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Cancer is a borderless global health challenge that continues to threaten human

health. Studies have found that oxidative stress (OS) is often associated with the

etiology of many diseases, especially the aging process and cancer. Involved in

the OS reaction as a key transcription factor, Nrf2 is a pivotal regulator of cellular

redox state and detoxification. Nrf2 can prevent oxidative damage by regulating

gene expression with antioxidant response elements (ARE) to promote the

antioxidant response process. OS is generated with an imbalance in the redox

state and promotes the accumulation of mutations and genome instability, thus

associated with the establishment and development of different cancers. Nrf2

activation regulates a plethora of processes inducing cellular proliferation,

differentiation and death, and is strongly associated with OS-mediated cancer.

What’s more, Nrf2 activation is also involved in anti-inflammatory effects and

metabolic disorders, neurodegenerative diseases, and multidrug resistance. Nrf2

is highly expressed in multiple human body parts of digestive system, respiratory

system, reproductive system and nervous system. In oncology research, Nrf2 has

emerged as a promising therapeutic target. Therefore, certain natural

compounds and drugs can exert anti-cancer effects through the Nrf2 signaling

pathway, and blocking the Nrf2 signaling pathway can reduce some types of

tumor recurrence rates and increase sensitivity to chemotherapy. However,

Nrf2’s dual role and controversial impact in cancer are inevitable consideration

factors when treating Nrf2 as a therapeutic target. In this review, we summarized

the current state of biological characteristics of Nrf2 and its dual role and

development mechanism in different tumor cells, discussed Keap1/Nrf2/ARE

signaling pathway and its downstream genes, elaborated the expression of

related signaling pathways such as AMPK/mTOR and NF-kB. Besides, the main

mechanism of Nrf2 as a cancer therapeutic target and the therapeutic strategies

using Nrf2 inhibitors or activators, as well as the possible positive and negative

effects of Nrf2 activation were also reviewed. It can be concluded that Nrf2 is

related to OS and serves as an important factor in cancer formation and

development, thus provides a basis for targeted therapy in human cancers.
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1 Introduction

Cancer is commonly known as a kind of malignant tumors and

leads to massive human death. Enormous studies have reported that

over the next 2 decades, the number of new cancer cases is expected

to rise approximately 50% in the whole world (1). According to

global cancer data, 9.96 million people worldwide will die by 2020,

of which China ranks first in terms of cancer deaths (2). Due to its

high metastasis, infinite proliferation, immune escape and high

mortality characteristics, current cancer treatments include surgical

intervention, radiation, and taking chemotherapeutic drugs (3).

Most of these classic non-operative anticancer treatments kill

tumor cells by influencing cancer severely associated oxidative

stress (OS) (4).

The so-called OS refers to the generation of free radicals and

reaction metabolites that cause the imbalance between oxidation

and antioxidant action in the body, resulting in the production of

many oxidation products, such as reactive oxygen species (ROS) or

reactive nitrogen species (RNS) production, causing protein

oxidation, DNA destruction, etc., then make the normal tissues

finally proceed to diseases (5). OS may be ubiquitous in multiple

organ systems of the human body and cancer can be induced if the

human body is in a state of OS for a long time. OS will lead to

chronic inflammation, thereby mediating the occurrence of chronic

diseases, including cancer (6). In addition, sustained OS can activate

a variety of transcription factors, including NF-kB, AP-1, p53, HIF-

1a, and Nrf2. Activation of these transcription factors will trigger

their downstream effectors including growth factors, inflammatory

cytokines, chemokines, cell cycle regulatory molecules and anti-

inflammatory molecules (7). All these transcription factors and

downstream effectors may arouse excessive activation of

inflammatory mediators and promote tumor development (8).

As a key transcription factor for anti-oxidative stress, nuclear

factor-E2-related factor 2 (Nrf2) exerts important multifunction

(9). Firstly, Nrf2 is mainly responsible for protecting cells from OS.

Playing a crucial role in preventing apoptosis, inflammation and

tumors, it is the most important intrinsic anti-oxidative stress

pathway discovered so far (10). Reports have shown that the

activation of Nrf2 can prevent many chronic diseases, including

cardiovascular disease, respiratory diseases and neurodegenerative

diseases (11, 12), as well as cancer. Secondly, Nrf2 is also an
Abbreviations: ROS, reactive oxygen species; RNS, reactive nitrogen species; OS,

oxidative stress; Nrf2, nuclear factor-E2-related factor 2; Keap1, kelch like ECH

associated protein 1; ARE, antioxidant responsive element; GPXs, glutathione

peroxidase; SOD, superoxide dismutase; GST, glutathione s transferase; CAT,

catalase; POD, peroxidase; HO-1, heme oxygenase-1; G6PD, glucose-6-

phosphate dehydrogenease; PPP, pentose phosphate pathway; EMT, epithelial-

mesenchymal transition; LA, Levistilide A; HIF-1a, hypoxia inducible factor-1a;

CyCl, cyanidin chloride; EPI, epirubicin; CPT, camptothecin; VEGF, vascular

endothelial growth factor; HEATR1, HEAT repeat containing 1; GEM,

gemcitabine; BD, Brucein D; GBM, glioblastoma; MMP9, matrix

metalloproteinase 9; TMZ, temozolomide; GSH, glutathione; CMP,

carboxymethylated pachyman; xCT, solute carrier family 7 member 11; GPX4,

glutathione peroxidase 4; DHT, dihydrotanshinone I; AML, acute myeloid

leukemia; NQO1, quinine oxidoreductase 1.
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important regulator that promotes the transition of the cell cycle

from G2 phase to M phase. When Nrf2 function is damaged, cells

cannot enter M phase normally, the mitosis process is forced to

stop, and cell proliferation is interrupted (13). In addition, cancer

cells require higher energy and anabolism to support their rapid cell

growth, and Nrf2 helps meet these demands, thus promoting cancer

progression (14, 15).Therefore, Nrf2 can not only act as a tumor-

promoting gene, but also act as a tumor suppressor to play an anti-

tumor role. The dysregulation and activation of the Nrf2 system is

one of the main reasons for the pathogenesis of cancer (16).

Under the focus of targeted therapy of oncology, researches on

the carcinogenesis associated with Nrf2 are increasingly to the

concern (9). Targeted therapy is a new treatment developed

directly for molecular abnormalities or tumor cells that lead to

the development of cancer. Meanwhile, the dual functions of Nrf2

in cancer have been profoundly elucidated, and the Nrf2 signaling

pathway has become an important therapeutic target for treating

cancers, neurodegenerative diseases and many autoimmune or

inflammatory diseases (17, 18). Here in this research, we

systematically review the function and role of Nrf2 signaling

pathway in several typical malignant tumors, summarize the

recent progress of Nrf2 in cancer treatment and elaborate the

current status and potential therapeutic targetable role of Nrf2.

This research will provide a basis for Nrf2’s use as a potential

therapeutic target for combating tumors in the future.
2 Structure and function of Nrf2

Nrf2, a soluble protein found primarily in the cytoplasm,

belongs to the Cap ‘n’ Collar (CNC) subfamily, comprises in 605

amino acids and contains seven specific functional related protein

homology domains (Nrf2-ECH homology, Neh) (Figure 1). The

Neh1 with ubiquitin-conjugating enzyme to enhance the stability

and transcriptional activity of Nrf2. Neh2, the second domain,

contains two motifs known as DLG and ETGE, which can be

identified and interacted with Kelch-like ECH-associated protein 1

(Keap1). Among them, Keap1 is a substrate adaptor for cullin-based

E3 ubiquitin ligase, which inhibits the transcriptional activity of

Nrf2 via ubiquitination and proteasomal degradation under normal

conditions (19). Neh3, Neh4, and Neh5 act as transactivation

domains. The Neh3 region is located at the-COOH end of Nrf2

and is transcriptionally activated by binding to a specific ATPase/

helicase DNA-binding protein (CHD) 6; Neh4 and Neh5 are

located between Neh1 and Neh7. Neh4 and Neh5 are required to

activate cAMP response element binding protein to initiate the

transcription process. The sixth domain-Neh6, contains a peptide

region that is rich in serine amino acids, and contains two motifs

known as DSGIS and DSAPGS. Besides, Neh6 contains two highly

conserved peptide sequences that negatively regulate Nrf2 activity

by binding to b-transducin repeat-containing protein (b-TrCP).
Neh6 domain also offers stability control of Nrf2 when Nrf2 is in the

Nrf2-Keap1 complex. Nrf2 enters the nucleus and binds to the

endogenous antioxidant reaction element (ARE) that can regulate

downstream antioxidant enzymes, including NQO1, HO-1, etc. The

Neh7 region inhibits the activation of Nrf2 by binding to the
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retinoid X receptor a (RXRa), a nuclear receptor that inhibits the
Nrf2-ARE signaling pathway, to block the activation of Neh4 and

Neh5 by activating factors (20). Nrf2 and its endogenous inhibitor,

Keap1, function as a ubiquitous, evolutionarily conserved

intracellular defense mechanism to counteract OS. Sequestered by

cytoplasmic Keap1 and targeted to proteasomal degradation in

basal conditions, in case of OS Nrf2 detaches from Keap1 and

translocate to the nucleus, where it heterodimerizes with one of the

small musculoaponeurotic fibrosarcoma proteins (sMaf). The

heterodimers recognize the AREs, that are enhancer sequences

present in the regulatory regions of Nrf2 target genes, essential

for the recruitment of key factors for transcription.

Nrf2 function as a key transcription factor in the regulation of

OS, involved in redox balance, drug metabolism and excretion, iron

metabolism, amino acid metabolism, survival and proliferation,

proteasome degradation and other physiological activities. It also

participates in the regulation of cell cycle homeostasis,

cytoprotection and innate immunity under cellular stress (21, 22).

The main biological function of Nrf2 is to resist oxidative damage

(23). The activation of Nrf2 activity is a treatment for diseases

related to OS, and the antioxidant system involved is mainly

composed of various endogenous antioxidants such as catalytic

enzymes of glutathione (Glutathione peroxidase, GSH-Px),

glutathione sulfhydryl transferases (GSTs), superoxide dismutase

(SOD), catalase (CAT), peroxidase (PRDXs), and these antioxidants

are almost all regulated by Nrf2 (24). The activation of Nrf2 mainly

includes two pathways. The first classical activation pathway of

Nrf2 is caused by OS (25). Specifically, Keap1 binds to Nrf2 in the

cytoplasm and sequesters Nrf2 in an inactive state. Nrf2 is

polyubiquitinated by the Keap1-Cul3 ubiquitin E3 ligase complex,

resulting in rapid ubiquitin-proteasome-dependent degradation of

Nrf2. However, during OS, the cysteine residues C273 and C288 of

Keap1 are modified, resulting in a conformational change of Keap1,

inactivating the E3 ligase function of Keap1, making the

combination of Nrf2 and Keap1 unstable, and Nrf2 escapes

proteasome degradation. Then excessive Nrf2 is released from the

cytoplasm to the nucleus, forms a heterodimer with sMafs, and

binds to ARE, ultimately inducing expression of cytoprotective

genes including antioxidant genes and phase II enzymes (26, 27).

Another non-classical activation pathway of Nrf2 is driven by

autophagy dysfunction. Sequestosome-1(SQSTM1)/p62, a

common receptor of selective autophagy, has the function to

degrade ubiquitin substrates and participates in a variety of signal
Frontiers in Oncology frontiersin.org03
transduction pathways, including Keap1-Nrf2 pathway (28).

Studies have shown that p62 competes with Nrf2 to bind Keap1

(29). This interaction enables p62 to chelate Keap1 into

autophagosomes, thus preventing Keap1-mediated Nrf2

degradation and activating the Nrf2 pathway (30, 31).

Activation of Nrf2 can also be triggered through MAPK

signaling molecules, such as p38 and JNK (32, 33). Besides,

protein kinase C (PKC) was shown to phosphorylate the Neh2

structural domain of Nrf2 (34), leading to dissociation of Nrf2 from

its repressor Keap1, thus promoting the transcriptional activity of

Nrf2 (35). In addition, p21 belongs to the cyclin-dependent kinase

inhibitor (CKI) family, which is directly positively regulated by the

p53 gene and is involved in various physiological processes such as

cell cycle arrest and OS (36). In the presence of OS, p21 gene

expression is upregulated, which in turn promotes cell survival (37).

Meanwhile, p21 upregulates Nrf2 protein levels by competitively

binding Nrf2 with Keap1 to inhibit the Keap1-dependent

ubiquitination degradation of Nrf2 (38).
3 Nrf2 in oncology

Studies have identified that Nrf2 is both a tumor suppressor and

an oncogene. On one hand, Nrf2 can protect cells against

endogenous and exogenous damage, and protect normal cells

from OS by activating its downstream antioxidant genes against

hazard chemical injury, so it is considered as a tumor suppressor

(39). On the other hand, because OS is usually accompanied with

the occurrence of cancer, tumor cells often show a variety of genetic

changes and a high OS state, leading to excessive activation and

persistent activation of Nrf2. Nrf2 helps cancer cells escape from

ROS damage by expressing antioxidant target genes or promoting

cancer cell survival and proliferation, and Nrf2 helps to prevent

drug accumulation in cancer cells during radiotherapy and

chemoradiotherapy resistance, thereby protecting cancer cells

from apoptosis (40). Therefore, Nrf2 was described as a

paradoxical protein with controversial suppressing and promoting

roles in cancer cells. Generally, Nrf2 is lowly expressed in normal

tissues and highly expressed in cancer, which guarantees Nrf2 as a

marker that distinguishes normal tissue cells from cancer cells.

Furthermore, clinical research studies have found that the

prognostic ratio of the Nrf2 gene can be used as a robust poor
FIGURE 1

Graph for Nrf2 protein structure. Nrf2 is composed of seven Neh domains representing different functions. N-terminal Neh2 domain has DLG and
ETGE motifs. The transactivation of Nrf2 is mediated by Neh4, Neh5 and Neh3. Neh6 has DSGIS and DSAPGS motifs, which can mediate Keap1
independent proteasome degradation of Nrf2. Neh1 has a bZIP motif that binds to ARE during dimerization with sMaf.
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predictor of various cancers. As a strong predictor, Nrf2 is also

involved in deriving drug resistance in many human cancers (11).

Although still controversial, it is undeniable that cancer cells with

high Nrf2 activity and other carcinogenesis characteristics are

closely related to drug resistance and tumor recurrence. The

underlying mechanism is currently unclear but may involve

oncoprotein biosynthesis, scavenging of ROS and toxic

carcinogens (41). That is to say, Nrf2 can not only protect normal

cells from harmful substances, but also promote the survival of

tumor cells under cancer therapy (42). From the above-mentioned

current state of Nrf2, we can boldly propose Nrf2 as a potential

therapeutic target for different human cancers and provide new

ideas for further development of new cancer therapies.
3.1 Nrf2 and digestive system cancers

3.1.1 Nrf2 and colorectal cancer
Colorectal cancer (CRC) is a common malignancy that occurs

in the digestive tract and amounts the third most common type of

all gastrointestinal cancers (43). Shaoyao Decoction (SYD), a

compound prescription of Chinese traditional medicine, was

reported to have anti-colorectal cancer effect. Both in vivo and in

vitro experiments demonstrated that SYD exerts antioxidant effect

through activation of Nrf2 pathway and upregulation expression

of Nrf2 downstream genes (g-GCSc, NQO1). SYD is shown to

have preventive effect against colitis-associated CRC (44). OS also

plays a catalytic role in the progression of a range of gastrointestinal

diseases, from chronic enteritis to CRC (45). Nrf2 is a protective

ingredient against carcinogenesis and OS through upregulation of

endogenous antioxidants and phase II antioxidant enzymes in CRC

(46). Thus Nrf2 has become a new target for the prevention of CRC.

In addition, Cyanidin Chloride (CyCl) is the active ingredient of

mulberry, belonging to a type of anthocyanins (47). Studies shows

that CyCl can inhibit the proliferation and induce apoptosis of CRC

HCT116, HT29 and SW620 cells. CyCl can inhibit the NF-kB
signaling pathway and induce the activation of the Nrf2 pathway in

CRC cells stimulated by tumor factor TNF-a (48). Therefore, CyCl

induces apoptosis by participating in NF-kB signaling in CRC cells,

and Nrf2 may be a potential drug target to treat CRC by regulating

the Nrf2/HO-1/NQO1 pathway (49).

3.1.2 Nrf2 and gastric cancer
Gastric cancer (GC) is one of the most common types of cancer

worldwide and has a very high mortality rate (50). Studies have

shown that by utilizing in vitro and in vivo experiments, Brusatol,

the inhibitor of Nrf2, after treatment with a gradient concentration,

inhibits the expression of Nrf2/HO-1 axis down-regulating the

expression of vascular endothelial growth factor (VEGF) and

reduces its angiogenesis capacity (51). Protein expression of Nrf2,

HO-1 and VEGF is reduced in a concentration-dependent manner.

These studies demonstrate that Nrf2/HO-1 may be involved in the

malignant process of GC formation by affecting angiogenesis (52).

In addition, diallyl trisulfide (DATS) is a compound isolated from

garlic with anti-tumor activity (53). DATS can inhibit the viability
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of GC BGC-823 cells and induce cell cycle arrest in G2/M phase in a

dose-dependent manner. DATS decreased Akt phosphorylation in

tumors, resulting in lower Nrf2 levels. DATS protects BGC-823 cells

through the activation of p38 and JNK/MAPK and the weakening of

Nrf2/Akt signaling pathway (54). It was found that Nestin was

highly expressed in GC, and knockdown of Nestin reduced the

viability of GC cell lines SGC-7901 and MKN-45, inhibited GC cell

metastasis, induced apoptosis, decreased antioxidant enzyme

production, and led to downregulation of Nrf2 expression (55).

Besides, Nestin competed with Nrf2 to bind Keap1 and protected

Nrf2 from Keap1-mediated degradation, thereby increasing the

expression level of Nrf2, promoting cell viability and preventing

apoptosis. The restoration of Nrf2 expression can counteract the

inhibitory effects of Nestin knockdown on GC cell proliferation,

migration, invasion and antioxidant enzyme production. In

conclusion, the Nestin/Keap1/Nrf2 pathway can be utilized as a

therapeutic target to inhibit the proliferation and metastasis of

GC (56).

3.1.3 Nrf2 and hepatocellular carcinoma
OS caused by alcohol drinking, hepatitis viral and eating habits

is the main cause of liver cancer (57). Hepatocellular carcinoma

(HCC) is the most common primary liver cancer and the fifth most

common malignant cancer in the world. HCC tissue expresses more

Nrf2 than para-carcinoma tissue. The targeted regulation of Nrf2

can be used to treat a variety of chronic diseases, including HCC

(58).Raspberry extract is reported to significantly reduce ROS levels

in H2O2-induced oxidatively damaged HCC HepG2 cells, increases

GSH content and CAT activity, and activates the expression of the

proteins Keap1, Nrf2, HO-1, NQO1, and g-GCS through the Keap1/
Nrf2 pathway (59) . Meanwhi le , ep irub ic in (EPI) , a

chemotherapeutic drug in clinical antineoplastic therapy (60), is

detected the anti-cancer effects on HCC. In the initial reaction stage,

EPI increases Nrf2 expression and intracellular ROS level, promotes

Nrf2 up-regulation and nucleus translocation, thus aggregating

tumor cell death. However, during the late stage, an excessive of

ROS level can lead to the hyperactivation of Nrf2, through the

overexpression of its downstream protective genes, and then

promote the proliferation, invasion and metastasis of cancer cells,

thus favorable for tumor cell survival. These pharmacological

features of EPI indicate that when using EPI by single

administration, its drug concentration and treatment time should

be seriously concerned. To optimize EPI’s sophisticated efficacy, it is

suggested to administrate EPI combined with Camptothecin (CPT),

rather than administrating EPI alone. As an Nrf2 inhibitor, CPT

can inhibit the expression of Nrf2 by down-regulating ROS, thereby

inhibiting HCC cell proliferation and EMT process. Since CPT

exhibits more confirmed tumor growth inhibitory effects than EPI,

the co-administration of CPT and EPI can inhibit the ROS

generation and Nrf2 over-expression initially induced by EPI, and

can better inhibit the growth of HCC, compared with the single EPI

administration. Therefore, CPT together with EPI play a synergetic

tumor-inhibiting role. Conclusively, by down-regulating the

expression of Nrf2, CPT combined with EPI can inhibit the

proliferation, migration, invasion and angiogenesis of HCC cells
frontiersin.org
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(61) providing the evidence that Nrf2 can be used as a potential

therapeutic target for the treatment of HCC.

3.1.4 Nrf2 and pancreatic cancer
Pancreatic cancer (PC) is one of the deadliest and most

aggressive malignant tumors, known as the “king of cancer” in

the field of tumors (62). During pancreatic carcinogenesis, Nrf2

exerts tumor suppressive effects by binding to ARE and activating

its downstream target genes (NQO1, SOD1, HO-1, ATF3, IL-17D,

and SQSTM1/p62) that regulate cellular antioxidant/detoxification

responses, immune surveillance and autophagy (63). PC’s chemical

resistance which commonly leads to high recurrence rate is found

closely related with the human HEAT repeat-containing protein 1

(HEATR1). HEATR1 competed with Keap1 for binding to

SQSTM1/p62, resulted in up-regulation of Keap1, which then

inhibited Nrf2 signaling in PC cells. Moreover, HEATR1

deficiency could promote PC proliferation and gemcitabine

(GEM) resistance. In addition, HEATR1 deficiency significantly

improved xenograft tumor growth in vivo by upregulating Nrf2

signaling (64). These results suggest a negative feedback correlation

between HEATR1 and Nrf2/Keap1 pathway. Brucein D (BD), a

naturally occurring quassinoid, is found able to enhance the

chemosensitivity of GEM on PC through inhibition of the Nrf2

pathway, while the chemoresistance of GEM to PC cells can be

significantly enhanced by silencing Nrf2. Mechanistic studies

revealed that BD sensitized GEM in PC cells through the

ubiquitin-proteasome-dependent degradation of Nrf2, and

downregulated Nrf2 pathway. Silencing of Nrf2 plus BD

treatment resulted in more potent inhibitory effects of GEM. In

contrast, Nrf2 activation attenuated the chemosensitivity of GEM,

indicating that the action of BD was Nrf2 dependent. In conclusion,

BD was able to enhance the chemosensitivity of GEM in PC

through inhibition of the Nrf2 signaling pathway (65).

3.1.5 Nrf2 and esophageal squamous
cell carcinoma

Esophageal squamous cell carcinoma (ESCC) is a deadly disease

and one of the most aggressive cancers of the gastrointestinal tract

(66). Nrf2 has been found to regulates the expression of enzymes

involved in detoxification and anti-oxidative stress response signaling

and protect ESCC cells from surviving in a highly oxidative

environment. In clinical studies, Nrf2 was found to inhibit

migrat ion and invasion of ESCC cel ls in a hypoxic

microenvironment. Additionally, NQO1, a downstream factor of

Nrf2, has been found to enhance the antitumor effects of curcumin

in ESCC xenograft tumors (67). NETO2 is an oncogene, and its

overexpression induces EMT and cancer cell invasion and metastasis

through activation of PI3K/Akt/NF-kB/Snail axis (68). The activation
of ERK and Akt promotes Nrf2 expression, and overexpression of

Nrf2 instead increases oncogenicity and chemoresistance (69). It was

reported that downregulation of NETO2 reduced the proliferation

and metastatic capacity of ESCC by regulating Nrf2 expression and

PI3K/AKT/ERK pathway (70).

Based on previous researches, Table 1 summarizes the

mechanism of Nrf2 in digestive system tumors.
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3.2 Nrf2 and urinary system cancers

3.2.1 Nrf2 and prostate cancer
Prostate cancer (PCa) is one of the most common urinary

malignant tumors in men. PCa has a close relationship with Nrf2

(73). A study showed brain-type glycogen phosphorylase (PYGB)

silencing suppressed the growth and promoted the apoptosis of PCa

cells by affecting the NF-kB/Nrf2 signaling pathway. The results

revealed that PYGB was upregulated in PCa tissues and PYGB

silencing suppressed the cell viability of PC3 cells. PYGB silencing

also increased the ROS content and affected NF-kB/Nrf2 signaling

pathways. NF-kB has been shown to be associated with apoptosis,

and both NF-kB and Nrf2 have anti-inflammatory and antioxidant

effects. The dual interaction of PYGB silencing on NF-kB and Nrf2

jointly promotes apoptosis in PCa cells (74).

High glucose in the body can affect energy metabolism, cell

proliferation, and increase ROS levels through glycolysis (75). It was

reported that high glucose promoted LNCaP proliferation.

Increased level of ROS in LNCaP cells under high glucose

condition resulted in a decrease in downstream target proteins

HO-1 and g-GCS, all were transcripts of Nrf2 activation, thus

triggering ROS-mediated subsequent inflammatory response,

promoting the expression of pro-inflammatory factors IL-6 and

IL-1b and reducing the content of anti-inflammatory factors IL-10,

thereby increasing the expression level of apoptotic proteins, finally

inducing the apoptosis of PCa cells (76, 77).

p62 is known to be a multidomain protein that can interact with

Nrf2 to influence inflammation, OS, and the development of cancer

(78). Studies reveal p62 promotes proliferation, apoptosis resistance

and invasion of PCa cells via the Keap1/Nrf2/ARE pathway. p62

increased the levels and activities of Nrf2 by suppressing Keap1-

mediated proteasomal degradation in PCa cells and tissues, and

high levels of p62 promoted growth of PCa through accelerating the

Keap1/Nrf2/ARE system and by activating Nrf2 pathway, p62

stimulates the transcription of Nrf2’s target genes, inhibits ROS in

PCa cells, which promotes PCa cell proliferation, anti-apoptosis

and invasion.

3.2.2 Nrf2 and bladder cancer
Bladder cancer (BCa) is the second most common malignant

tumor of the genitourinary system (79). In BCa, p62 serves as a

selective autophagy adaptor, and also interacts with Keap1-Nrf2

pathway. Typically, p62 is overexpressed in BCa and promotes

tumor growth through Keap1-Nrf2 signaling and protecting cancer

cells from OS (80). Ailanthone (Aila), a natural compound with

antitumor activity against various cancer cells (81), inhibits the

proliferation, migration and invasion of BCa cells by reducing the

expression of Nrf2, YAP and c-Myc (82). Another study reported

that Berbamine induced cell cycle arrest in S-phase through

activation of p21 and p27 protein expression and downregulation

of CyclinD, CyclinA2 and CDK2 protein expression (83), and

increased intracellular activity by down-regulating antioxidant

genes such as Nrf2, HO-1, SOD2 and GPX-1 levels (84). In

addition, MTX-211 is a potential antitumor agent that reduces

GSH levels through the Keap1/Nrf2/GCLM signaling pathway (85),
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thereby effectively inhibits the proliferation of BCa cells. Therefore,

regulating the metabolism of GSH through the Nrf2/GCLM

signaling pathway may be an effective strategy for treating BCa or

overcoming chemotherapy resistance (86, 87). Like above-

mentioned PC and PCa, in BCa, p62 functions the same model

with Nrf2 (88). p62 promotes the growth of BCa cells by activating

the Keap1/Nrf2 pathway, while overexpression of NEDD4L

inactivates the p62/Keap1/Nrf2 pathway. Summarily, NEDD4L

has the ability to inhibit BCa cell growth and suppress p62/

Keap1/Nrf2 pathway activity, which indirectly proves that

NEDD4L/p62/Keap1/Nrf2 pathway may be an effective target for

the treatment of BCa (89, 90).

3.2.3 Nrf2 and renal cell carcinoma
Renal cell carcinoma (RCC), referred to as kidney cancer,

belongs to one of the common malignancies of the urinary

system (91). As one of the most important pathways to

antioxidant stress, Nrf2-ARE signaling pathway influences the cell

biology of RCC and the sensitivity of targeted therapy. Nrf2 was in a

high expression state in RCC tumors and had long been proved to
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have carcinogenic effects (92). Therefore, it can be speculated that

Nrf2 and downstream target genes may play a crucial role in the

occurrence and development of RCC. Inhibiting Nrf2 expression

significantly improved the RCC 786-0 cells to chemotherapy drugs

resistance. By inhibiting the conduction of Nrf2-ARE signaling

pathways to enhance the resistance of tumor cells to OS, the

proliferation, migration and invasion of RCC cells were alleviated,

and the resistance to chemotherapy drugs was reduced (93).

Above studies show that abnormal expression of Nrf2 is closely

related to the occurrence of human urinary system tumors,

including prostate, bladder and kidney cancer. The detailed

evidences were summarized in Table 2.
3.3 Nrf2 and female reproductive
system cancers

3.3.1 Nrf2 and endometrial cancer
Endometrial cancer (EC) is the main gynecological malignancy,

with most of cases occur in post-menopausal women and shows an
TABLE 1 Activities and mechanism of Nrf2 in digestive system cancers.

Tumor type Cell lines Signaling pathway Effects Reference

Colorectal cancer HT-29 cells

HCT116 cells,
HT29 cells,
SW620 cells

Nrf2/ARE

NF-kB/Nrf2

Protective effect of ShaoYao decoction on colitis-
associated colorectal cancer by inducing
Nrf2 signaling pathway

Cyanidin Chloride induces apoptosis by inhibiting
NF-kB signaling through activation of Nrf2 in
colorectal cancer cells

(44)

(49)

Gastric cancer BGC-823 cells

AGS cells,
MGC-803 cells

Nrf2/HO-1

Keap1/Nrf2

Nrf2/HO-1 axis regulates the angiogenesis of
gastric cancer via targeting VEGF

TCF7L1 indicates prognosis and promotes
proliferation through activation of Keap1/Nrf2 in
gastric cancer

(52)

(71)

Hepatocellular carcinoma Huh7 cells,
H22 cells

HepG2 cells

Keap1/Nrf2/ARE

Keap1/Nrf2

Nrf2 down-regulation by camptothecin favors
inhibiting invasion, metastasis and angiogenesis in
hepatocellular carcinoma

Protective effects of raspberry on the oxidative
damage in HepG2 cells through Keap1/Nrf2-
dependent signaling pathway

(59)

(61)

Pancreatic cancer Panc-1 cells,
Canpan-2 cells

Panc-1 cells,
MiaPaCa-2 cells

Nrf2-ROS

p62/Keap1/Nrf2

Brucein D augments the chemosensitivity of
gemcitabine in pancreatic cancer via inhibiting the
Nrf2 pathway

HEATR1 deficiency promotes pancreatic cancer
proliferation and gemcitabine resistance by up-
regulating Nrf2 signaling

(64)

(65)

Esophageal squamous cell carcinoma TE-5TE-8 cells,
TE-11R cells

KYSE 30 cells,
KYSE 150 cells,
KYSE 450 cells,
KYSE 410 cells,
KYSE 510 cells,
TE-1 cells

Nrf2/NQO1

Nrf2/SLC7A11

Combination treatment with highly bioavailable
curcumin and NQO1 inhibitor exhibits potent
antitumor effects on esophageal squamous cell
carcinoma

SLC7A11 regulated by Nrf2 modulates esophageal
squamous cell carcinoma radiosensitivity by
inhibiting ferroptosis

(67)

(72)
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increasing incidence in recent years (96). Aldo-Keto reductases

family 1 (AKR1C1) is a key regulatory gene downstream of Nrf2. In

vitro experiments confirmed that downregulation of Nrf2/AKR1C1

favors EC cells to be sensitive to progesterone. Overexpression of

Nrf2 and AKR1C1 may be one of the main molecular mediators of

progesterone resistance in patients with endometrial precancerous

lesions and well-differentiated cancers. Thus, it’s rationale to reverse

progesterone resistance in EC with the reduction of Nrf2/AKR1C1.

Targeting the Nrf2/AKR1C1 pathway may represent a new

therapeutic strategy for treatment of EC (97). Endometrial serous

carcinoma (ESC) is a sub-type of EC, and SPEC-2 cells are a special

EC cell line derived from ESC tumor tissue (98). Studies have shown

that SPEC-2 cells express higher levels of Nrf2, and the expression

of Nrf2 downstream genes including NQO1, HO-1, MRP2, GCLC

and GCLM are increased in SPEC-2 cells. Furthermore, inhibition

of Nrf2 expression made SPEC-2 cells more resistant to cisplatin

and paclitaxel in a xenograft model. These results demonstrate the

great promise of inhibiting Nrf2 to overcome chemotherapy

resistance in EC (99).

3.3.2 Nrf2 and ovarian cancer
The mortality rate of ovarian cancer (OC) ranks first among

gynecological malignancies (100). Carboxymethylated pachyman

(CMP), a traditional medicinal herb with antitumor activity (101),
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can induce ferroptosis in OC cells by suppressing Nrf2/HO-1/xCT/

GPX4 (102). By targeting the Nrf2/Keap1/ARE pathway, CMP

inhibits OC progression, proliferation and chemotherapy

resistance. In addition, apatinib promotes apoptosis and

autophagy in ROS-dependent OC cells by negatively regulating

Nrf2 and p62 (103). Dihydrotanshinone I (DHT) is a compound

extracted from the root of Danshen, which has many

pharmacological activities such as anticancer (104), inhibits the

viability of OC cells and induces OS through ubiquitination-

mediated degradation of Nrf2, thereby exhibiting anti-OC

effects (105).

3.3.3 Nrf2 and cervical cancer
Cervical cancer (CC) is the most common gynecological

malignancy in women worldwide (106). A study found that

allicin, the main ingredient extracted from garlic, inhibits the

proliferation and migration of CC cells by inhibiting the

expression of Nrf2, thereby maintaining intracellular oxidative

homeostasis (107). Detailed experimental data show that allicin

inhibits the viability of CC SiHa cells in a time- and dose-dependent

manner, and induces apoptosis. It was found Nrf2 overexpression

can enhance SiHa cells migration and invasion, indicating Nrf2 has

a carcinogenic effect in CC. In addition, treatment with allicin can

significantly inhibits the expression of Nrf2 and the downstream
TABLE 2 Activities and mechanism of Nrf2 in urinary system cancers.

Tumor type Cell lines Signaling pathway Effects Reference

Prostate cancer LNCap cells,
PC3 cells,
DU145 cells,
PrEC cells

LNCaP cells

DU145 cells

RWPE-1 cells,
PC3 cells

NF-kB/Nrf2

Nrf2/ARE

Keap1/Nrf2/ARE

Nrf2/NF-kB

Silencing of PYGB suppresses growth and
promotes the apoptosis of prostate cancer cells
via the NF-kB/Nrf2 signaling pathway

High glucose promotes prostate cancer cells
apoptosis via Nrf2/ARE signaling pathway

p62 promotes proliferation,apoptosis-resistance
and invasion of prostate cancer cells through the
Keap1/Nrf2/ARE axis

Nrf2 antioxidant pathway and apoptosis
induction and inhibition of NF-kB-mediated
inflammatory response in human prostate cancer
PC3 cells by Brassica oleracea var. acephala: An in
vitro study

(73)

(74)

(76)

(94)

Bladder cancer T24 cells,
RT4 cells,
5637 cells,
TCCSUP cells,
253J cells,
SV-HUC‐1 cells, SW780 cells

p62/Keap1/Nrf2 p62 promotes bladder cancer cell growth by
activating Keap1/Nrf2-dependent antioxidative
response

(80)

Renal cell carcinoma 786-0 cells

786‐O cells,
OS-RC-2 cells,
Caki-1 cells,
769-P cells,
A498 cells,
ACHN cells,
HK-2 cells

Nrf2/ARE

Nrf2/TRIM24

Effect of the Nrf2-ARE signaling pathway on
biological characteristics and sensitivity to
sunitinib in renal cell carcinoma

BMP8A promotes survival and drug resistance via
Nrf2/TRIM24 signaling pathway in clear cell renal
cell carcinoma

(93)

(95)
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antioxidant gene enzyme HO-1. Therefore, allicin mainly inhibits

the malignant phenotype of CC cells by inhibiting the expression of

Nrf2, which provides a clinical basis for the treatment of CC

patients (108). In HeLa cells, metformin inhibits the expression of

Nrf2 by attenuating Raf-ERK signaling through a Keap1-

independent mechanism (109). Through inhibiting the expression

of HO-1 downstream of Nrf2, metformin attenuates the

proliferation of tumor cells and enhancing their sensitivity to

anticancer drugs, indicating that the Raf/ERK/Nrf2 axis is a new

molecular target for CC therapy (110).

By summarizing previous reports on Nrf2 and its clinical

significance in female reproductive system, we found that some

native small molecule compounds can also effectively inhibit the

malignant phenotype of cancer cells by inhibiting the expression of

Nrf2, and the detailed underlying mechanisms are shown in Table 3

below (Table 3).
3.4 Nrf2 and other cancers

3.4.1 Nrf2 and breast cancer
Breast cancer (BC) is the most common malignancy among

women all around the world (113). Due to the high heterogeneity,

BC’s pathogenesis has not been adequately established, and its

treatment remains a serious challenge in healthcare systems (114).

The overexpression of Nrf2 enhances proliferation and migration of

BC cells such as MCF‐7 and MDA‐MB‐231. Mechanically, Nrf2

promotes the expression of G6PD and HIF‐1a. G6PD could be an

anticancer target that is associated with prognosis in a variety of

cancers (115). Overexpression of Nrf2 up‐regulated the expression

of Notch1 via G6PD/HIF‐1a pathway. G6PD is a rate-limiting

enzyme in the pentose phosphate pathway (PPP), and G6PD

overexpression is related to cancer prognosis and tumor

metastasis (116). Notch signaling pathway affected the

proliferation of BC by affecting its downstream gene HES‐1, and

regulated the migration of BC cells by affecting the expression of
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EMT pathway. All these results shows that Nrf2 is a potential

molecular target for the treatment of BC (117). As a potential tumor

suppressor (118), miR-101 can increase its expression level and

reduce the protein expression level of Nrf2 in the nucleus. Then the

lowed Nrf2 in turn leads to the decreased of the activity of the

antioxidant signaling pathway Nrf2/ARE, so that Nrf2’s

downstream antioxidant protein expression is declined, and the

sensitivity to OS is also impaired, resulting in an oxidation and

antioxidant imbalance in cancer cells, and inducing the apoptosis of

BC cells. Finally, miR-101 achieves the inhibitory effect to BC cells

proliferation through its suppression on Nrf2 signaling

pathway (119).

Levistilide A (LA), an active compound extracted from

Chuanxiong Rhizoma, has been shown that it has anti-cancer

effects (120). Specifically, LA can induce mitophagy in MDA-MB-

231 and MCF-7 cells in a dose-dependent manner, mainly by

promoting the overexpression of Nrf2/HO-1, thereby causing

excessive accumulation of ROS in BC cells, and eventually lead to

cell ferroptosis (121).

HIF-1a glycolytic pathway plays a central role in a study of Nrf2

promoting BC cell growth by enhancing glycolysis (122). In MCF-7

and MBA-DA-231cells, the expression of Nrf2 was positively

correlated with the expression of glycolytic genes, and the up-

regulation of Nrf2-mediated glycolytic enzymes was dependent on

the activation of AKT and the inhibition of AMPK, thereby

promoting proliferation of cancer cells. Comparatively, mutations

in the tumor suppressor gene BRCA1 are known to predispose BC

(123, 124), while BRCA1-deficient cells accumulate ROS due to a

defect in Nrf2, and reactivation of Nrf2 can rescue cell survival

(125). It is shown that estrogen (E2) acts through the PI3K-AKT

pathway to regulate the activation of Nrf2 in BRCA1-deficient cells

(126, 127), thereby inducing the production of antioxidant genes

including GCLM and HO-1, protecting cells from ROS-induced

death and enabling the survival of BC cells (128). In conclusion,

Nrf2 promotes BC progression, implicating that Nrf2 is a potential

molecular target for BC treatment.
TABLE 3 Activities and mechanism of Nrf2 in female reproductive system cancers.

Tumor type Cell lines Signaling pathway Effects Reference

Endometrial cancer RL95-2 cells

SPEC-2 cells

Nrf2/AKR1C1

Keap1/Nrf2

Mechanism of progestin resistance in endometrial
precancer/cancer through Nrf2-AKR1C1 pathway

High levels of Nrf2 determine chemoresistance in
type II endometrial cancer

(97)

(99)

Ovarian cancer HO8910PM cells, A2780 cells,
SKOV3 cells,
ES2 cells

A2780 cells

Keap1/Nrf2

Nrf2/ABCF2

Dihydrotanshinone I inhibits ovarian tumor
growth by activating oxidative stress through
Keap1-mediated Nrf2 ubiquitination degradation

ABCF2, an Nrf2 target gene, contributes to
cisplatin resistance in ovarian cancer cells

(105)

(111)

Cervical cancer C33A cells,
HeLa cells,
SiHa cells

HeLa cells

Nrf2/NQO1/GSH

MBNL1/Nrf2

Role of Nrf2 cascade in determining the
differential response of cervical cancer cells to
anticancer drugs: an in vitro study

MBNL1 regulates resistance of HeLa cells to
cisplatin via Nrf2

(108)

(112)
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3.4.2 Nrf2 and lung cancer
Lung cancer is the most common cause of cancer-related death

worldwide (129). Cyclin-dependent kinase 20 (CDK20) is a cell

cycle regulatory factor (130). In lung cancer cells, CDK20 can

compete with Nrf2 to bind to Keap1, enhance the transcriptional

activity of Nrf2 and reduce the level of ROS, thereby promoting the

continuous proliferation of cancer cells (131). When the PI3K/

AKT/mTOR pathway is continuously activated, the activity of Nrf2

is further enhanced, which induces metabolic reprogramming of

cells and promotes the abnormal proliferation of A549 cells.

Therefore, the interaction between Nrf2 and PI3K/AKT/mTOR

signaling pathway plays a significant role in promoting the

malignant progression of lung cancer (132), and the elevated Nrf2

expression promotes lung cancer progression and enhances the

ability of tumor cells to evade apoptosis (133).

Noteworthily, during the process of lung cancer development,

Nrf2 plays an inhibitory role in the beginning stage of cancer and a

pro-cancer role in the development stage. Nrf2 deficient specimens

exhibit higher tumor incidence in a mouse model of lung cancer. In

turn, after lung carcinogenesis, Nrf2 promotes the transformation

of benign adenomas into malignant adenomas and accelerates lung

cancer progression through the Kras/Nrf2/GPX2 and MRP4

pathways (134, 135). These results suggest that Nrf2 prevents

cancer in the early stages, while accelerates cancer progression in

the late stages of lung carcinogenesis (136).

3.4.3 Nrf2 and glioblastoma
Glioblastoma (GBM) is the most common and aggressive

malignancy of the central nervous system (CNS) (137, 138). An

investigation explores the action of Nrf2 in GBM U251 cells and

reveals the collaboration between Nrf2 and matrix metalloproteinase 9

(MMP9), which is a positive indicator for tumor cell migration and

invasion (139). Detailly, upregulation of Nrf2 led to an increase in

MMP9 expression and activity whereas downregulation of Nrf2 led to a

decrease in MMP9 expression and activity, and Nrf2 significantly

provoked GBM cell migration and invasion (140). In addition,

apatinib, an anti-angiogenic drug (141), can block the cell cycle in

G0/G1 phase and inhibit the growth of glioma cells U251 and U87 by

inducing ferroptosis. Nrf2-related anti-OS is closely related to

ferroptosis inhibition (142), and apatinib can promote ferroptosis in

GBM cells by regulating Keap1/Nrf2/VEGFR2 signaling pathway.

Interestingly, excessive Nrf2 could reverse the inhibition of apatinib-

induced GBM cell proliferation and the induction of ferroptosis (143).

Like in lung cancer during different progression stage, this interesting

phenomenon of Nrf2 in GBM exemplifies that Nrf2 function dual-

effects both “good” or “bad” in cancer, and both effects display

equal importance.

3.4.4 Nrf2 and osteosarcoma
Osteosarcoma (OS), a mesenchymal malignancy, is the most

common primary tumor of bone, and is the third most common type

of cancer among children and adolescentsbetween the ages of 12 and

18 (144). Members of the tripartite motif (TRIM) family proteins are

known to act as tumor suppressor genes or oncogenes to influence

the proliferation and differentiation of tumor cells and apoptosis

(145). TRIM22 is a member of the TRIM family proteins (146). The
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malignant phenotype of tumors can be suppressed by disrupting and

promoting the degradation of Nrf2. TRIM22 inhibited OS

progression through Nrf2-mediated intracellular ROS imbalance.

ROS production was significantly promoted when overexpressing

TRIM22, thus activating AMPK/mTOR signaling. Meanwhile,

TRIM22 inhibits OS progression by promoting proteasomal

degradation of Nrf2, thereby activating signaling that leads to

autophagic cell death in OS. Therefore, targeting TRIM22/Nrf2

could be a promising therapeutic strategy for treating OS (147).

3.4.5 Nrf2 and leukemia
Leukemia is a malignant tumor of the hematopoietic system (148).

It is known that cell cycle is closely related to proliferation (149),

among which cdc2/cyclin B is a complex that controls G2/M cell cycle

transition (150). PBK/TOPK is a substrate of cdc2/cyclin B that can

promote mitosis (151), and PBK/TOPK protein is upregulated in a

variety of hematological malignancies, which is important for the

proliferation and malignant transformation of hematological tumors

(152). Mitochondrial dysfunction and ROS production are involved in

PBK/TOPK-induced G2/M cell cycle arrest, apoptosis, and inhibition

of promyelocyte proliferation. The down-regulation of Nrf2 induces

the decrease of cdc2 and cyclin B protein expression through the

down-regulation of PBK/TOPK, which leads to cell cycle arrest and

apoptosis of acute myeloid leukemia (AML) cells (153). In addition,

HO-1 and Nrf2 protect against the deleterious effects of inflammation

and OS, but may also contribute to protect oncogenic AML cells from

TNF-mediated cell death by activating Nrf2 to induce HO-1 to inhibit

TNF induced AML cell death (154).

We summarize the signaling pathways and mechanisms

involved in the role of Nrf2 as an anti-cancer therapeutic target

in BC, lung cancer, GBM, OS and leukemia, as shown in Table 4.
4 Nrf2-mediated
double-edged mechanism

4.1 Activation of Nrf2 as
anti-carcinogenic role

As mentioned earlier, Nrf2 is an important target for

chemopreventive strategies in common human solid tumors because

of its ability to promote the expression of detoxifying enzymes and

cytoprotective genes. Therefore, inducers and inhibitors of Nrf2 are

considered important cancer chemopreventive agents. The increase in

ROS leads to NF-kB activation, while Nrf2-mediated stimulation of

antioxidant pathways leads to a decrease in ROS, so the activation of

Nrf2 leads to the production of antioxidant enzymes HO-1, UGT,

NQO1, and GST, which leads to NF-kB inhibition. Therefore targeting

Nrf2 and NF-kB pathways to reduce OS and inflammation is a very

useful chemopreventive tool to prevent inflammation-related cancers.

Before tumorigenesis, Nrf2 activation exerts a chemical defense

thereby inhibiting tumorigenesis (161), regulating the expression of

downstream phase II detoxification enzymes and antioxidants,

mainly mediated by the Nrf2-Keap1-ARE pathway (162, 163).

These enzymes and antioxidants protect the body and cells from

ROS and toxic substances such as carcinogens. At this
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circumstance, Nrf2 attenuates the expression of oncogenes, inhibits

cell proliferation and angiogenesis, etc., thus providing a protective

effect (164, 165). The tumor suppressive effects of Nrf2 have been

studied mainly through many in vivo experiments. Nrf2 plays an

important role in chemoprevention, and studies have compared the

susceptibility of Nrf2 knockout mice with wild-type mice to

chemically induced carcinogenic effects in which Nrf2 knockout

mice are more susceptible to cancer when exposed to chemical

carcinogens, such as bladder, skin and stomach cancers (166). Nrf2-

deficient mice are more susceptible to chemical carcinogens, mainly
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associated with low basal expression of phase II detoxification

enzymes, such as low total GST and NQO1 enzyme activity in

the stomach (167).
4.2 Hyperactivation of Nrf2 as pro-
carcinogenic role

In the opposite situation other than upregulating cytoprotective

genes in normal cells, aberrant Nrf2 activation leads to increased
TABLE 4 Activities and mechanism of Nrf2 in other cancers.

Tumor type Cell lines Signaling pathway Effects Reference

Breast cancer MDA-MB-231 cells,
MCF-7 cells

MDA-MB-231 cells, MCF-7 cells

MCF-10A cells, MDA-MB-231 cells,
MCF-7 cells

MCF-7 cells

Nrf2/HO-1

Nrf2/G6PD/HIF-1a

Nrf2/HIF-1a

Nrf2/ARE

Levistilide A induces ferroptosis by activating the
Nrf2/HO-1 signaling pathway in breast cancer
cells

Nrf2 promotes breast cancer cell migration via up-
regulation of G6PD/HIF-1a/Notch1 axis

Nrf2 facilitates breast cancer cell growth via HIF-
1a-mediated metabolic reprogramming

Effect of miR-101 on proliferation and oxidative
stress-induced apoptosis of breast cancer cells via
Nrf2 signaling pathway

(117)

(119)

(121)

(123)

Lung cancer SQ-19 cells,
H2126 cells,
H1437 cells,
H1395 cells,
A549 cells

NCI-H1299 cells,
NCI-H460 cells

Keap1/Nrf2

Nrf2/ARE

Loss of Keap1 function activates Nrf2 and
provides advantages for lung cancer cell growth

Nrf2/ARE pathway activation is involved in
negatively regulating heat-induced apoptosis in
non-small cell lung cancer cells

(155)

(156)

Glioblastoma T98G cells

U251 cells

U87MG cells,
U251 cells

Nrf2/ABCC1/MRP1

Nrf2/MMP9

AKT/Nrf2/HO-1

High levels of Nrf2 sensitize temozolomide-
resistant glioblastoma cells to ferroptosis via
ABCC1/MRP1 upregulation

The role of Nrf2 in migration and invasion of
human glioma cell U251

The E3 ubiquitin ligase NEDD4-1 mediates
temozolomide-resistant glioblastoma through
PTEN attenuation and redox imbalance in Nrf2-
HO-1axis

(140)

(157)

(158)

Osteosarcoma HOS cells,
Saos-2 cells,
143B cells,
U2OS cells,
MG63 cells,
hFOB 1.19 cells

MG63 cells

Nrf2/TRIM22

AMPK/Nrf2

TRIM22 inhibits osteosarcoma progression
through destabilizing Nrf2 and thus activation of
ROS/AMPK/mTOR/autophagy signaling

Tanshinone IIA inhibits osteosarcoma growth
through modulation of AMPK-Nrf2 signaling
pathway

(147)

(159)

Leukemia HL-60 cells,
THP-1 cells

THP-1 cells,
U937 cells,
MV4-11 cells

Nrf2/STAT3

Nrf2/RFC4

LncRNA GAS5 induces cell apoptosis in acute
myeloid leukemia by targeting Nrf2

Nrf2 overexpression increases the resistance of
acute myeloid leukemia to cytarabine by inhibiting
replication factor C4

(150)

(160)
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antioxidant capacity in cancer cells. The overactivation of Nrf2 can

help cancer cells escape OS by expressing antioxidant target genes

or directly promoting cell survival and proliferation. In addition,

Nrf2 plays an important role in radiotherapy resistance, preventing

the accumulation of drugs in cancer cells, thus protecting cells from

apoptosis (168). Among them, Nrf2-mediated pro-carcinogenic

mechanism mainly promotes the growth and proliferation of

tumor cells by increasing the expression of metabolic enzymes

such as G6PD, TKT, and PGD, which promote glucose and nucleic

acid metabolism, thus promoting the growth and proliferation of

tumor cells (169). Furthermore, Nrf2 can interact with apoptosis-

related genes p53 and Bcl-2 to promote tumorigenesis and

sustained deterioration (170), and prevent free iron accumulation

by controlling the expression of MT1, ferritin, and iron transport

proteins, thus preventing iron accumulation (171, 172).

The role of Nrf2 in drug resistance is based on Nrf2-induced

genes such as its downstream detoxifying and antioxidant enzymes

HO-1 and NQO1. These Nrf2-induced genes allowed cells

protected from the cytotoxic effects of anticancer therapies and

resist apoptosis, which in turn triggers drug resistance in tumor cells

(173, 174). Chrysin (5,7-dihydroxyflavone) is a potent Nrf2

inhibitor (175). By down-regulating PI3K-Akt/Nrf2 and ERK/

Nrf2 signaling pathways, Chrysin significantly reduces the

expression of Nrf2 at the mRNA and protein levels in ADM BEL-

7402 cells through suppressing the expression of Nrf2 downstream

genes HO-1, AKR1B10 and MRP5 (176, 177), and inhibit Nrf2-

dependent chemotherapy resistance (178). Nrf2 enhancement of

CSCs may be one of the reasons why tumors develop drug

resistance (179). Nrf2 has been reported to protect normal cells

from telomerase replication or oncogene-induced senescence

through multiple mechanisms that prolong lifespan and reduce

the expression of ROS, nuclear alterations, DNA damage, and

senescence-associated b-galactosidase, thereby stimulating tumor

progression (180). Besides, Nrf2 promotes cancer invasion and

metastasis by regulating the expression of HIF-1a, VEGF, PDGF,
E-cadherin, MMP-2, in tumor cells (181–184). Nrf2 was

upregulated in gallbladder carcinoma (GC) tissues and acted as

an independent prognostic factor (185). Propofol, one of the mostly

used intravenous anesthetics, induces the proliferation and invasion

of GC cells by activating Nrf2 (186). In addition, activation of

Keap1-Nrf2 promotes cell migration, invasion and OS resistance in

metastatic cancer cells (187).

Collectively, Nrf2 exerts pro-carcinogenic role mainly through

promoting tumor cell growth and proliferation, inhibiting tumor

cell apoptosis and ferroptosis, enhancing the drug resistance of

tumor cells, stimulating tumor cells self-renewal, exerting unlimited

replication potential, maintaining persistent angiogenesis, and

involved in the invasion and metastasis of many cancers.
5 Agents targeting Nrf2’s therapeutic
role in human cancers

Whether the activation state of the Nrf2 signaling pathway is

normal or excessive will modulatory determine its dual role of

chemopreventing and promoting cancer development. On one
Frontiers in Oncology 11
hand Nrf2 has a chemopreventive effect on carcinogenesis in

normal organisms. On the other hand Nrf2 aberrant expression

and persistent activation can promote cancer development.

Therefore, Nrf2 activators that increase Nrf2 activity are used for

disease prevention, while Nrf2 inhibitors are used to improve the

efficacy of chemotherapeutic agents, so the search for compounds or

drugs that activate the Nrf2 signaling pathway in the normal body

and inhibit it in tumors is also the research focus.
5.1 Nrf2 activators

Based on the dual effects of Nrf2 promoting the survival of

normal cells and inhibiting chemocarcinogenesis, it is rationale to

propose Nrf2 activators as cytoprotective and cancer-preventing

therapeutics (188). Nrf2 pathway is crucial for cellular defense

against endogenous and exogenous OS and electrophilic stress

(189). Actually, some Nrf2 activators’ anti-cancer effects have

been partially elucidated. Nrf2 activators can accelerate the

detoxification of carcinogens from the environment and protect

the body from chemical carcinogenesis, and are used to protect

normal cells from carcinogens. Among them, the only FDA-

approved Nrf2 inducer is dimethyl fumarate (DMF), which has

been used to treat multiple sclerosis and plays a protective role in

various neurological diseases (190). The protective effect of DMF

has been shown to be exerted by activating Nrf2/HO-1 signaling

and enhancing GSH and TAC levels (191). Studies showed that the

anticancer mechanism of DMF is paradoxically related to the

decrease in the nuclear translocation of Nrf2 and indicated the

potential therapeutic role of DMF in cancers (192). However, long-

term use of DMF can also cause some gastrointestinal side effects

(193), so the effectiveness of using Nrf2 activators in the treatment

of malignant tumor needs to be further verified to avoid the harmful

effects of Nrf2.

There are also some natural compounds originated from plant

extracts showing Nrf2 activation effects. Sulphoraphane (SFN),

mainly derived from broccoli and other cruciferous vegetables

(194), can reactivate cellular resistance by inducing Nrf2/ARE/

Prdx6 activity during aging and OS (195). In addition, SFN

activates AMPK signaling by inducing excessive ROS production,

promotes Nrf2 translocation, and leads to inhibition of PC cell

viability (196). As a Nrf2 activator, SFN’s anticancer activity has

been validated in cancers such as lung, prostate, breast and

colorectal cancer (197).

Besides, curcumin is another non-toxic natural small molecular

compound extracted from turmeric with multiple biological

activities such as anti-oxidation, anti-cancer and anti-

inflammation (198), and its pharmacological mechanism has been

proven to affect the activity of Nrf2 signaling pathway. Curcumin

down-regulates the expression of Fen1 in an Nrf2-dependent

manner (199), thereby inhibiting the proliferation of BC cells

(200). Specifically, curcumin includes Keap1 inhibiting, up-

regulates the expression of Nrf2 and its target proteins, and

enhances Nrf2 nuclear translocation (201). The detailed signaling

pathway after curcumin treatment involves PI3K/Akt-1/mTOR,

Ras/Raf/MEK/ERK, GSK-3b and p53 pathway, and these involved
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survival pathways will be finally transduced by NF-kB, Akt, Nrf2/
ARE pathway (202). However, the relationship between curcumin

and Nrf2 has not been thoroughly and systematically studied in

human tumors, and further clinical research is still needed.
5.2 Nrf2 inhibitors

Since nuclear Nrf2 overexpression and the whereafter aberrant

activation of Nrf2 have been observed in several human cancers,

inhibition of Nrf2 has been considered as an anticancer strategy,

and several Nrf2 inhibitors with different mechanisms of action

have been discovered (203, 204).

Several natural small molecular compounds have a significant

inhibitory effect on Nrf2. CyCl, CMP, Brusatol and allicin can

effectively inhibit the malignant phenotype of tumor cells mainly by

inhibiting the expression of Nrf2 and its downstream regulators

(205). Among them, Brusatol acts as an inhibitor of the Nrf2

pathway, selectively reducing the protein level of Nrf2 by

enhancing the ubiquitination and degradation of Nrf2. Brusatol

inhibits Nrf2 protein levels in various cell types including A549,

HeLa, MDA-MB-231, Ishikawa and SPEC-2, reduces Nrf2

downstream protein expression, and inhibits Nrf2-dependent

protective responses (206). These natural Nrf2 inhibitors can

therefore be used to enhance the efficacy of various chemotherapy

drugs to treat many types of cancer. Discouragingly, in clinical

studies, Brusatol was found to cause adverse reactions such as

hypotension, nausea and vomiting (207). This can be explained that

Nrf2 is widely expressed in normal cells, and using Nrf2 as a target

for tumor therapy should have some side effects. Like tyrosine

kinase inhibitors (TKIs) for epidermal growth factor receptor

(EGFR), a classical and effective therapeutic target for NSCLC

therapy, although the drugs erlotinib and gefitinib are very

effective in treating NSCLC, they indeed cause side effects such as

rash and diarrhea (208). This fact suggests using Nrf2 inhibitors for

clinical application when treating Nrf2 as therapeutic target, the

systemic toxicity and side effects should be carefully examined.

Luteolin, a flavonoid compound, is also a potent Nrf2 inhibitor,

which mainly inhibits Nrf2 activity through the AKT/PI3K pathway.

Luteolin induced the degradation of Nrf2 mRNA in A549 cells (209),

resulting in the downregulation of Nrf2 target genes and increased

sensitivity of A549 NSCLC cells to chemotherapy drugs (210).

In Nrf2-activated tumors, inhibition of Nrf2 has emerged as an

attractive therapeutic strategy to combat this acquired resistance.

ML385 is an inhibitor of the Nrf2-Keap1 pathway. It mainly

interacts with the transcriptional activity of ARE and prevents the

combination of the two, thereby inhibiting Nrf2 and overcoming

the drug resistance of NSCLC cells due to Keap1 deficiency to

carboplatin and other chemotherapy drugs (211).

In addition, Halofuginone (HF) is a promising Nrf2 inhibitor

(212). HF significantly reduced the viability of cancer cells, caused

severe hematopoietic and immune cell suppression in a dose-

dependent manner (213). By taking a nanomedicine approach

and encapsulating HF into polymer micelles (HF micelles; HFm),

the systemic toxicity exhibited by free HF can be mitigated while

maintaining antitumor properties. Therefore, HFm can effectively
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eradicate Nrf2-activated lung adenocarcinoma, and is a potent

inhibitor without any obvious toxicity, which may play an

important role in the clinical setting in the future (214).

Overactivation of Nrf2 promotes the growth and proliferation

of cancer cells, blocks apoptosis, enhances the self-renewal ability of

CSCs, and most importantly enhances the chemoresistance and

radioresistance of cancer cells. So blocking Nrf2 activity in tumor

cells is an important way to prevent cancer. However, an ideal

inhibitor for clinical application not only requires effective efficiency

and specificity, but also requires low toxicity, good biological

activity and pharmacokinetics, and needs to be explored further.
6 Conclusion and prospective

The formation of cancer is closely related to OS. The overall

relationship is that continuous OS leads to chronic inflammation, and

inflammation finally promotes cancer (215). Chronic inflammation

and OS are interrelated pathological processes that can lead to the

initiation and progression of cancer. Nrf2, as a transcription factor that

regulates the redox state of cells, and a major regulator of cellular ROS

and chemical detoxification, not only participates in the

chemoprevention of normal cells, but also promotes the growth of

cancer cells. Keap1/Nrf2/ARE is an important signaling pathway to

react OS, regulates the transcription of many antioxidants, activates a

series of defense systems, and blocks or reverses cancer occurrence by

inhibiting the activation of carcinogens or inducing the detoxification

of phase II metabolic enzymes. When the intracellular ROS increases,

the Nrf2 system is activated, and the cells express more antioxidant

enzymes that synthesize antioxidants. The enhanced effect of the

antioxidant system reduces the production of ROS, thereby achieving

redox balance.

Activation of Nrf2 has a dual role in cancer. First, Nrf2 can

regulate the transcription of many antioxidants and activate a series

of defense systems through the Keap1/Nrf2/ARE antioxidant system,

maintaining cellular redox homeostasis. Nrf2’s anti-inflammatory

and anti-cancer activities avoid the body from causing damage,

thus benefit the survival of normal cells. For this aspect, the

activation of Nrf2 is very important in cancer prevention. Second,

overactivation of Nrf2 also protects cancer cells and promotes their

growth. Excessive activation of the Nrf2 signaling pathway plays a

tumor-promoting role mainly by maintaining proliferation signals,

infinite replication, continuous angiogenesis, resistance to apoptosis

and ferroptosis, escape from immune destruction, and promotion of

invasion and migration (216).

The fact that Nrf2 pathway plays a key role in inflammation and

OS-mediated carcinogenesis assures Nrf2 pathway as a potential

target for mediating tumor progression and survival (217). By

targeting and inhibiting antioxidant pathways such as Nrf2 or

Nrf2-ARE, an increase amount of ROS in the tumor

microenvironment will be induced, then some key tumor signal

transduction pathways will be inhibited. As a result, programmed

cell death will occur, and tumor cells will be killed. Nrf2 is currently

targeted through two strategies: Nrf2 activators can be used to

prevent chemocarcinogenesis while Nrf2 inhibitors can be used for

cancer therapy. Theoretically, no matter Nrf2 activators, or Nrf2
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inhibitors, both these two strategies will eventually achieve the

cancer therapeutic destination. Practically, according to previously

published research reports, the development of Nrf2 pathway

inhibitors may provide better strategies for cancer prevention and
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treatment. However, how to properly regulate Nrf2 with refraining

its overactivation still needs follow-up studies. Overall, Nrf2

activation is not clearly defined as “good” or “bad”. Therefore, it

is necessary to clarify whether the activation and inhibition of the
FIGURE 2

Schematic model of the action mechanism of Nrf2. Persistent OS leads to the development of cancer. Under basal conditions, Nrf2 protein is maintained at
low levels in the cytoplasm via the E3 ubiquitin ligase Keap1, which regulates the ubiquitination degradation of Nrf2 through the proteasome pathway.
Meanwhile, antioxidants outweigh pro-oxidants; but under stress conditions, pro-oxidants outweigh antioxidants, which results in ROS accumulation and
Nrf2 activation. Under this stress conditions, the cysteine residues in Keap1 are oxidized, leading to Keap1’s dissociation from Nrf2, resulting in stabilization
and translocation of the Nrf2 protein from cytoplasm to nucleus for binding to the antioxidant response element (ARE), primarily involving the expression of
some cytoprotective and negative effective genes. Nrf2’s dual role in different stage confers different reaction. Some cancer cells can escape endogenous
tumor suppression through activation of Nrf2, thus Nrf2 exerts the pro-carcinogenic activity, while some other cancer cells can’t overcome the tissue
protection effects to normal healthy cells, thus normal healthy cells will proliferate greatly, which competitively suppresses cancer cells growth. At this
situation, Nrf2 protects normal healthy cells and exerts the anti-carcinogenic activity. CRC, Colorectal cancer; GC, Gastric cancer; HCC, hepatocellular
carcinoma; PC, Pancreatic cancer; ESCC, Esophageal squamous cell carcinoma; PCa, Prostate cancer; BLCA, Bladder cancer; RCC, Renal cell carcinoma; EC,
Endometrial cancer; OC, ovarian cancer; CC, Cervical cancer; BC, Breast cancer; NSCLC, Lung cancer; GBM, Glioblastoma; OS, Osteosarcoma; AML,
Leukemia. SYD, Shaoyao Decoction; E2, estrogen.
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Nrf2 pathway will have beneficial or adverse effects on the

organism, as well as the complex relationship between them, so as

to use different targeting strategies for different cancers (58).

In conclusion, Nrf2 is traditionally a tumor suppressor, and its

cytoprotective function is thought to be the primary cellular defense

mechanism against exogenous and endogenous damage, including

exogenous stimuli and OS. However, Nrf2 hyperactivation creates

an environment conducive to the survival of tumor cells, protecting

tumor cells from OS, radiotherapy and chemotherapy. In addition,

Nrf2 is mostly highly expressed in different types of tumors,

participates in the regulation of redox homeostasis, and is

associated with the tumor progression, aggressiveness, treatment

resistance, poor prognosis, and expression of various oncogenes etc.

In these cancers, for example, in lung carcinogenesis, Nrf2 plays

different roles at different stages, making Nrf2 involved in the dual

role in cancer. Therefore, Nrf2 acts differently at different stages of

the same cancer development cycle, with Nrf2 having an inhibitory

effect during the cancer initiation stage and a promoting effect at the

late stage. On one hand, many drugs (or genetic alterations) that

enhance Nrf2 activity can inhibit cancer development; on the other

hand, genetic deletion of Nrf2 can promote cancer development,

while Nrf2 has an oncogenic effect from the developmental stage.

Based on the literatures about Nrf2 reported by previous

researchers, in this review we summarize the different types and

mechanisms of common tumors in which Nrf2 is involved. This

review mainly focuses on the Keap1/Nrf2/ARE signaling pathway

and its downstream genes, as well as the expression of related

signaling pathways involving AKT/AMPK, PI3K/AKT/mTOR and

NF-ĸB, and so on, thereby affecting the malignant biological

behavior of tumor cells. All these unique role and mechanism are

schematically represented in Figure 2 to show the dual effects of

Nrf2 in cancer progression and therapeutics. Summarily, our

research depicts some of the known mechanisms by which Nrf2

can exert its double-edged pro-carcinogenic and anti-carcinogenic

functions, and describes the current findings of Nrf2 activators and

inhibitors, providing a clear rationale for the consideration of Nrf2

as a powerful putative therapeutic target in cancer treatment. At the

same time, the regulation of Nrf2 expression is related to cancer

chemotherapy, molecularly targeted therapy and immunotherapy.

An in-depth understanding of the relationship between Nrf2 and

tumors will further provide a theoretical basis for clinical use, as

well as new strategies for cancer therapy.
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