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Background: Clear cell renal cell carcinoma (ccRCC) is a malignant disease

containing tumor-infiltrating lymphocytes. Reactive oxygen species (ROS) are

present in the tumor microenvironment and are strongly associated with cancer

development. Nevertheless, the role of ROS-related genes in ccRCC

remains unclear.

Methods: We describe the expression patterns of ROS-related genes in ccRCC

from The Cancer Genome Atlas and their alterations in genetics and

transcription. An ROS-related gene signature was constructed and verified in

three datasets and immunohistochemical staining (IHC) analysis. The immune

characteristics of the two risk groups divided by the signature were clarified. The

sensitivity to immunotherapy and targeted therapy was investigated.

Results: Our signature was constructed on the basis of glutamate-cysteine ligase

modifier subunit (GCLM), interaction protein for cytohesin exchange factors 1 (ICEF1),

methionine sulfoxide reductase A (MsrA), and strawberry notch homolog 2 (SBNO2)

genes. More importantly, protein expression levels of GCLM, MsrA, and SBNO2 were

detected by IHC in our own ccRCC samples. The high-risk group of patients with

ccRCC suffered lower overall survival rates. As an independent predictor of

prognosis, our signature exhibited a strong association with clinicopathological

features. An accurate nomogram for improving the clinical applicability of our

signature was constructed. Gene Ontology and Kyoto Encyclopedia of Genes and

Genomes analyses showed that the signature was closely related to immune

response, immune activation, and immune pathways. The comprehensive results
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revealed that the high-risk group was associated with high infiltration of regulatory T

cells and CD8+ T cells and more benefited from targeted therapy. In addition,

immunotherapy had better therapeutic effects in the high-risk group.

Conclusion:Our signature paved the way for assessing prognosis and developing

more effective strategies of immunotherapy and targeted therapy in ccRCC.
KEYWORDS

clear cell renal cell carcinoma, reactive oxygen species, prognosis, immune
infiltrates, immunotherapy
1 Introduction

Renal cell carcinoma (RCC) is the third most common

malignant tumor of the genitourinary system, which afflicted

more than 430,000 people and caused approximately 180,000

deaths in 2020 (1, 2). Clear cell RCC (ccRCC) is the predominant

pathological type, comprising more than 80% of RCC (3). At

present, radical surgery is the first choice for early-stage ccRCC.

However, local recurrence and distant metastasis will still occur

even after radical nephrectomy, necessitating further understanding

the molecular mechanism of ccRCC to determine a new approach

or biomarker that can accurately predict prognosis and guide

clinical treatment (4, 5).

Unlike other genitourinary malignancies, ccRCC is highly

intrinsically insensitive to chemotherapy and radiation therapy (6, 7).

It has inspired the discovery of a range of alternative therapies,

including immunotherapy and targeted therapy. As a highly

immunogenic tumor, ccRCC exhibits unparalleled levels of immune

infiltration compared to other types of cancers, which has stimulated

the exploration of immunotherapy in ccRCC (8, 9). Immune

checkpoint inhibitors (ICIs) have made significant advancements and

demonstrated evident efficacy in patients with ccRCC, regardless of

whether the patients had been treated before (10). Motzer et al. (11)

found that patients with advanced ccRCC showed an amazing response

rate of 25% after receiving the nivolumab, programmed cell death

protein 1 (PD-1) inhibitor. However, some patients still responded

poorly to immunotherapy and even metastasized during

immunotherapy (12).

Reactive oxygen species (ROS) are oxygen-containing molecules

with high reactivity, a by-product of cell metabolism, and are mainly

produced in mitochondria. Elevated ROS is observed in almost all

cancers, and ROS has been instrumental in driving the biological

progression of cancers (13). Meanwhile, as an important cell signaling

molecule, ROS dynamically and diversely affected many aspects of

tumor development and progression. ROS could initiate cancer

angiogenesis and also stimulate the cancer cell survival signal

cascade to promote cancer cell metastasis, progression, and

adaptation to hypoxia. High concentrations of ROS can promote

anti-tumor signals and trigger cancer cell death induced by oxidative

stress (14). Immune cells can specifically recognize and kill tumor

cells. Meanwhile, tumor cells disrupt immune surveillance by
02
harming immune cells to block the immune response (15). In this

dynamically changing tumor microenvironment (TME), ROS played

an immunosuppressive participant in tumor progression. The high

levels of ROS in the TME made immune cells vulnerable to ROS-

induced damage, and tumor cells had evolved many antioxidant

defense mechanisms to escape the damage of oxidative stress (16).

Thus, the generation of ROS greatly contributed to tumor-induced

immunosuppression, which promoted tumor invasion, metastasis,

and resistance. However, the prognostic value of ROS-related genes

in ccRCC has not been elucidated. Taken together, exploring the role

of ROS in the immune landscape of ccRCC would facilitate the

prognosis prediction and provide tailored treatment strategies for

each individual.

In this study, we aimed to clarify that ROS-related genes had a

prognostic effect by investigating the differences in the expression

levels between ccRCC and normal tissues. On this basis, we

constructed an ROS-related signature as a prognostic biomarker,

systematically investigated the role of our signature in immune

infiltration, and further provided clinical evidence for guiding

immunotherapy and targeted therapy.
2 Materials and methods

2.1 Datasets

Human ccRCC tissue microarrays (TMA, Wellbio, China, ZL-

KIC1601), with detail clinical information comprising of gender, age,

tumor size, grade, and tumor node metastasis (TNM) stage, containing

80 ccRCC samples and 80 adjacent benign tissues, were conducted for

immunohistochemical (IHC) staining. RNA sequencing data and

relevant clinicopathological information of ccRCC samples were

retrieved from The Cancer Genome Atlas (TCGA) database (https://

tcga-data.nci.nih.gov/tcga/). The caret R package was conducted to

randomly divide the entire TCGA dataset into two cohorts: a training

cohort and a testing cohort. The training cohort was appointed to

develop a signature, whereas the testing cohort was applied to validate

it. The E-MTAB-1980 dataset (https://www.ebi.ac.uk/arrayexpress/

experiments/E-MTAB-1980/) was extracted as a validation cohort.

We obtained 49 ROS-related genes from hallmark gene sets within

the GSEA Molecular Signatures Database (MSigDB; http://www.gsea-
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msigdb.org/gsea/msigdb/cards/HALLMARK_REACTIVE_

OXYGEN_SPECIES_PATHWAY.html).
2.2 Identification of differentially
expressed genes

The limma package was used to identify ROS-related genes with

a P-value < 0.05. The Search Tool for Retrieval of Interacting Genes

(STRING) was employed to create a protein–protein interaction

(PPI) network. The Rcircos R package was utilized to examine the

CNV feature present in human chromosomes.
2.3 Consensus clustering

To investigate different biological modifications of ROS-related

genes in patients with ccRCC, we applied consensus clustering to

separate the samples into different patterns via the

ConsensusClusterPlus package. The optimal number of subtypes

was assessed by cumulative distribution function (CDF) and

consensus matrices.
2.4 Construction and evaluation of
the signature

Univariate Cox regression analysis was employed to determine

prognostic ROS-related genes. Subsequently, the Lasso, known as

the least absolute shrinkage and selection operator, was utilized to

build a signature employing 10-fold cross-validation, resulting in a

risk score =ol
i biSi. The signature’s predictive effectiveness was

evaluated through receiver operating characteristic (ROC) curves

and Kaplan–Meier analysis. Univariate and multivariate Cox

regression analyses were used to reconfirm the independent

prognostic value. The R timeROC, survminer, and survival

packages were used in these procedures. The nomogram was

adopted to predict the 1-, 2-, and 3-year overall survival via the

rms package.
2.5 Gene set enrichment analysis

The clusterProfiler R package was subjected to carry out Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology

(GO) analyses, encompassing categories such as cellular component

(CC), molecular function (MF), and biological process (BP). In

addition, the GSEA software version 4.0.3 was employed for gene

set enrichment analysis (GSEA).
2.6 Immune infiltration analysis

We used Tumor IMmune Estimation Resource (TIMER; https://

cistrome.shinyapps.io/timer/), a website that comprehensively analyzes

tumor-infiltrating immune cells, to analyze the relationship between
Frontiers in Oncology 03
ROS-related genes and immune infiltration. The “Gene” module of

TIMER allows visualization of the correlation between gene expression

and the levels of immune infiltration. The ESTIMATE algorithm was

conducted to calculate the ESTIMATE scores, immune scores, stromal

scores, and tumor purity. The abundance of immune infiltration was

estimated by CIBERSORT, CIBERSORT-ABS, TIMER, XCELL, EPIC,

QUANTISEQ, and MCPCOUNTER algorithms. The Wilcoxon

signed-rank test was employed to assess the variation in immune

infiltrating cells between the both risk groups. The relationship between

the signature and immune checkpoints or human leukocyte antigen

(HLA) expression was also identified by aforementioned analysis.

Moreover, single-sample GSEA (ssGSEA) was used to evaluate

immune cell infiltration and immune function in two subgroups.

These processes were performed on the basis of the R ggpubr,

GSEABase, GSVA, limma, and reshape2 packages.
2.7 The sensitivity of targeted therapy and
immunotherapy

We initially collected gene expression data of patients with

ccRCC from TCGA program using standard procedures.

pRRophetic was an R package for predicting drug sensitivity from

gene expression levels. This package utilizes a pre-trained model

that correlates gene expression data with drug response data from

large-scale pharmacogenomics datasets. The median inhibitory

concentration (IC50) of targeted drugs, representing the drug

concentrations required to inhibit 50% of the cellular response,

was calculated on the basis of the pRRophetic R package. The

distinction in targeted therapy between the two risk groups was

identified by Wilcoxon signed-rank test using the ggplot2 R

package. In addition, the CellMiner program, including 60 cancer

cell lines in nine different tissues, was utilized to evaluate the

relationship between four ROS-related genes and drug sensitivity

through Pearson correlation analysis (https://discover.nci.nih.gov/

cellminer). The immunophenoscore (IPS) of patients with ccRCC

was downloaded from the TCIA (https://tcia.at/), and the tumor

immune dysfunction and exclusion (TIDE) was determined by

online tool (http://tide.dfci.harvard.edu/), which was positively

correlated with immunotherapy.
2.8 Immunohistochemical staining

The protein expression levels of glutamate-cysteine ligase

modifier subunit (GCLM), methionine sulfoxide reductase A

(MsrA), and strawberry notch homolog 2 (SBNO2) were assessed

in a total of 80 paired ccRCC and adjacent non-tumor samples by

IHC. IHC staining was obtained according to the instruction of the

IHC kit (KIT-9730, MX Biotechnologies, Fuzhou, China). The

antibodies—SBNO2 (bs-23726R, Bioss, Beijing, China), MsrA

(14547-1-AP, Proteintech, Wuhan, China), and GCLM (ET1705-

87, Huabio, Hangzhou, China)—were used in IHC staining. The

final immunoreactivity score was determined by multiplying the

proportion of positively stained regions and intensity score. The

staining regions was calculated and classified as: 0 (0), 1 (1%–9%), 2
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(10%–50%), 3 (51%–80%), and 4 (81%–100%). The staining

intensity was classified as 0 (negative), 1 (weak), 2 (moderate),

and 3 (strong).
2.9 Statistical analysis

Some related abovementioned R packages were conducted to

perform statistical analysis on the basis of R version 4.1.1. SPSS 26

was suitable for Wilcoxon signed-rank test. P-value of < 0.05 was

regarded as statistically significant.
3 Results

3.1 Identification of differentially expressed
ROS-related genes in ccRCC

As shown in our workflow diagram in Figure 1, we first

analyzed the differential expression of ROS-related genes in 539

ccRCC samples and 72 normal tissues from the TCGA database.

There were 38 differentially expressed genes (DEGs) with distinct

distribution in normal and tumor tissues (Figure 2A). The

frequency of CNV alterations in DEGs showed that most of them
Frontiers in Oncology 04
were primarily concentrated on copy number reduction

(Figure 2B). We performed chromosome annotation to precisely

identify the sites of CNV alterations for 38 DEGs (Figure 2C). PPI

analysis with a minimum interaction score of 0.9 was to explore the

interactions among these DEGs (Figure 2D). In addition, 19

prognostic genes were detected to be notably associated with the

prognosis of ccRCC. After overlapping DEGs and prognostic genes

through the Venn diagram, we found that 14 genes were both DEGs

and prognostic genes (Figure 2E). The univariate Cox regression

analysis was performed to reveal that all 14 genes were significant

(Figure 2F). The correlation network of them was displayed

in Figure 2G.
3.2 Tumor classification based on ROS-
related genes

To investigate the association between the expression of ROS-

related genes and ccRCC subtypes, patients with ccRCC in TCGA

database were grouped into clusters. The empirical CDF was used to

determine the optimum k-values for the sample distribution with

maximal stability (Figure S1A). We found that, when clustering

variable (k) = 2, patients with ccRCC could be well divided into two

different clusters (Figure S1B). However, different clusters failed to
FIGURE 1

The main workflow in this study.
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show a clear distinction when k = 3 or 4 based on the results of

consensus matrix heatmap and survival analysis (Figures S1C, D).

The distribution of clinical characteristics including survival status

and gender differed between the two clusters (Figure S1E).
3.3 Construction of prognostic signature
for ccRCC

The patients with ccRCC of TCGA were randomly and equally

divided into the training and testing cohorts. The training cohort

was used to construct a signature for predicting prognosis. We

performed univariate Cox regression on 14 DEGs with prognostic

value in the training cohort. Furthermore, to avoid overfitting

prognostic markers, we performed Lasso regression analysis and

identified the optimal penalty parameter values using 10-fold cross-

validation (Figures 3A, B). Eventually, we identified four effective

ROS-related genes for the construction of the risk signature.

Patients with ccRCC were divided into a high-risk group and a
Frontiers in Oncology 05
low-risk group according to the median risk score. As the risk score

increased, the mortality rate of patients with ccRCC gradually

increased (Figure 3C). Meanwhile, patients in the high-risk group

suffered a poorer prognosis (Figure 3D). We conducted the ROC

analysis and determined that the signature exhibited an area under

curve (AUC) of 0.713 in the training cohort, indicating a favorable

sensitivity and specificity in predicting the prognosis of patients

with ccRCC (Figure 3E).
3.4 Validation of signature in survival
prediction for ccRCC

To further validate the ability of the signature to independently

predict prognosis, we performed validation in the testing cohort and

E-MATB-1980, an independent dataset that served as the external

validation cohort. Mortality events of patients with ccRCC in the

two cohorts increased with growing risk scores (Figures S2A, B).

The AUC in the testing and validation cohorts were 0.713 and
D
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E
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G

C

FIGURE 2

Expression of the ROS-related genes in ccRCC. (A) ROS-related DEGs in ccRCC and adjacent benign samples. (B) Frequencies of CNV gain and loss
among DEGs. (C) The location of CNV alteration of DEGs on chromosomes. (D) PPI network. (E) Venn diagram of 38 DEGs and 19 prognostic genes.
(F) Univariate Cox regression analysis of 14 prognostic genes. (G) The correlation network of 14 DEGs. **p<0.01 and ***p<0.001.
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0.769, respectively, which exhibited excellent prediction accuracy

(Figures S2C, D). Furthermore, patients in the high-risk group had

a worse prognosis than those in the low-risk group in two ccRCC

cohorts, which was consistent with the results of the training cohort

(Figures S2C, D). The results of univariate and multivariate Cox

regression analysis suggested that the signature was an independent

factor for overall survival prediction in the three cohorts

(Figure S3).
3.5 Relationship between clinical features
and the signature

As illustrated in the heatmap, the survival status, M stage, T

stage, TNM stage, grade, immunescore, and clusters were diversely

distributed in the two groups (Figure 4A). Our signature was closely

associated with the clinicopathological characteristics including

survival status, grade, TNM stage, T stage, N stage, and M stage

(Figure 4B). The high-risk group was more likely to be patients with

high-grade and advanced stage. Kaplan–Meier analysis revealed

that a high expression of GCLM and MsrA predicted a favorable

prognosis, whereas SNBO2 showed the opposite trend (Figure 4C).

There was no significance for survival outcomes in the expression of
Frontiers in Oncology 06
interaction protein for cytohesin exchange factors 1 (IPCEF1)

(Figure 4C). Dividing patients with ccRCC into distinct

stratification groups based on age, gender, grade, and TNM stage,

we found that the high-risk group all represented a worse prognosis

in the stratification subgroups (Figures S4A–F). Consequently,

notably correlated to the prognosis and progression of ccRCC,

our signature had a broad applicability and feasibility in

prognostic prediction.
3.6 Construction of the nomogram and
distribution patterns

A nomogram containing risk scores and clinical characteristics

was constructed to predict the probability of survival for patients

with ccRCC at 1, 2, and 3 years (Figure 5A). We then demonstrated

the consistency of our nomogram’s observation and prediction at 1,

2, and 3 years by calibration charts (Figures 5B–D). The t-

distributed Stochastic Neighbor Embedding (t-SNE) showed that

patients in the two groups were well separated into two clusters

(Figure 5E). The principal component analysis (PCA) revealed that

the two groups did not show a clear separation based on genome-

wide expression profiles and all ROS-related genes (Figures 5F, G).
D
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FIGURE 3

Construction of a signature for ccRCC in the training cohort. (A, B) Lasso regression and cross-validation. (C) The risk score, survival status, and
heatmap of the signature. (D) Kaplan–Meier survival curve of the signature. (E) ROC curves.
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FIGURE 4

The correlation between the signature and clinical characteristics. (A) The distribution of clinicopathological characteristics. (B) Risk scores were
significantly associated with survival status, grade, TNM stage, T stage, N stage, and M stage. (C) Kaplan–Meier analysis of four signature genes.
D
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FIGURE 5

Construction of nomogram and distribution patterns. (A) The nomogram predicted the 1-, 2-, and 3-year overall survival rates. (B–D) Calibration
curves for the nomogram. (E) t-SNE analysis. 3D PCA between the low- and high-risk groups based on (F) genome-wide expression profiles, (G) all
ROS-related genes, and (H) four ROS-related genes.
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However, patients could be divided into two distinct directions on

the basis of the signature of four ROS-related genes (Figure 5H).
3.7 Functional enrichment analyses

To gain deeper insights into the BPs and potential molecular

mechanisms related to the signature, we undertook the analyses of

GO and KEGG, revealing the participation of many immune-

related BPs (Figures 6A, B). Moreover, functional annotation was

further validated by GSEA, and the results suggested that immune

responses including T-cell differentiation involved in immune

response, regulation of antigen receptor–mediated signaling

pathway, T-cell receptor signaling pathway, and natural killer cell

mediated cytotoxicity were further enriched in the high-risk groups

compared to the low-risk groups (Figure 6C).
3.8 The landscape of immune cell
infiltration and immune function in ccRCC

We analyzed the relationship between immune cells and the

four ROS-related genes, which showed that they were all positively

associated with B cells, CD8+ T cells, CD4+ T cells, macrophages,

neutrophils, and dendritic cells (DCs) (Figures S5A–D). To better

understand the tumor immune status of ccRCC, the ESTIMATE

algorithm was applied to calculate the stromal score, immune score,

ESTIMATE score, and tumor purity (Figures S6A, B). The high-risk

group had a higher ESTIMATE score but lower tumor purity. Given
Frontiers in Oncology 08
the above results, multiple algorithms revealed that the signature

was closely related to multiple immune cells (Figure 7A). Compared

with the low-risk group, the abundance of infiltrating CD8 + T cells

and regulatory T cells (Tregs) in the high-risk group was

significantly higher according to CIBERSORT data (Figures 7A,

B). Performing the ssGSEA algorithm to evaluate immune cell

infiltration yielded similar results (Figure 7C). Subsequently, the

immune function suggested that CCR, immune checkpoints, HLA,

and MHC class I exhibited significant differences between the two

groups (Figure 7D). The high-risk group was significantly

correlated with higher expression of T cell immune receptor with

Ig and ITIM domains (TIGIT), cytotoxic T lymphocyte-associated

antigen-4 (CTLA-4), lymphocyte activation gene-3 (LAG3), and

PD-1 than the low-risk group (Figure 7E). The expression of HLA

genes in the high-risk group was also higher than that in the low-

risk group (Figure 7F). In addition, IPS and TIDE were used to

assess the sensitivity of patients with ccRCC to ICIs (Figures S7A–

C). The results of two analysis methods both indicated that the

high-risk group obtained a favorable immunotherapeutic response

and effect. The specificity and sensitivity of our signature were

superior to that of recently identified biomarkers such as TIS and

TIDE (Figure S7D).
3.9 The sensitivity analysis of targeted
therapy and chemotherapy in ccRCC

We assessed the responsiveness of distinct risk groups to

targeted medications and chemotherapy in the ccRCC data of the
A B

C

FIGURE 6

Functional analyses. (A) Bubble graph for GO enrichment and (B) KEGG pathways. (C) Enrichment plot by GSEA analysis.
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TCGA project. The results suggested that sunitinib and pazopanib

targeting multiple tyrosine kinase targets and mechanistic target of

rapamycin (mTOR) inhibitors such as rapamycin and temsirolimus

had a lower semi-inhibition rate (IC50) in the high-risk group,

indicating that clinicians should be more likely to give targeted

drugs to patients in the high-risk group to achieve better outcomes

during treatments (Figure 8A). In addition, the analysis of NCI-60

panel revealed that each of the four ROS-related genes was also

significantly associated with different drugs (Figure 8B).
3.10 Experimental verification of GCLM,
MsrA, and SBNO2 in our patients with
ccRCC

Given that survival analysis of GCLM, MsrA, and SBNO2

showed significantly different, we selected them for the next

investigation. In addition, GCLM is closely associated with the

development of kidney cancer, and the ability of MsrA is to protect

the kidney against ischemia-reperfusion injury (17, 18). However,

whether they were closely associated with ccRCC was not yet clear.
Frontiers in Oncology 09
The overview of IHC staining for GCLM, MsrA, and SBNO2 was

depicted in Figure 9A. IHC staining of ccRCC TMA revealed that

GCLM and MsrA were significantly decreased in tumor tissues,

whereas SBNO2 showed no significantly different (Figures 9B–D).

Table 1 summarized the relation of GCLM, MsrA, and SBNO2

expression to clinical features in our patients with ccRCC.
4 Discussion

ccRCC is the most common subtype of kidney cancer, and its

incidence ranks third among urinary system cancers (1). Early

diagnosis and timely surgical resection are urgent measures to

improve the therapeutic effect of ccRCC (19). However, for

patients with advanced stage or distant metastasis who could lose

an opportunity to have surgery, their 5-year survival rate was only

12% (20). For some patients with ccRCC with similar clinical

manifestations, because of the heterogeneity of tumor and the

diversity of biomolecules, their therapeutic effects and clinical

prognosis were also different (21, 22). Therefore, it was suggested

that existing predictors of ccRCC prognosis were inadequate to
D

A B

E F

C

FIGURE 7

The immune cell infiltration and immune function. (A) The difference between the signature and the abundance of immune cells in seven algorithms.
(B) The relationship between the signature and immune cells according to CIBERSORT. (C) Immune cell infiltration and (D) immune function by ssGSEA
algorithm. The differences in the expression of (E) immune checkpoint and (F) HLA family. *p<0.05, **p<0.01, and ***p<0.001. ns, not significant.
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meet current clinical needs, and we must identify a new and more

accurate signature.

In this study, we constructed, validated, and evaluated a

signature composed of GCLM, IPCEF1, MsrA, and SBNO2,

which effectively predicted the prognosis and was involved in

immune-related pathways in patients with ccRCC. GCLM

constituted the first rate-limiting enzyme for glutathione

synthesis. GCLM was upregulated in a variety of human tumor

types, and patients with the high level of GCLM mRNA had lower

recurrence-free and overall survival rates. Moreover, genetic

deletion of GCLM prevented the ability of tumor to drive

malignant transformation (23). As for IPCEF1, which was related

to peroxidase activity and oxygen transporter activity, participated

in ADP-ribosylation factor 6 signaling events and oxidative stress

(24). The latest research showed that enforced expression of

IPCEF1 inhibited the migration potential of T helper cell 17

(Th17) cells (25). MsrA reduced intracellular ROS levels through

circulating oxidative/reductive mechanisms, and overexpression of

MsrA enhanced cellular resistance to oxidative stress and protection

against damage (26). As for SBNO2, a component of the IL-10
Frontiers in Oncology 10
signaling cascade in monocytes, inhibited nuclear factor kappa-B

(NF-kB) signaling pathway in macrophages (27). Our signature was

associated with tumor immune response and oxidative stress,

providing a novel approach to elucidate the prognosis prediction

and treatment guidance in ccRCC.

The tumor immune microenvironment played a crucial role in

ccRCC, which was one of the tumors with the highest degree of

immune infiltration among pan-carcinomas, and its pathological

specimens often contain a large number of tumor-infiltrating

lymphocytes (9, 28). T cells were a major source of ROS in the

TME. Compared with healthy subjects, peripheral blood T cells

from patients with systemic sclerosis showed increased ROS

production (29). A small amount of ROS could stimulate T cells

activation and proliferation, but the accumulation of ROS could

induce T-cell apoptosis and functional inhibition (30). Tregs were

the key immunosuppressive cells that were increased in patients

with cancer. To a certain extent, the levels of ROS determined the

function of Tregs (31). It has been recognized that targeted therapy

and immunotherapy were also affected by immune cells in the TME

(32). Therefore, we analyzed the relationship between the signature
A

B

FIGURE 8

Assessing the sensitivity of targeted therapy. (A) Patients with ccRCC in the high-risk group were suitable for targeted drugs such as sunitinib,
pazopanib, rapamycin, and temsirolimus. (B) The relation between different drugs and four ROS-related genes.
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and immune cells and found that the high-risk group was positively

related to CD8+ T cell and Tregs. Giraldo et al. (33) evaluated IHC

samples from 135 patients with ccRCC and found that a high

abundance of CD8+ T-cell infiltration was closely related to the

poor prognosis. Tregs were lymphocytes that inhibited anti-tumor

response, and it had been shown that the increase of Tregs in the

TME was related to worse pathological grade and clinical stage in

ccRCC (34). Consistent with previous results, the high-risk group

patients predicted a worse overall survival rate and exhibited higher

levels of immune cells, specifically for CD8+ T cells and Tregs.

Combining T-cell–based therapies with antioxidant therapies was a

promising therapeutic strategy, emphasizing the significance of

immune cell infiltration in ccRCC treatment and clinical outcomes.

Recently, ICIs have proven to be highly effective and are now

considered as the standard care for patients with treatment-naive and

advanced ccRCC (11). However, there were still a significant

proportion of patients who did not benefit from ICIs, which

prompted us to further explore the relationship between the

expression of immune checkpoints and ccRCC (35). As shown in

our results, the expression levels of immune checkpoints were

different in separate groups. The immune checkpoints including

TIGIT, CTLA-4, LAG3, and PD-1 were highly expressed in the

high-risk group. Braun et al. (36) identified that, compared to the
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normal renal samples and early ccRCC, a higher proportion of M2-

like tumor-associated macrophages (TAMs) expressing ligands for

multiple T-cell inhibitory receptors such as PD-1, CTLA-4, and

TIGIT were enriched in advanced and metastatic ccRCC and were

related to a worse prognosis. Consistent with previous results, we

analyzed the relationship between the signature and the immune

checkpoints and found that the immune checkpoints related to a

poor prognosis in ccRCC were highly expressed in the high-risk

group, which coincided with the demonstration that our signature

could predict overall survival by immunity. Some immune

checkpoints might be responsible for a poorer prognosis in the

high-risk group providing a new perspective on understanding

ccRCC. In addition, the differential expression of immune

checkpoints in different risk groups reminded us that this signature

could be used to screen different patients to give them appropriate

immunotherapy, which might be beneficial in addressing the

problem of clinical patients’ insensitivity to immunotherapy. On

the basis of this idea, we further analyzed the IPS and TIDE of the two

risk groups, and the results showed that the high-risk group was more

sensitive to PD-1 and CTLA-4 inhibitors. Therefore, our signature

could effectively and specifically stratify the risk of patients with

ccRCC, thereby dividing the subgroups of patients who would benefit

more from immunotherapy.
D

A

B

C

FIGURE 9

The expression of GCLM, MsrA, and SBNO2 between ccRCC and adjacent benign tissues. (A) The overview of IHC staining for GCLM, MsrA, and
SBNO2. (B–D) The IHC staining of GCLM, MsrA, and SBNO2 in ccRCC and normal tissues. **p<0.01.
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The emergence of various targeted therapies has improved the

overall survival rate of patients with advanced ccRCC in the past 15

years (2). For a long time, people have recognized that targeted therapy

would be affected by immune infiltration in the TME (37). Sunitinib

was one of themost used therapeutic drugs in patients with RCC, and it

was related to impaired T-cell activation and proliferation in vitro and

reduced the accumulation of myeloid-derived suppressor cells in the
Frontiers in Oncology 12
tumor compartment (38). Immunosuppressive cells such as TAM,

neutrophils, and DCs could produce vascular endothelial growth factor

(VEGF)-related pro-angiogenic cytokines to weaken the effect of

targeted anti-angiogenic agents (39). Targeted therapy and immunity

were inextricably linked. Our results showed that the high-risk group

was more sensitive to the targeted drugs such as sunitinib, pazopanib,

rapamycin, and temsirolimus. This meant that we might be able to use
TABLE 1 The relation of GCLM, MsrA, and SBNO2 expression to clinical features in our patients with ccRCC.

Clinical features
GCLM MsrA SBNO2

Case x ± s P Case x ± s P Case x ± s P

Tissue

Normal 80 7.39 ± 3.05
<0.001

69# 6.23 ± 3.22
<0.001

69# 6.46 ± 2.78
0.540

Cancer 80 3.66 ± 2.92 79## 3.47 ± 2.38 79## 6.27 ± 3.06

Gender

Male 54 3.30 ± 2.53
0.258

53 3.43 ± 2.38
0.804

53 6.17 ± 3.17
0.633

Female 26 4.42 ± 3.54 26 3.54 ± 2.42 26 6.46 ± 2.87

Age

≤60 28 4.04 ± 2.99
0.804

27 3.44 ± 1.97
0.980

27 5.70 ± 2.76
0.325

>60 17 3.88 ± 3.16 17 3.65 ± 2.52 17 6.82 ± 3.11

Tumor size

≤4 46 3.37 ± 2.58
0.513

46 3.09 ± 2.25
0.088

46 5.93 ± 3.14
0.267

>4 34 4.06 ± 3.33 33 4.00 ± 2.49 33 6.73 ± 2.92

Grade

I 30 2.87 ± 2.27

0.272

29 4.24 ± 2.34

0.065

29 6.79 ± 3.05

0.152II 40 4.13 ± 3.20 40 2.88 ± 2.19 40 6.33 ± 3.12

III 10 4.20 ± 3.26 10 3.60 ± 2.80 10 4.50 ± 2.32

TNM stage

I 72 3.36 ± 2.72

0.030

71 3.23 ± 2.24

0.043

71 6.06 ± 3.03

0.175II 6 7.33 ± 3.45 6 6.17 ± 2.64 6 8.50 ± 3.21

III 2 3.50 ± 0.71 2 4.00 ± 2.83 2 7.00 ± 1.41

T stage

T1a 46 3.37 ± 2.58

0.122

46 3.09 ± 2.25

0.128

46 5.93 ± 3.14

0.277

T1b 26 3.35 ± 3.02 25 3.48 ± 2.24 25 6.28 ± 2.85

T2a 4 7.25 ± 4.27 4 6.50 ± 2.65 4 7.50 ± 3.42

T2b 2 7.50 ± 2.12 2 5.50 ± 3.54 2 10.5 ± 2.12

T3a 2 3.50 ± 0.71 2 4.00 ± 2.83 2 7.00 ± 1.41

N stage

N0 80 3.66 ± 2.92
–

79 3.47 ± 2.38
–

79 6.27 ± 3.06
–

N1 0 – 0 – 0 –

M stage

M0 80 3.66 ± 2.92
–

79 3.47 ± 2.38
–

79 6.27 ± 3.06
–

M1 0 – 0 – 0 –
fro
# 11 cases dropped off, ## 1 case dropped off. Bold values indicate statistical significance (p<0.05)
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this signature to screen out specific patients that were more sensitive to

targeted drugs, which, in turn, would guide the clinical use of drugs.

The latest result of an ongoing large randomized controlled trial

(NCT02684006) proved that, compared with sunitinib alone, patients

with advanced ccRCC receiving avelumab, a new kind of PD-L1

inhibitor, combined with axitinib had a significantly longer

progression-free survival time (40, 41). Many clinical adverse events

occurred in preclinical studies (41, 42). Therefore, we need to be very

careful in selecting paired immunotherapy and targeted therapy based

on mechanism and preclinical trials. We might be able to use our

signature to select the most suitable immunotherapy and targeted

therapy for a specific patient from the perspective of immunity or even

combine two drugs in synergistic treatments to achieve the best results

with the most suitable and least immunotherapeutic and

targeted drugs.
5 Conclusions

In summary, our signature was a robust and independent factor

for ccRCC, which helped predict patients’ survival and prognosis.

Our signature was expected to provide a new solution for the

clinical decision-making of immunotherapy and targeted therapy

for patients with ccRCC.
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SUPPLEMENTARY FIGURE 1

Clinical characteristics of ccRCC classification. (A) CDF curves and relative

changes in the AUC. (B-D) Consensus matrix heatmap and survival analysis in
different clusters (k = 2, 3, and 4). (E) Differences in clinical characteristics

between the two clusters.

SUPPLEMENTARY FIGURE 2

Validation of the signature in internal and external cohorts. Distribution of the
risk score, survival status, and heatmap of patients with ccRCC in the (A)
testing cohort and (B) validation cohort. ROC curves analysis and survival
curves in the (C) testing and (D) validation cohorts.

SUPPLEMENTARY FIGURE 3

The analysis of independently predictive ability. Univariate and multivariate

Cox regression analyses in the (A) training, (B) testing, and (C)
validation cohorts.

SUPPLEMENTARY FIGURE 4

Stratification survival analyses. (A-F) Survival analysis of subgroups stratified by
multiple clinical factors.

SUPPLEMENTARY FIGURE 5

The relation between four ROS-related genes and immune cell infiltration.

The association between various immune cells and the expression of (A)
GCLM, (B) IPCEF1, (C) MsrA, and (D) SBNO2.

SUPPLEMENTARY FIGURE 6

The role of the signature in the TME. (A) Distribution of tumor purity, ESTIMATE
score, immune score, and stromal score. (B) The statistical differences in immune

score, stromal score, ESTIMATE score, and tumor purity.

SUPPLEMENTARY FIGURE 7

The IPS and TIDE analysis. (A, B) Sensitivity analysis to CTLA-4 and PD-1 by IPS
analysis. (C) TIDE in the two risk groups. (D) ROC curves of signature, TIDE,

and TIS.
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