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Fully automated 3D body
composition analysis and its
association with overall survival
in head and neck squamous cell
carcinoma patients
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Ewa Strzałkowska-Kominiak3, Zbisław Tabor2,
Andrzej Urbanik1, Stanisław Kłęk4 and Wadim Wojciechowski1*

1Department of Radiology, Jagiellonian University Medical College, Krakow, Poland, 2Department of
Biocybernetics and Biomedical Engineering, AGH University of Science and Technology,
Krakow, Poland, 3Department of Statistics, Universidad Carlos III de Madrid, Madrid, Spain, 4Surgical
Oncology Clinic, Maria Skłodowska-Curie National Cancer Institute, Krakow, Poland
Objectives: We developed a method for a fully automated deep-learning

segmentation of tissues to investigate if 3D body composition measurements

are significant for survival of Head and Neck Squamous Cell Carcinoma

(HNSCC) patients.

Methods: 3D segmentation of tissues including spine, spine muscles, abdominal

muscles, subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and

internal organs within volumetric region limited by L1 and L5 levels was

accomplished using deep convolutional segmentation architecture - U-net

implemented in a nnUnet framework. It was trained on separate dataset of 560

single-channel CT slices and used for 3D segmentation of pre-radiotherapy (Pre-

RT) and post-radiotherapy (Post-RT) whole body PET/CT or abdominal CT scans

of 215 HNSCC patients. Percentages of tissues were used for overall survival

analysis using Cox proportional hazard (PH) model.

Results: Our deep learning model successfully segmented all mentioned tissues

with Dice’s coefficient exceeding 0.95. The 3D measurements including

difference between Pre-RT and post-RT abdomen and spine muscles

percentage, difference between Pre-RT and post-RT VAT percentage and sum

of Pre-RT abdomen and spine muscles percentage together with BMI and

Cancer Site were selected and significant at the level of 5% for the overall

survival. Aside from Cancer Site, the lowest hazard ratio (HR) value (HR, 0.7527;

95% CI, 0.6487-0.8735; p = 0.000183) was observed for the difference between

Pre-RT and post-RT abdomen and spine muscles percentage.

Conclusion: Fully automated 3D quantitative measurements of body

composition are significant for overall survival in Head and Neck Squamous

Cell Carcinoma patients.

KEYWORDS

body composition, artificial intelligence, head and neck cancer, overall survival,
squamous cell carcinoma
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1 Introduction

Head and neck squamous cell carcinoma (HNSCC) had 890,000

new cases and 450,000 new deaths in 2018, placing itself as the 6th most

common cancer worldwide (1). It arises from the squamous epithelium

of the oral cavity, oropharynx, larynx, and hypopharynx (2) and due to

its anatomical location and clinical symptoms such as chronic pain of

the throat, nonhealing ulcers, and odynophagia, it can cause a decrease

in proper food intake. Additionally, as a consequence of the treatment

schemas currently used, patients struggling with this disease could also

suffer from the toxicity of radio- and chemotherapy (3, 4).

Furthermore, cancer catabolic properties and lifestyle risk factors

such as high alcohol consumption and nicotine dependence may

also contribute to an increased risk of malnutrition in these patients (5).

Consequently, their muscle and adipose tissue can potentially have

disturbed proportions and properties. It is an important issue that we

should look at, considering that recent studies suggest that body

composition (BC) has a significant impact on different clinical

outcomes in oncology (6). There are a few ways to obtain

information about the BC of the patient, from these methods cross-

sectional imaging techniques including CT and magnetic resonance

imaging are considered the gold standard (7). From those two imaging

modalities, CT is more commonly used, especially in oncology. It is a

routine diagnostic tool; therefore, almost every oncological patient has

performed at least one and sometimes even more CT scans, in the case

of patients with HNSCC PET/CT is the recommended diagnostic

modality in the evaluation of distant metastases (4, 8). However, body

composition analysis, although potentially important for a complete

diagnosis, is not routinely used by clinicians. This is due to the fact that

currently such a measurement needs to be performed by segmenting

numerous cross-sectional images, which is a tedious and time-

consuming task. The answer to this problem could be found in

artificial intelligence, which can help radiologists perform automated

and standardized body composition measurements (9).

In our study, we wanted to develop a Fully Automated Method

for 3D segmentation of tissues within the volumetric body region

limited by L1 and L5 levels and verify if those measurements are

significant for the overall survival of patients treated due to head

and neck squamous cell carcinoma. We also wanted to find out if

Fully Automated 3D measurements of body composition are a

better predictor of overall survival than manual 2D cross-sectional

measurements derived from L3 level.
2 Materials and methods

2.1 Materials

We used two separate datasets: the first dataset was used to

develop a deep learning model capable of fully automated 3D
Abbreviations: HNSCC, Head and Neck Squamous Cell Carcinoma; BC, Body

Composition; TCIA, The Cancer Imaging Archive; CCRT, Concurrent

Chemoradiation Therapy; DC, Dice’s Coefficient; HD, Hausdorff Distance;

VOI, Volume of Interest; SAT, Subcutaneous Adipose Tissue; VAT, Visceral

Adipose Tissue; HR, Hazard Ratio; PH, Proportional Hazard.
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abdominal tissue segmentation. The other, on which our model

was used to obtain quantitative measurements of body composition,

was made up of imaging and clinical data of HNSCC patients.

2.1.1 Head and neck squamous cell carcinoma
patients dataset

This dataset was retrieved from the Head and Neck Cancer

CT atlas available in “The Cancer Imaging Archive” (TCIA) (10–

12). TCIA provides anonymized data with consent obtained and

ethical approval ensured by source institutions. It consists of

clinical and imaging data of HNSCC patients treated with

curative-intent radiotherapy (n=215). They were selected from

the group of 2840 HNSCC patients hospitalized at MD Anderson

Cancer Center from October 1, 2003, to August 31, 2013. The

dataset comprised 215 HNSCC patients, 84,7% were male, mean

age was 57,21 ± 9,79 years. Most patients (62,36%) had a smoking

history. Each patient had histologically confirmed squamous cell

carcinoma, the most common primary cancer site was the

oropharynx (72,6%). 114 of 215 patients received a feeding tube.

59,1% received concurrent chemotherapy; in 98,4% of the cases, it

was platinum-based. All patients were treated with radiotherapy

(RT), the mean total dose was 68,73 ± 2,71 Gy. 212 patients had

whole body PET/CT done before and after radiotherapy, in the

case of 3 patients, an abdominal CT scan was used instead. GE

Medical Systems’ Discovery RX, Discovery ST, and Discovery STE

hybrid PET/CT scanners were utilized to acquire PET/CT scans

subsequent to the intravenous administration of 18F-labeled

fluorodeoxyglucose. CT scans, encompassing the abdominal area,

were conducted using GE Medical Systems LightSpeed or

Discovery CT750HD scanners. All the details for each

examination, such as image type, date, study description, used

scanner, and software specifications, can be found on the TCIA

website (10). The summary of patient data can be found in

Table 1. Aside from standard clinical information authors of the

database also provided us with their manual 2D cross-sectional

body composition measurements: Pre-RT L3 Skeletal Muscle

Index (cm2/m2), Post-RT L3 Skeletal Muscle Index (cm2/m2),

Pre-RT L3 Adiposity Index (cm2/m2) and Post-RT L3 Adiposity

Index (cm2/m2). These indices were calculated by diving the

cross-sectional area of selected tissue at the L3 level by the

height of the patient. We used those 2D measurements to

compare them with our fu l ly automated 3D body

composition measurements.
2.1.2 Model training and testing dataset
The training and testing dataset comprised 140 CT

examinations performed with the use of a helical 80-row CT

scanner Aquilion PRIME 80 (Toshiba America Medical System,

Irvine, CA, USA). The pixel size of the images was equal to

0.74 mm, while the slice thickness was equal to 5 mm. The

images were coded with a contrast resolution equal to 2 bytes but,

in accordance with the DICOM standard, only 12 bits were used to

encode signal values with Hounsfield units. Further details

concerning the dataset used to develop our model can be found

elsewhere (13). From these 140 3D abdominal CT examinations,
frontiersin.org
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560 2D slices were manually selected at levels corresponding to the

centers of the lumbar vertebral bodies L1 to L5. The location of L1

and L5 slices within each CT examination was also recorded and

used as a reference when creating a model for detecting an

abdominal part of a CT image.
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2.2 Methods

2.2.1 Automated assessment of tissues’ volumes
To develop a fully automated tissues volumes assessment

method, we divided our task into two separate problems:

detection of the volume of interest and segmentation of tissues

of interest.

For detecting the volume of interest, the 3D CT examinations

described in section 2.1.2 were split into 2D axial slices. All slices

containing part of the lungs or parts of the pelvic bone were

assigned a negative label, while the remaining slices were assigned

a positive label. The 2D slices together with their labels were used to

train an algorithm that detects volumes of interest.

The detection of the volume of interest (VOI) was accomplished

using a deep convolution network. The detection problem was

reformulated as a classification problem. An Inception-based

classification network was trained to distinguish between positive

and negative slices using the custom dataset described in the

previous section. The volume of interest was defined as the range

of axial slices between the lowest and the highest positive slice. The

set of all 140 CT images was split into 5 folds and five models were

trained until convergence using five-fold cross validation. The

models that achieved the best performance during training on the

validation sets were used on TCIA dataset. The classification

accuracy was measured in terms of the distance between the

respective borders of the volumes of interest in a reference

(manual) selection and in automatically detected volumes of

interest. In addition, we also calculated the common measures of

classification quality: sensitivity, specificity, and accuracy by

calculating macro averages of five confusion matrices for the five

validation sets for the classification task.

For segmentation purposes, the boundaries of the spine, spine

muscles, abdominal muscles, subcutaneous adipose tissue (SAT),

and visceral adipose tissue (VAT) were manually outlined and

served as the ground truth. Internal organs were also included as

separate regions consisting of all pixels that were within the body

cross section but were not included within the aforementioned

classes. From the data set described in section 2.1.2 - 560 single-

channel CT slices were split as follows: 420 images were randomly

assigned to a training subset while the remaining 140 images were

assigned to the testing subset.

The segmentation of abdominal tissues was done with a deep

convolutional segmentation model - U-Net network (14). As shown

in the study of Weston et al. (15) the U-Net based segmentation of

abdominal tissues achieves an accuracy exceeding 95% in terms of

Dice’s coefficient. We have used the U-Net model implemented in

the nnUNet framework which includes several features improving

the performance of the trained models like architecture to data

adaptation, deep supervision, or learning rate strategy which makes

this segmentation framework superior with respect to other

segmentation models (16). Furthermore, the automated

segmentation pipeline incorporates resampling and normalization

methods, facilitating the standardization of images. This integration

helps mitigate biases arising from variations in scanners and image

qualities. We have trained the 2D version of U-Net – the volume of

interest was split into 2D axial slices which were subsequently used
TABLE 1 Summary of patients and treatment characteristics.

Summary of patients data:

Total number of patients 215 (100%)

Male 182 (84,7%)

Female 33 (15,3%)

Age (years) 57,21 (± 9,79)

Height (m) 1,74 (± 0,09)

Body weight at the start of radiotherapy (kg) 85,61(± 18,15)

BMI at the start of radiotherapy 28,37 (± 5,51)

Smoking History 136 (63,26%)

Current Smoker 70 (32,56%)

Received Feeding Tube 114 (53,02%)

Histology:

Squamous cell carcinoma 215 (100%)

Stage (AJCC 7th edition):

IVB 19 (8,8%)

IVA 156 (72,6%)

III 31 (14,4%)

II 5 (2,3%)

I 4 (1,9%)

Site:

Oropharynx 156 (72,6%)

Glottis 24 (11,2%)

Hypopharynx 12 (5,6%)

Oral Cavity 8 (3,7%)

Unknown 6 (2,8%)

Nasopharynx 6 (2,8%)

Sinus 3 (1,4%)

Chemotherapy:

Yes 127 (59,1%)

No 88 (40,9%)

Surgery:

Yes 69 (32,09%)

No 146 (67,91%)

Radiotherapy:

Radiotherapy total dose (Gy) 68,73 (± 2,71)
AJCC, American Joint Committee on Cancer.
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to train and test the 2D U-Net network. According to recently

published study Classical U-Net architecture presents themself as

the most favorable option, which strikes a balance between accuracy

and computational efficiency, making it appropriate choice for real-

world applications such as automated body composition analysis

(17). Both training and testing were run using default nnUNet

settings. The training of segmentation was run until convergence on

a training set. Five-fold cross-validation was used to train five

models that were used as an ensemble at prediction time. During

each fold training, the model which achieves the best performance

on a validation set was saved and used at the prediction time.

The accuracy of segmentation was measured in terms of two

standard segmentation quality metrics: Dice’s coefficient (DC) and

Hausdorff distance (HD) with DC (HD) equal to 1 (0) for

automated segmentation being the same as reference segmentation.

After training and testing on the custom dataset the deep

segmentation U-Net model and the classification model were

applied slice-by-slice to the Cancer Imaging Archive dataset

described in section 2.1.1. A sample image of our automated

segmentation applied to the TCIA dataset is shown in Figure 1.

2.2.2 Survival analysis methods
We conducted a multivariate analysis using Cox proportional

hazard (PH) model to check whether the parameters assessed by

automated 3D body composition measurements and their changes are

significant for overall survival time. For this, we considered all the

important clinical data together with the PET/CT based body

composition measurements. In particular, we included to the model

the following variables: sex (m/f), age (cont.), height (cont.), stage (I-III/

IV), T stage (T1-3/T4), N stage (N0/N1-3), Cancer Site (Oropharynx/

Other site), Smoking History (Never/Ever), Current Smoker (Yes/No),

Surgery (Yes/No), Concurrent chemoradiotherapy (Yes/No),

Induction Chemotherapy (Yes/No), Received Feeding Tube (Yes/

No), RT Total Dose (cont.) together with BMI, 2D manual
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measurements and our automated 3D measurements. All body

composition measurements were collected both before and after the

Radiotherapy. Furthermore, we reduced the number of categorical

variables to those significant at the level of 10% in the univariate

analysis (log-rank test). Although HPV-negative and HPV-positive

carcinomas differ at the molecular level (4) in our data set, there were

only 47 patients with known HPV status, of which 33 were positive. In

the previously mentioned log-rank test differences in survival time

between groups: HPV positive and HPV negative were not significant.

Moreover, the preliminary correlation analysis showed a relatively

strong dependence between SAT/VAT pre-treatment measurements

and BMI measured before treatment. Hence, those two variables were

excluded from our study. Additionally, the measurement of the spinal

and abdominal muscles was only considered as a sum.

Furthermore, for 77 patients we observe the complete survival

time, which gives us around 64% of censoring. We fitted the

proportional hazard (PH) model where, along with patients

characteristics, the Pre RT measurements together with the

differences between pre RT and post RT measurements were taken

into account. The statistical analysis was conducted using the coxph()

routine from open-source statistical software R. We selected the final

set of covariates using Akaike Information Criterium (AIC). We

verified the PH assumption with the Schoenfeld test and checked for

outliers and influential observations with deviance residuals and

dfbetas, respectively. One influential observation was removed.
3 Results

3.1 Automated segmentation results

The mean shift between the bottom slices in manual and

automated VOIs was equal to -0.6 ± 1.65 slices. The mean shift

between the top slices in manual and automated VOIs was equal to
FIGURE 1

Automated segmentation applied to HNSCC patient PET/CT examination. (A) 3D render of all above mentioned tissues. (B) 3D render of spine and
abdominal muscles. (C) 3D render of subcutaneous and visceral adipose tissue. (D) axial slice with overlayed segmentation mask. (E) coronal slice
with overlayed segmentation mask. (F) sagittal slice with overlayed segmentation mask.
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0.2 ± 1.0 slices. Additionally, sensitivity, specificity, and accuracy were

equal to, respectively, 96.1%, 96.2%, and 96.2%. The detection of the

bottom slices failed in three cases, the shift between the bottom slices

in manual and automated VOIs was larger than 20 slices.

The results of testing the automated segmentation algorithm are

presented in Table 2. The median values of Dice’s coefficient (0.95

and more) indicate that the overlap area between automated and

manual segmentation is not less than 95% of the total area of the

tissue. The median values of Hausdorff distance are greater than 6

voxels, which means that the relative shift of the boundaries of

manual and automated segmentation can be as large as demonstrated

in Table 2. However, because the values of Dice’s coefficient are high,

these high values of Hausdorff distance are likely related to some

small segmentation artefacts or anisotropic voxel size.
3.2 Automated 3D body composition
quantitative analysis results

The VOI detection and tissue segmentation models were

applied to TCIA dataset described in section 2.1.1. Results were

visually verified after which it was confirmed that they were of

satisfactory diagnostic quality. The volumes of the tissues of interest

within the VOI were then calculated from the results of the

segmentation. We calculated both the average tissue volume

within VOI (total tissue volume divided by the number of axial

slices within the VOI) and the volume fraction of tissues (ratio of

tissue volume to the total volume of all tissues) which percentage

values were used for survival analysis. The summary of those

measurements can be found in Table 3.
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3.3 Survival analysis results

The results for the model described in Section 2.2.2 are found in

Figure 2. The 3D measurements (difference between Pre-RT and

post-RT Abdomen and Spine Muscles percentage, the difference

between Pre-RT and post-RT VAT percentage, and the sum of Pre-

RT Abdomen and Spine muscles percentage) together with BMI

and Cancer Site were found significant at the level of 5%. No

significance for overall survival was observed for the remaining 3D

body composition measurements. Manual 2D body composition

measurements including L3 skeletal muscle and adiposity index pre

and post treatment weren ’t significant in the aspect of

overall survival.
4 Discussion

Body composition disturbances were negatively associated with

different clinical outcomes in several groups of oncological patients

(6). In this study, we developed a fully automated method for the 3D

quantitative analysis of body composition and showed that these

measurements are significant for the overall survival of patients

with HNSCC. Furthermore, they were found to be a better indicator

of overall survival than commonly used metrics – such as BMI and

manual cross-sectional 2D measurements of adipose and muscle

tissue. In the case of all analyzed patients, radiation therapy was

used, which is crucial in curative intended treatment for head and

neck malignancies. It can be used as a standalone treatment or in

conjunction with surgery or chemotherapy (18).

To better understand the importance of skeletal muscle in

oncological disorders, we should define the term sarcopenia - a

generalized skeletal muscle disorder rooted in progressive and

adverse muscle changes (19). It was associated with postoperative

complications, poorer survival, and chemotherapy-induced toxicity in

oncological disorders (20–23). Another component of body

composition analysis, adipose tissue, is a well-documented factor

contributing to the development of various types of cancer (24).

Higher volumes of VAT were identified as a risk factor for

unsuspected pulmonary embolism in hospitalized patients with

gastrointestinal cancer (25). Visceral adipose tissue modulates cellular

radiosensitivity in patients with esophageal adenocarcinoma (26), it

was also found that it can be considered a prognostic indicator for

patients with endometrial cancer (27). Male patients with non-clear cell

renal carcinoma have a higher content of visceral adipose tissue (28).

Both sarcopenia and visceral adipose tissue volume and CT

attenuation were associated with the outcomes of patients with head
TABLE 2 The results of testing the quality of automated segmentation:
values of Dice’s coefficient and Hausdorff distance (median and
interquartile range) for the six segmented abdominal tissues.

Tissue Dice’s
coefficient

Hausdorff
distance
[voxels]

Subcutaneous adipose tissue 0.99 (0.01) 8.0 (7.2)

Visceral adipose tissue 0.97 (0.03) 29.2 (24.5)

Internal organs 0.96 (0.01) 35.0 (18.9)

Spine 0.97 (0.01) 3.0 (2.8)

Spine muscles 0.96 (0.01) 5.8 (3.5)

Abdominal muscles 0.95 (0.02) 7.8 (7.2)
TABLE 3 The mean and standard deviation of body measurements pre RT, and post RT and their differences.

Variables Pre RT measurements Post RT measurements Difference in measurements

SAT (%) 20.82 (8.52) 18.37 (8.77) -2.48 (3.91)

VAT (%) 23.16 (8.62) 18.87 (8.47) -4.28 (4.06)

Spine Muscles (%) 10.00 (1.91) 10.36 (2.05) 0.38 (1.14)

Abdomen Muscles (%) 10.40 (1.83) 10.26 (1.89) -0.13 (1.14)
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and neck cancer (29, 30). Radiologically measured body

composition parameters commonly require abdominal CT, which

in the case of a patient with HNSCC is available as part of a whole-

body PET/CT scan. Manual segmentation of muscles and adipose

tissue is very tedious; therefore, most researchers only use a single

slice from the L3 level for BC evaluation. Although it can be an

accurate method to assess sarcopenia and body composition (31),

this is only an approximation that can vary between patients (32), in

our study the indices calculated from manually determined 2D

cross sectional areas were not found significant, contrary to our

automated 3Dmeasurements. However, previous studies conducted

on different groups of patients with HNSCC showed that

measurements at the level of L3 can also be associated with

survival (33) similar to those taken from the neck region (34–36).

Nevertheless, the more cross-section slices we use, the more

accurate body composition analysis will be. The efficacy of our

method hinges on precise segmentation of tissues within a

volumetric body region confined between L1 and L5 levels.

Nevertheless, due to considerable variability in patient anatomy,

accurately segmenting tissues can pose challenges in certain cases.

In order to address the influence of patient anatomy variability, we

leveraged a dataset consisting of 560 single-channel CT slice

examinations encompassing a wide spectrum of anatomical

differences. This dataset encompassed patients with diverse body

sizes and shapes. Despite the model robustness, clinical expertise

remains paramount in complementing and validating the model

output, safeguarding the highest standard of patient care and

diagnostic accuracy.

Due to the rapid progress in the field of Artificial Intelligence,

segmentation of medical images, which as stated before is crucial

for BC analysis, is becoming less time-consuming and more

accurate. Although there are several ways for achieving

automated segmentation of tissues e.g., non-local means and

morphological operations (37) we decided to utilize U-net

model for automatic segmentation due to the large variability in

the distribution of muscle and adipose tissue. Similar approach

was used for different tissues with high variability e.g., prostate

gland and its zones (38). Currently, there are already a few

published studies describing methods for fully automated 3D BC

analysis (15, 32), but to our knowledge, we conducted the only
Frontiers in Oncology 06
study in which these measurements were related to survival in

HNSCC patients’ group.

AI rapid advancement is also intricately tied to the field of

Radiomics, an emerging discipline focused on medical image

analysis which provides ways for quality assessment of different

tissues by employing advanced mathematical techniques to extract

additional data, probing the nuanced spatial distribution of signal

intensities and pixel interrelationships (39).Together with hybrid

machine learning systems it was already used in several clinical

settings such as prediction of cognitive decline in Parkinson’s

disease (40) or prediction of progression-free survival outcome in

head and neck cancer patients (41). Although, its potential in body

composition studies hasn’t been widely studied, there are already

few published papers describing its usage in prediction of survival in

oncological patients (42–47).

This study has several limitations. In the case of study design, its

retrospective nature must be considered because it comes with certain

standard disadvantages. Additionally, although PET/CT is often used

in current diagnosis schemas for head and neck cancer (48), not all

patients in every clinical center have done it before and after radiation

therapy treatment. In the case of body composition analysis, we only

used quantitative measurements of muscles and adipose tissue, which

is insufficient to fully describe their characteristics but was enough to

find a correlation with overall survival.

Future studies should take into consideration not only the

quantity of muscles and adipose tissue but also quality,

furthermore, PET/CT is not only limited to the abdominal region

so it can be used for body composition measurement from more

regions which could lead to some new insights. Additionally,

utilizing radiomic features derived from 3D body composition

data alongside advanced machine learning algorithms can unlock

deeper insights into predictive models for survival. This approach

may uncover subtle patterns that are not readily apparent through

visual inspection. While our initial study focuses on HNSCC

patients, the methodology itself is not restricted to this specific

population. By encouraging further research and collaboration to

assess the generalizability of our approach on diverse patient

cohorts, our study aims to contribute to the development of AI-

based tools that can be applied effectively and safely in a broader

range of clinical settings and patient populations.
FIGURE 2

The Cox model with significance codes 0 ‘***’ 0.001 ‘**’ with e.g. “e-06” denotes 10 to the power -6.
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5 Conclusion

Body composition was previously associated with the clinical

results of oncological patients. In this study we presented that 3D

body composition measurements for L1-L5 levels, acquired

automatically using the deep neural network U-net model

implemented in the nnUnet framework, have a significant impact

on the overall survival time of patients with head and neck

squamous cell carcinoma. Moreover, we found out that Fully

Automated 3D quantitative measurements of body composition

are a better indicator of overall survival than BMI and manual

cross-sectional 2D measurements of adipose and muscle tissue. To

fully describe the characteristics of body composition of HNSCC

patients, further research that incorporates qualitative analysis of

muscle and adipose tissue, is needed.
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