarker performance may

therefore be expected when the most contemporary assessment of

microenvironment features may be made.

In conclusion, the Xerna™ TME Panel represents an advance in

precision medicine, particularly in the support of TME-targeted

therapies. Continued development and testing of this panel in

retrospective and prospective clinical cohorts is underway and it

has already been analytically validated as a clinical trial assay in a

CAP-accredited lab. The Xerna™ TME Panel is currently being

commercialized as a research use only assay by diagnostic

companies (47, 48) and will be available for use in clinical trials.

Additional exploration is underway to apply a similar platform

approach to model additional “hallmark” biologies that can predict

response to other targeted therapies.
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