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The diagnostic value of machine
learning for the classification
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a systematic evaluation
and meta-analysis

Yue Li, Bo Dong* and Puwei Yuan

Department of Orthopedics, Xi’an Honghui Hospital, Xi’an Jiaotong University, Xi’an Shaanxi, China
Background: Malignant bone tumors are a type of cancer with varying

malignancy and prognosis. Accurate diagnosis and classification are crucial for

treatment and prognosis assessment. Machine learning has been introduced for

early differential diagnosis of malignant bone tumors, but its performance is

controversial. This systematic review and meta-analysis aims to explore the

diagnostic value of machine learning for malignant bone tumors.

Methods: PubMed, Embase,Cochrane Library, andWebof Sciencewere searched

for literature on machine learning in the differential diagnosis of malignant bone

tumors up to October 31, 2022. The risk of bias assessment was conducted using

QUADAS-2. A bivariate mixed-effects model was used for meta-analysis, with

subgroup analyses by machine learning methods and modeling approaches.

Results: The inclusion comprised 31 publications with 382,371 patients, including

141,315 with malignant bone tumors. Meta-analysis results showed machine

learning sensitivity and specificity of 0.87 [95% CI: 0.81,0.91] and 0.91 [95% CI:

0.86,0.94] in the training set, and 0.83 [95% CI: 0.74,0.89] and 0.87 [95% CI:

0.79,0.92] in the validation set. Subgroup analysis revealed MRI-based radiomics

was the most common approach, with sensitivity and specificity of 0.85 [95% CI:

0.74,0.91] and 0.87 [95% CI: 0.81,0.91] in the training set, and 0.79 [95% CI:

0.70,0.86] and 0.79 [95% CI: 0.70,0.86] in the validation set. Convolutional neural

networks were the most common model type, with sensitivity and specificity of

0.86 [95% CI: 0.72,0.94] and 0.92 [95% CI: 0.82,0.97] in the training set, and 0.87

[95% CI: 0.51,0.98] and 0.87 [95% CI: 0.69,0.96] in the validation set.

Conclusion: Machine learning is mainly applied in radiomics for diagnosing

malignant bone tumors, showing desirable diagnostic performance. Machine

learning can be an early adjunctive diagnostic method but requires further

research and validation to determine its practical efficiency and clinical

application prospects.

Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier

CRD42023387057.
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Introduction

Malignant bone tumors are diseases caused by the growth and

spread of malignant tumor cells in bone tissue and the destruction

of bone structure. There are various bone tumor types, such as

osteosarcoma, multiple myeloma, and metastatic bone tumors.

Such malignant tumors usually occur in different parts of the

bones, such as long bones, flat bones, vertebrae, and pelvic bones

(1). The clinical manifestations mainly include bone pain, swelling,

tumor, and fracture, which can also be accompanied by other types

of bone diseases, like osteomyelitis and osteoporosis (2). The

prevention and early diagnosis of malignant bone tumors remain

challenging and require comprehensive measures, including raising

people’s health awareness and enhancing the development of

screening and early diagnosis technologies (3).

Currently, the diagnostic modalities for malignant bone tumors

mainly encompass imaging examinations, histological examinations,

and laboratory tests (4). Imaging examinations include X-ray, CT,

MRI, bone scan, etc., which can provide information about bone

morphology, structure, density, and metabolism (5). Histological

examinations help determine the tissue type of lesions by tissue

biopsy or cytologic examination, consisting of needle biopsy,

puncture biopsy, and surgical excision of tissue (6). Laboratory tests

mainly include hematological and biochemical tests, which can

evaluate tumor markers, bone metabolism markers, and other

biochemical indicators (7). Among the above diagnostic methods,

histological examination is currently the gold standard for the

diagnosis of malignant bone tumors because it can clarify the tissue

type of the lesion and thus provide guidance for the selection of

treatment protocols. However, these diagnostic approaches also have

some limitations. For example, imaging examinations have a low

detection rate for early lesions, or even fail to detect certain lesions at

an early stage; histological examinations require surgery or biopsy,

which can cause some trauma and risk to the patients and may

sometimes result in misdiagnosis due to insufficient tissue sampling

or wrong histological analysis (8); the sensitivity and specificity of

tumor markers in laboratory tests are limited, and other diseases may

also present elevated levels of certain tumor markers, so laboratory

tests cannot be used as the only criteria for the diagnosis of malignant

bone tumors. Therefore, more accurate and non-invasive diagnostic

techniques for malignant bone tumors are required.

With the development and application of machine learning

technology in recent years, its application in the diagnosis and

classification of malignant bone tumors has become increasingly

promising (9). Machine learning can identify and classify tumors by

automatically discovering the patterns and features hidden in the

data after training and learning from a large amount of data (10).

Meanwhile, Compared with traditional diagnosis, machine learning

can train models with large amounts of data to improve the accuracy

and precision of diagnosis and avoid the impact of doctors’ personal

experience and subjective judgment on the diagnosis results.

Machine learning can automatically analyze medical images,

clinical features, and other information to quickly complete a large

amount of work, reducing the workload of physicians and

improving work efficiency (11–13). K. Zhao et al. (14) constructed
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three DL models based on sagittal, coronal, and axial MR images,

respectively, to predict the malignancy of tumors, which

significantly improved the diagnostic accuracy of one oncologist

and two orthopedic surgeons. Also, these models improved the

diagnostic sensitivity of two oncologists, one radiologist, and three

orthopedic surgeons. R. Liu et al. (15) found a 4.3% increase in

accuracy, a 0.026 increase in AUC, and a 3.4% increase in sensitivity

for all radiologists supported by a three-class classification fusion

model. Y. He et al. (16) included data on 1,356 bone tumor patients

from pathology databases at 5 institutions. The CNN model had an

AUC of 0.894 and 0.877 in cross-validation and external testing,

respectively, with accuracy similar to that of subspecialists and

superior to that of junior radiologists.However, the diagnostic

accuracy of these models is currently controversial, and there is a

lack of relevant systematic reviews to provide evidence-based

support. Therefore, this systematic review and meta-analysis was

conducted to evaluate the accuracy of machine learning models

based on different modeling variables in the diagnosis and

classification of malignant bone tumors, exploring the prospects

and limitations of their application in clinical practice and providing

evidence-based references for future diagnostic decisions of

malignant bone tumors.
Materials and methods

This study was conducted according to The Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA 2020)

statement (17).
Inclusion and exclusion criteria

Inclusion criteria: (1) study subjects were patients with

malignant bone tumors; (2) study types were case-control studies,

cohort studies, nested case-control studies, and case-cohort studies;

(3) a machine learning predictive model was fully constructed; (4)

studies without external validation were also included; (5) different

machine learning studies published in the same dataset were

included; and (6) English literature was included.

Exclusion criteria: (1) Meta, review, guideline, expert opinion,

etc.; (2) the study only performed predictive factor analysis and did

not construct a complete machine learning model; (3) the literature

lacked the following outcome indicators of predictive accuracy of

machine learning models (Roc, Concordance Statistic(c-statistic),

Concordance Index(c-index), sensitivity, specificity, accuracy,

recovery rate, accuracy rate, confusion matrix, diagnostic fourfold

table, F1 score, calibration curve); (4) validation of only mature

scales; and (5) studies on single-factor diagnostic accuracy.
Document retrieval

A systematic search was performed on PubMed, Embase,

Cochrane Library, and Web of Science as of October 31, 2022 for
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literature on the application of machine learning to assist physicians

in the diagnosis of malignant bone tumors. The retrieval used a

combination of subject terms and free-text terms. The detailed

retrieval strategy is described in Supplementary Material 1.
Data extraction

The literature obtained from database retrieval was imported

into the EndNote 20 software for management. After duplicate

publications were excluded, the titles and abstracts were read to

exclude literature that did not meet the inclusion criteria. Then the

full texts of the remaining studies were read to identify the final

included literature. A data extraction spreadsheet was developed to

extract basic information and model characteristics from the

included studies. The extracted data included: first author, title,

year of publication, author’s country, study type, patient source,

type of malignant bone tumor, number of malignant bone tumor

samples, total sample size, number of malignant bone tumor

samples in the training set, total sample size in the training set,

generation method of the validation set, overfitting method,

number of malignant bone tumor samples in the validation set,

total sample size in the validation set, treatment of missing values,

feature selection method, model type, and modeling variables. The

diagnostic fourfold table was made after calculation. Two

investigators independently conducted the above literature

screening and data extraction and cross-checked their results after

completion. In case of dispute, a third-party investigator was asked

to assist in the adjudication to reach a final consensus.
Risk of bias assessment

The risk of bias assessment for the included studies was

performed using the QUADAS-2 scale, which includes both risk

of bias and clinical applicability evaluation. The assessment was

performed independently by two investigators, and in case of

disagreement in the quality evaluation, a third investigator was

asked to assist in the final decision. Low risk was considered in an

item when the data meet the requirements of the item, high risk

when the data did not meet the requirements, and unclear risk when

the data was not specified.
Statistical analysis

Stata17 software and STATA’s midas and mylabels package

were applied for statistical analysis. The number of true-positive,

false-positive, true-negative, and false-negative cases in each study

was listed. A mixed-effects model was employed to calculate the

combined sensitivity, combined specificity, positive likelihood ratio

(PLR), negative likelihood ratio (NLR), diagnostic odds ratio

(DOR), and Summary Receiver Operating Characteristic(SROC)

for the included literature. SROC curves were plotted to determine

the accuracy of machine learning in diagnosing malignant bone

tumors. Area Under the Curve(AUC) = 0.5 suggests no diagnostic
Frontiers in Oncology 03
value at all; 0.5 < AUC ≤ 0.7 suggests low diagnostic accuracy; 0.7 <

AUC ≤ 0.9 suggests average diagnostic accuracy; AUC > 0.9

suggests high diagnostic accuracy (18). Forest plots were drawn

using sensitivity and specificity. Heterogeneity was measured by I2.

An I2 value of 40% was considered to have significant heterogeneity.

The bivariate modeling approach simulates both sensitivity and

specificity after logit transformation to explain the inherent negative

correlations between sensitivity and specificity that may arise due to

different thresholds for different studies (19). PLRs and NLRs were

used to plot nomograms to evaluate their clinical applicability. The

prevalence of lesions in the pooled study population was used as

prior information, and the post-test probabilities for each type of

lesion were deduced based on the pooled PLRs and NLRs. Deek’s

funnel plot was applied to analyze whether there is potential

publication bias in the included studies. A P > 0.05 suggests that

there is no publication bias. Subgroup analyses were conducted by

modeling variables and model types. The bivariate mixed-effects

model requires the number of included models to be ≥ 4. Therefore,

only the ranges of sensitivity, specificity, PLR, NLR, and DOR were

listed when the number of models was less than 4 in

subgroup analyses.
Results

Results of literature screening

Initially, 8,086 articles were retrieved. The retrieved literature

was imported into EndNote 20 and then checked for duplication,

and 4,042 articles were excluded. The titles of the included 4,044

articles were read to exclude the literature that did not meet the

inclusion criteria, such as conference abstracts, animal experiments,

etc., and 1,770 articles were left. After the abstract reading, ineligible

literature was excluded. Finally, 31 articles were included (14–16,

20–47). The literature screening flow chart is shown in Figure 1.
Basic characteristics of the
included literature

The 31 original studies included in our systematic review were

published mainly between 2021 and 2022, covering 382,371

samples, of which 141,315 were malignant bone tumor samples.

The countries of publication contained China (15, 16, 29, 30, 34, 35,

38, 43, 45, 48), the USA (23), Korea (33, 49), Germany (39, 40), Italy

(22, 26, 27), Japan (44), India (28, 37), Spain (32), Thailand (31),

and Saudi Arabia (24). The type of study was mainly retrospective.

There were 8 multicenter studies (16, 23, 25, 27, 34, 39, 40, 42) and 4

studies from registered database sources (24, 32, 33, 46). Disease

studies included pan-studies on malignant bone tumors and studies

on different specific malignancies, among which 16 articles were on

malignant bone tumors (including 2 articles on malignant bone

tumors of the spine only), 6 articles on multiple myeloma, 5 articles

on osteosarcoma, and 4 articles on chondrosarcoma. The

mainstream splitting method of the validation set is K-fold cross-

validation (5-fold or 10-fold). The included studies were mainly
frontiersin.org
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internally validated, whereas some were externally validated. The

basic information of the included studies is available in

Supplementary Material 2.
Model characteristics

Thirty-fourmodels were extracted from the 31 articles. Duplicated

models, including radiomics models and radiomics+clinical

characteristics models, were constructed by J. Pan et al. (35), R. Liu

et al. (15), F. R. Eweje et al. (23), and C. E. von Schacky et al. (40).

Among them, additional models based on clinical features were

constructed separately by C. E. von Schacky et al. There were 7 types

of models: 13 Convolutional Neural Networks(CNN) models, 4

Artificial Neural Networks(ANN) models, 4 Random Forest(RF)

models, 5 Support Vector Machines(SVM) models, 4 Logistic

Regression(LR) models, 2 Decision Trees(DT) models, and 2

eXtreme Gradient Boosting(XGboost) models. Seven types of

modeling variables were covered: 5 CT-based models, 14 MRI-based

models, 7 X-ray-based models, 4 pathological image-based models, 3

clinical features-based models, 1 Laser-Induced Breakdown

Spectroscopy(LIBS)-based model, and 1 Positron Emission

Tomography/Computed Tomography(PET/CT)-based model. LIBS

modeling was reported by X. Chen et al. (21), who combined serum-

based LIBS withmachine learningmethods to construct a model using

data from 130 patients withmultiple myeloma. PET/CTmodeling was

reported by R. Xu et al. (44), who adopted machine learning methods

to improve the differential diagnosis of (24) f-FDG PET/CT images for

malignant bone tumors. The model characteristics are available in

SupplementaryMaterial 3. The diagnostic fourfold table is provided in

Supplementary Material 4.
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Risk of bias assessment results

The quality of the included studies was evaluated using the

QUADAS-2 scale. Most studies enrolled consecutive or randomized

cases and avoided case-control designs, with reasonable exclusions.

Six papers (16, 20, 23, 38, 40, 47) involved selective inclusion of

cases, three papers (20, 21, 38) were case-control studies, and two

papers (28, 43) did not specify the type of study, which could lead to

potential case selection bias. Three papers (25, 32, 43) were unable

to derive a diagnostic fourfold table due to missing data. The risk of

bias and clinical applicability evaluation for the rest of the literature

were considered low risk. The risk of bias evaluation results are

shown in Supplementary Material 5.
Results of meta-analysis

The results of the meta-analysis showed that in the training set,

the overall diagnostic sensitivity of machine learning for malignant

bone tumors was 0.87 [95% CI: 0.81,0.91]; the specificity was 0.91

[95% CI: 0.86,0.94]; the PLR was 9.4 [95% CI: 6.1,14.4]; the NLR

was 0.14 [95% CI: 0.10, 0.21]; the DOR was 65 [95% CI: 33,127],

and the SROC was 0.95 [95% CI: 0.19-1.00]. The forest plot for the

sensitivity and specificity in the training set is shown in Figure 2,

and the SROC curve of the training set is depicted in Figure 3. In the

validation set, the overall diagnostic sensitivity of machine learning

for malignant bone tumors was 0.83 [95% CI: 0.74,0.89]; the

specificity was 0.87 [95% CI: 0.79,0.92]; the PLR was 6.2 [95% CI:

3.6,10.5]; the NLR was 0.20 [95% CI: 0.12,0.33]; the DOR was 31

[95% CI: 12,81], and SROC was 0.92 [95% CI: 0.70-0.98]. The forest

plot for sensitivity and specificity in the validation set is shown in

Figure 4, and the SROC plot of the validation set is illustrated

in Figure 5.
Publication bias and clinical applicability

Deek’s funnel plot showed that there was no significant

publication bias in both the training and validation sets (training

set: P=0.44; validation set: P=0.92). The included studies showed

that the prevalence of malignant bone tumors in the training set was

approximately 38%. Therefore, the prior probability of the training

set was assumed to be 38% when the clinical applicability was

analyzed using nomograms. If machine learning diagnosed the

lesion as a malignant bone tumor, the probability of it actually

being a malignant bone tumor would be 85% (i.e., post-test

probability=85%). If machine learning diagnosed the lesion as a

non-malignant bone tumor, the probability of it actually being a

malignant bone tumor would be 8%. Likewise, the prevalence of

malignant bone tumors in the validation set was approximately

39%. In the analysis of clinical applicability using nomograms, the

prior probability of the validation set was 39%. If machine learning

diagnosed the lesion as a malignant bone tumor, the probability of it

actually being a malignant bone tumor was 80% (i.e., post-test

probability=80%). If machine learning diagnosed the lesion as a

non-malignant bone tumor, then the probability of it actually being
FIGURE 1

Literature screening flow chart.
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a malignant bone tumor was 11%. The publication bias and clinical

applicability are shown in Figures 6–9.
Subgroup analysis

According to the subgroup analysis by model types in the

training set, the number of CNN-related literature was 13,

accounting for the largest share. The overall diagnostic sensitivity

was 0.86 [95% CI: 0.72,0.94]; specificity was 0.92 [95% CI:

0.82,0.97]; PLR was 11.3 [95% CI: 4.6,27.9]; NLR was 0.15 [95%
Frontiers in Oncology 05
CI: 0.07,0.32]; DOR was 74 [95% CI: 20,277], and SROC was 0.95

[95% CI: 0.62-1.00]. In the subgroup analysis by modeling variables

in the training set, the number of MRI-related literature was 14,

accounting for the largest share. The overall diagnostic sensitivity

was 0.85 [95% CI: 0.74,0.91]; specificity was 0.87 [95% CI:

0.81,0.91]; PLR was 6.3 [95% CI: 4.1,9.6]; NLR was 0.18 [95% CI:

0.10,0.31]; DOR was 36 [95% CI: 14,87], and SROC was 0.92 [95%

CI: 0.74-0.98].

According to the subgroup analysis by model types in the

validation set, the number of CNN-related literature was 5, which

accounted for the largest share. The overall diagnostic sensitivity

was 0.87 [95% CI: 0.51,0.98]; specificity was 0.87 [95% CI:

0.69,0.96]; PLR was 6.9 [95% CI: 2.0,23.7]; NLR was 0.15 [95%

CI: 0.03,0.84]; DOR was 46 [95% CI: 3,837], and SROC was 0.93

[95% CI: 0.59-0.99]. In the subgroup analysis by the modeling

variables in the validation set, the number of MRI-related literature

was 8, which accounted for the largest share. The overall sensitivity

was 0.79 [95% CI: 0.70,0.86]; specificity was 0.79 [95% CI:

0.70,0.86]; PLR was 3.8 [95% CI: 2.5,5.7]; NLR was 0.26 [95% CI:

0.18,0.40]; DOR was 14 [95% CI: 7,30], and SROC was 0.86 [95%

CI: 0.67-0.95]. The results of the subgroup analysis are shown

in Table 1.
Discussion

This study analyzed the accuracy of machine learning in the

diagnosis of malignant bone tumors using meta-analysis. A total

of 31 papers were included, including 382,371 samples, of which

141,315 were malignant bone tumor samples. The SROC was

0.95 in the training set and 0.93 in the validation set. It can be

seen that machine learning is a feasible technique for the

diagnostic identification of malignant bone tumors and has a
FIGURE 3

SROC plot of the training set.
FIGURE 2

Forest plot for sensitivity and specificity in the training set.
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good performance in radiomics, pathological images, and

clinical features.

This systematic review showed that the most frequently used

modeling variable was MRI. The overall diagnostic sensitivity and

specificity of MRI were 0.85 [95% CI: 0.74,0.91] and 0.87 [95% CI:

0.81,0.91] in the training set, and 0.79 [95% CI: 0.70,0.86] and 0.79

[95% CI: 0.70,0.86] in the validation set, respectively. The favorable

performance of MRI may be related to the nature of MRI itself and

the characteristics of machine learning techniques. MRI can provide

higher-resolution images and better soft tissue contrast, which can

help machine learning algorithms to more accurately differentiate
Frontiers in Oncology 06
tissue types and detect lesion areas, thus improving the accuracy

and reliability of the diagnosis (48, 50, 51). Xu Q et al. (52)

established an MRI-based machine learning model for the

identification of benign and malignant tumors in the kidney. The

AUC of T2WI, DWI, and combined DL-based models in the test

cohort were 0.906, 0.846, and 0.925, respectively. Ni M et al. (53)

extracted, differentiated, and detected oblique coronal (OCOR) and

oblique sagittal (OSAG) MRI images of the hip joint using a CNN

model. LeNet-5 was applied to diagnose and classify lip trauma with

an accuracy of 0.94/0.94 (OCOR) and 0.92/0.91 (OSAG),

respectively, which helps radiologists to diagnose and classify

upper lip injuries.

The machine learning models included in this study are DT, LR,

SVM, XGBoost, RF, CNN, and ANN.
FIGURE 4

Forest plot for sensitivity and specificity in the validation set.
FIGURE 5

SROC plot of the validation set.

FIGURE 6

Deek’s plot of the training set.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1207175
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1207175
DTs have the advantage of being easy to understand and

interpret, being tolerant of missing values, and being capable of

handling unordered features. Yan W et al. used routine blood and

biochemical test records of 4187 patients to establish an early

auxiliary diagnostic model for multiple myeloma through DT,

which had the highest precision (92.9%), recall (90.0%), and F1
Frontiers in Oncology 07
score (0.915) compared to other models (SVM, DNN, RF) (45).

However, DTs may overfit the data and are sensitive to noise and

outliers (54).

LR is suitable for binary classification problems, easy to

implement, and can provide probabilities for each predicted

category. Pan J et al. used LR to construct a clinical feature +

radiomics nomogram, which showed good performance in

distinguishing malignant chondrosarcomas from benign

enchondromas. Among all patients, the performance of the

clinical-radiomics chart based on T2WI-FS (AUC = 0.967) was

superior to that based on T2WI-FS (AUC = 0.901, P < 0.05) (35).

However, LR assumes that the data is linearly separable and may

not perform well when dealing with complex nonlinear

relationships (55).

SVMs perform excellently when dealing with high-dimensional

data and small sample data and have good generalization ability

(56). Gitto S et al. used machine learning to differentiate benign

from malignant in MRI images of 101 histologically confirmed

spinal bone tumor patients. The results showed that the SVM

classifier, based on radiological features extracted from T2 images

and ADC images, has a good application prospect in spinal bone

tumor classification (26). However, SVM also has some drawbacks.

Its training process may be slow, and it is difficult to interpret.

XGBoost can handle various types of data, has good predictive

performance, and can prevent overfitting (57). Liu R et al. collected
FIGURE 7

Deek’s plot of the validation set.
FIGURE 8

Clinical applicability plot of the training set.
FIGURE 9

Clinical applicability plot of the validation set.
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TABLE 1 Results of meta-analysis.

Training set results

subgroup Levels

Number of
patients with
malignant

bone tumors

Number
of nega-

tive
events

Number sen spe PLR NLR DOR SROC

Model type

DT 1760 2658 2 0.89-0.95 0.88-0.98 8.19-66.21 0.05-0.10
157.47-
620.50

LR 331 439 4
0.91

[0.82,0.96]
0.97

[0.91,0.99]
28.1

[9.9,79.7]
0.09

[0.04,0.20]
313

[62,1587]

0.99
[0.43-
1.00]

SVM 265 234 5
0.89

[0.81,0.93]
0.84

[0.74,0.90]
5.4

[3.2,9.0]
0.14

[0.08,0.24]
39[14,108]

0.93
[0.18-
1.00]

XGBoost 252 776 2 0.62-0.69 0.84-0.87 3.98-5.64 0.34-0.44 9.01-16.40

RF 1460 1663 4
0.85

[0.62,0.95]
0.86

[0.73,0.94]
6.2

[2.9,13.2]
0.18

[0.06,0.50]
35[8,153]

0.92
[0.62-
0.99]

CNN 138899 232164 13
0.86

[0.72,0.94]
0.92

[0.82,0.97]
11.3

[4.6,27.9]
0.15

[0.07,0.32]
74[20,277]

0.95
[0.62-
1.00]

ANN 448 1022 4
0.84

[0.69,0.93]
0.86

[0.78,0.91]
6.0

[3.3,10.7]
0.18

[0.08,0.41]
33[8,128]

0.91
[0.73-
0.98]

Modeling
variables

(18)F-
FDGPET/

CT
59 44 1 0.86 0.77 3.8 0.17 21.675

CT
2973 217313 5

0.82
[0.59,0.93]

0.91
[0.87,0.94]

9.0
[5.6,14.4]

0.20
[0.08,0.51] 45[12,165]

0.93
[0.91-
0.95]

MRI 1913 2592 14
0.85

[0.74,0.91]
0.87

[0.81,0.91]
6.3

[4.1,9.6]
0.18

[0.10,0.31]
36[14,87]

0.92
[0.74-
0.98]

X-Ray 1041 2906 7
0.80

[0.68,0.89]
0.89

[0.84,0.92]
7.1

[4.7,10.9]
0.22

[0.13,0.39]
32[13,79]

0.92
[0.58-
0.99]

Pathological
images

135430 16079 4
0.97

[0.91,0.99]
0.97

[0.73,1.00]
28.5

[2.9,284.2]
0.03

[0.01,0.10]
895

[41,19374]

0.99
[0.74-
1.00]

Clinical
features

2069 3403 3
0.82

[0.59,0.93]
0.91

[0.87,0.94]
9.0

[5.6,14.4]
0.20

[0.08,0.51]
45[12,165]

0.93
[0.91-
0.95]

LIBS 75 55 1 0.93 0.92 12.83 0.07 178.5

Overall 143415 382371 34
0.87

[0.81,0.91]
0.91

[0.86,0.94]
9.4

[6.1,14.4]
0.14

[0.10,0.21]
65[33,127]

0.95
[0.19-
1.00]

Validation set results

subgroup Levels

Number of
patients with
malignant

bone tumors

Number
of cases

Number sen spe PLR NLR DOR SROC

Model type

DT 20 45 1 0.9 0.8 4.5 0.125 36

LR 37 46 2 0.80-0.81 0.66-0.94 2.42-15.43 0.19-0.28 8.50-78

SVM 19 51 1 0.89 0.92 11.4 0.11 99.87

(Continued)
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data of pathologically diagnosed bone tumors from 2012 to 2019.

Using routine X-ray images of the lesions and potentially related

clinical data, they used XGBoost to classify the tumors as benign or

malignant, with an AUC of 0.827, which is better than the 0.819 of

the participating radiologists (15). However, XGBoost may be more

difficult to tune than some other models, and it may have problems

when dealing with extremely unbalanced data sets (58).

RF has strong resistance to noise and outliers and can handle

nonlinear and large-scale data. Pan D et al. included 796 patients

with histologically confirmed bone tumors, and they built an RF

model to classify tumors into benign and malignant based on

conventional radiological features and potentially related clinical

features, with an accuracy rate of 94.71% (34). However, it should

be noted that RF may overfit, especially in the presence of

s ignificant noise , and may be somewhat deficient in

interpretability (59).

ANN has strong predictive ability and can handle nonlinear and

high-dimensional data. Chianca V et al. performed a retrospective

analysis on patients with spinal lesions who underwent MRI

examination using ANN. The best feature selection method-ML

algorithm combination was selected by performing 10-fold cross-

validation 10 times in the training data. For the 2-label

classification, ML achieved 94% accuracy in the internal test

queue, and 86% accuracy in the external queue using hCAD data
Frontiers in Oncology 09
(22). However, ANN may require a large amount of training data

and computational resources, may overfit, and is usually difficult to

interpret (60).

The limitations of CNN are similar to those of ANN (61). It was

also found that CNN was the preferred machine learning model in

the current radiomics research on the identification of malignant

bone tumors. According to the meta-analysis, the overall sensitivity

and specificity of CNN were 0.86 [95% CI: 0.72,0.94] and 0.92 [95%

CI: 0.82,0.97] in the training set, and 0.87 [95% CI: 0.51,0.98] and

0.87 [95% CI: 0.69,0.96] in the validation set. The advantage of

CNN is that it can automatically learn and extract features from the

input data without the need to extract features manually, which

enables CNN models to excel in image, speech, natural language

processing, and other fields. Moreover, the convolutional layers in

CNN models are locally connected and weight-sharing, which

significantly reduces the number of parameters of a CNN model

and improves its training speed and generalization ability (62, 63).

Gao Y et al. (64) developed a deep convolutional neural network

(dCNN) model. The model is capable of automatically evaluating

ultrasound images and can diagnose ovarian cancer more accurately

than existing methods. The AUC of the dCNN model was 0.911

[95% CI: 0.886-0.936] in the internal dataset and 0.870 (95% CI

0.822-0.918) in the external validation dataset. The diagnostic

performance of CNN ultrasound exceeded the average diagnostic
TABLE 1 Continued

Validation set results

subgroup Levels

Number of
patients with
malignant

bone tumors

Number
of cases

Number sen spe PLR NLR DOR SROC

Model type

DT 20 45 1 0.9 0.8 4.5 0.125 36

LR 37 46 2 0.80-0.81 0.66-0.94 2.42-15.43 0.19-0.28 8.50-78

SVM 19 51 1 0.89 0.92 11.4 0.11 99.87

AdaBoost 130 301 2 0.72-0.80 0.89-0.95 6.98-17.17 0.20-0.30
22.53-
82.96

CNN 546 719 5
0.87

[0.51,0.98]
0.87

[0.69,0.96]
6.9

[2.0,23.7]
0.15

[0.03,0.84]
46[3,837]

0.93
[0.59-
0.99]

ANN 31 65 1 0.9 0.67 2.79 0.14 19.55

Modeling
variables

CT 20 45 1 0.9 0.8 4.5 0.125 36

MRI 415 551 8
0.79

[0.70,0.86]
0.79

[0.70,0.86]
3.8

[2.5,5.7]
0.26

[0.18,0.40]
14[7,30]

0.86
[0.67-
0.95]

X-Ray 138 263 2 0.62-0.79 0.83-0.87 4.78-5.02 0.24-0.42
11.84-
19.38

Pathological
images

122 106 1 1 0.99 106 0 NA

Clinical
features

130 301 2 0.72-0.80 0.89-0.95 6.98-17.17 0.20-0.30
22.53-
82.96

Overall 825 1266 14
0.83

[0.74,0.89]
0.87

[0.79,0.92]
6.2

[3.6,10.5]
0.20

[0.12,0.33]
31[12,81]

0.92
[0.70-
0.98]
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level of radiologists. Tang F (65) et al. developed a CNN-based

machine learning system that uses images from three optical

coherence tomography (OCT) devices to classify Diabetic macular

edema (DME). AUCs of 0.937 [95% CI 0.920-0.954], 0.958 [95% CI:

0.930-0.977], and 0.965 [95% CI: 0.948-0.977] were achieved in the

primary datasets obtained with CIRRUS, SPECTRALIS and Triton

OCT, respectively. Therefore, based on these findings, it seems

possible to develop CNN-based intelligent auxiliary diagnostic tools

to help clinicians identify malignant bone tumors.

In this study, we can see the extensive applications and potential

of machine learning in the medical field, particularly in the early

differential diagnosis of malignant bone tumors. In fact, with the

advancement of technology, machine learning has found broad

applications in many other fields, including but not limited to

computer vision, pattern recognition, and audio-visual processing.

For example, some studies have employed machine learning to

address the problems of crowd counting and localization in

computer vision (66, 67). These studies utilized complex machine

learning models, such as hybrid classical-quantum networks and

audio-visual dual-stream frameworks, to process and analyze image

and audio data for accomplishing specific tasks. Another study used

a novel multilayer neural network that integrates diffusion and drift

memristors for image preprocessing and pattern recognition (68).

There are also some limitations to this study. First, although this

study incorporated such modeling variables as radiomics,

pathological images, and clinical features, there is a lack of

literature on genomics combined with machine learning for the

diagnosis of malignant bone tumors, which may lead to one-sided

findings. Alge O et al. (69) created an RF model using features

extracted from RNA-seq and x-ray image data to classify a given

tumor as benign or osteosarcoma, and the proposed method

achieved an AUC of 0.7272 with a triple characteristic curve and

an AUC of 0.9015 with leave-one-out cross-validation. Barenboim

M et al. (70) developed a new classifier based on DNA methylation

patterns using machine learning and gene expression methods,

which can detect BRCANES in osteosarcoma samples with high

accuracy. Although these studies reported the value of machine

learning for the diagnosis of malignant bone tumors, they were not

included in this study due to the small number of patients enrolled.

Second, the number of studies involving external validation is

small. For those studies that lacked external corroboration, the

generalizability of their machine learning algorithms was not

adequately assessed, and their reported performance should be

interpreted with caution. Third, due to the lack of sufficient

detail, subgroup analyses by populations with available key factors

of DR were not performed, which may affect the clinical

applicability of diagnostic tools. Fourth, poor reporting of the

characteristics of patients included in the study may cause bias.

Fifth, most studies were validated with retrospective data. The

performance of machine learning may be overestimated in

realistic settings due to spectral bias, and it should be considered.

Furthermore, some of the included literature did not provide

detailed information on the types of malignant bone tumors studied

or the number of patients involved. While this did not affect our
Frontiers in Oncology 10
analysis based on the c-index, sensitivity, and specificity, it may

have impacted the evaluation of sample size and study quality.

Secondly, the aim of this study was to investigate the value of

machine learning in the diagnosis of malignant bone tumors, not to

delve into each type of tumor in detail, which might introduce bias.

Non-malignant conditions such as fractures were also categorized

as non-malignant tumors to ensure sample size, but this may hinder

the results from accurately reflecting the model’s ability to

distinguish between malignant bone tumors and specific non-

malignant conditions. Additionally, most literature did not report

detailed tumor locations, potentially overlooking their influence on

diagnosis. Finally, this study only covered a portion of malignant

bone tumor types, reflecting the current limitations of research

trends and data availability, which might limit the generalizability of

the results. Future research should address these issues to better

understand the potential of machine learning in the diagnosis of

malignant bone tumors.

Overall, the results of this study suggest that machine learning

can be of significant value in the diagnosis and differentiation

between benign and malignant bone tumors, especially in

improving diagnostic accuracy. However, despite the great

advances of machine learning in medical image analysis, its

application in clinical practice still needs more exploration

and validation.
Conclusion

In conclusion, the results of this study indicate that machine

learning can serve as an effective means for early diagnosis of

malignant bone tumors, and it is worth promoting for wider

application. However, its practical efficiency and clinical

applicability still require further exploration. Technically, future

studies could explore the use of more advanced machine learning

models or develop new, more effective feature extraction methods to

improve the accuracy of diagnosis. In-depth studies conducted for

specific types of tumors, specific stages of disease, or specific

populations will contribute to understanding and applying the

potential of machine learning in specific application scenarios.

Cross-disciplinary collaborations should be carried out in the

future, such as with bioinformatics, data science, and medical

imaging, to promote the application of machine learning in

tumor diagnosis. Moreover, future studies should establish more

comprehensive models that cover a wider range of malignant bone

tumors, and compare these models with traditional diagnostic

methods in larger, multicenter studies. Additionally, integrating

different types of data, such as clinical, pathological, and

radiological imaging data, could also enhance the accuracy of the

models. Furthermore, the application of machine learning in

personalized treatment planning and prognosis prediction is

another worthwhile avenue to explore. Finally, as the application

of machine learning becomes integrated into healthcare,

careful consideration must be given to ethical, legal, and

societal impacts.
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Registration and protocol

This meta-analysis was carried out in accordance with the

Preferred Reporting Items of Systematic Reviews and Meta-Analyses

(PRISMA) guidelines. This systematic review was registered with

PROSPERO, registration number CRD42023387057. The review

protocol can be find on PROSPERO (https://www.crd.york.ac.uk/

prospero/), any interpretation and modification of this protocol can

be viewed on this website, which has been disseminated. All analyses

were based on previous published studies; thus no ethical approval and

patient consent are required.
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