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Prospective deployment of an
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intelligence translation to
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and Christian V. Guthier1,2†

1Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA, United States, 2Artificial Intelligence in Medicine
(AIM) Program, Mass General Brigham, Harvard Medical School, Boston, MA, United States,
3Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, Netherlands
Introduction: Artificial intelligence (AI)-based technologies embody

countless solutions in radiation oncology, yet translation of AI-assisted

software tools to actual clinical environments remains unrealized. We

present the Deep Learning On-Demand Assistant (DL-ODA), a fully

automated, end-to-end clinical platform that enables AI interventions for

any disease site featuring an automated model-training pipeline, auto-

segmentations, and QA reporting.

Materials and methods: We developed, tested, and prospectively deployed

the DL-ODA system at a large university affiliated hospital center. Medical

professionals activate the DL-ODA via two pathways (1): On-Demand, used

for immediate AI decision support for a patient-specific treatment plan, and

(2) Ambient, in which QA is provided for all daily radiotherapy (RT) plans by

comparing DL segmentations with manual delineations and calculating the

dosimetric impact. To demonstrate the implementation of a new anatomy

segmentation, we used the model-training pipeline to generate a breast

segmentation model based on a large clinical dataset. Additionally, the

contour QA functionality of existing models was assessed using a

retrospective cohort of 3,399 lung and 885 spine RT cases. Ambient QA

was performed for various disease sites including spine RT and heart for

dosimetric sparing.

Results: Successful training of the breast model was completed in less than a

day and resulted in clinically viable whole breast contours. For the

retrospective analysis, we evaluated manual-versus-AI similarity for the ten

most common structures. The DL-ODA detected high similarities in heart,

lung, liver, and kidney delineations but lower for esophagus, trachea,

stomach, and small bowel due largely to incomplete manual contouring.

The deployed Ambient QAs for heart and spine sites have prospectively
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processed over 2,500 cases and 230 cases over 9 months and 5 months,

respectively, automatically alerting the RT personnel.

Discussion: The DL-ODA capabilities in providing universal AI interventions

were demonstrated for On-Demand contour QA, DL segmentations, and

automated model training, and confirmed successful integration of the

system into a large academic radiotherapy department. The novelty of

deploying the DL-ODA as a multi-modal, fully automated end-to-end AI

clinical implementation solution marks a significant step towards a

generalizable framework that leverages AI to improve the efficiency and

reliability of RT systems.
KEYWORDS

deep learning - artificial intelligence, clinical translation, automated deployment,
autosegmentation, quality assurance, end-to-end solution, automated
report generation
1 Introduction

Radiation therapy (RT) is increasingly prevalent in cancer

treatments with roughly half of cancer patients being prescribed

radiation treatment (1, 2). However, numerous factors impede the

ability of clinics worldwide to meet the ever-growing demand for

RT. As a considerable part of radiation therapy (RT) involves time-

consuming manual inputs by health-care professionals with

increasing complexity of software, machines and instruments

used in daily practice, a significant portion of medical experts’

efforts in radiation oncology is focused on human-machine

interactions (2). Further compounding the issue is the lack of

well-trained staff as well as treatment facilities, machines, and

planning systems, especially in low- and middle-income

countries (3).

The large-scale digitization of data in radiation oncology has

provided many opportunities for automation tools and applications

based on artificial intelligence (AI) (2, 4). Rapid expansion in AI-

based technology has given rise to countless new AI computational

tools for disease diagnosis (5), medical image segmentation (6, 7),

quality assurance (QA) (8), and treatment plan optimization and

delivery (9–13). The emergence of deep learning (DL) has enabled

significant advances in rapid and reliable automated segmentation

platforms for generating accurate contours from routine medical

imaging (14–17). Automated medical image segmentation

comprises the multifaceted use of image processing techniques,

commonly in combination with convolutional neural networks

(CNNs) based on the U-Net network architecture (18), which are

designed (or “trained”) to identify and label two- or three-

dimensional regions of interest corresponding to organs or

tumors from magnetic resonance imaging, Computed

Tomography (CT) images, or other imaging modalities. Network

models extract high- and low-level features from training data with
02
associated ground truth labels wherein weights governing

contributions of the various network components are iteratively

adjusted via gradient descent to maximize the prediction accuracy

of the model for a given set of structures. Clinics and vendors are

progressing towards incorporating auto-segmentation tools in the

treatment planning workflow to improve the efficiency of organ at

risk (OAR) delineation (19–21).

Progress in adapting AI tools into regular clinical use remains

slow (22) despite potential to improve the efficiency of radiation

oncology clinics (2, 23). Medical software must be evaluated by the

Food and Drug Administration (FDA) before entering the US

market, an untenably slow process prior to the FDA’s amended

regulatory protocol in 2019 (24), and the cost of these systems may

also be prohibitive for some less-resourced clinics. Additionally,

commercial providers for radiation oncology have been slow to

focus efforts on incorporating AI into clinical workflows and their

limited access to clinical datasets makes it challenging for them to

meet high quality standards (2, 25). Consequently, academic centers

are largely left to develop their own home-grown solutions.

In seeking to increase the efficiency of RT patient care, we

developed the Deep Learning On-Demand Assistant (DL-ODA), a

fully automated, end-to-end AI clinical implementation solution to

enable clinical deployment and translational research. This software

aims to significantly reduce the time required to perform

segmentation as well as background QA to detect errors associated

with (1) inaccurate manual contours or (2) insufficient OAR sparing

or incorrect dosimetric targeting. The DL-ODA provides immediate

and/or ambient (background) AI deployment at individual

institutions featuring (1) an automated data processing, model-

training and validation pipeline, and (2) a clinical deployment

route allowing models to be directly deployed in the clinic for

segmentation and QA purposes. Here, we demonstrate the efficacy

of our system based on both internally and externally trained models.
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2 Materials and methods

The DL-ODA features (1): automated DL model-training

pipeline (Figure 1A) (2); clinical integration with a given

institutional treatment planning system (TPS) and/or electronic

medical record (EMR) system, allowing comparison of clinical

contours against DL contours and automated dose-volume

histogram (DVH) calculation of approved clinical RT plans on

DL contours (Figure 1B) (3); automated clinical deployment (4);

pre-integrated algorithms drawing from publicly available

frameworks and available RT specific auto-segmentation models

from our institution and beyond (Figure 1C); and (5) automated

reporting of QA results, including assessments of manually

delineated OARs against AI prediction masks (contour QA) and

dose target verification of treatment plans (dose delivery QA).
Frontiers in Oncology 03
The DL-ODA establishes two deployment pathways for clinical

use (1): the On-Demand pathway and (2) the Ambient pathway.

The On-Demand pathway allows immediate AI decision support

for a clinician for a specific disease site. The Ambient pathway

includes AI interventions at scheduled times for continuous QA of

any RT plans. Both pathways utilize publicly available models

selected for relevance to RT treatment planning as well as models

developed within our institution (26, 27). For On-Demand, a user

requests AI assistance by exporting relevant RT data to a specified

location on a clinical network. The DL-ODA, which runs on a

Linux-based research server, periodically listens for new requests on

the network. Once a request is detected, the DL-ODA downloads

the relevant RT data files (including image, structure set, and/or RT

plan data) onto the server and performs the auto-segmentation and/

or QA tasks indicated by the user via the appropriate DL algorithms
A

B

C

FIGURE 1

(A) A medical professional activates an auto-segmentation and/or QA request for a desired disease site by exporting relevant RT data to a clinical
network from a radiation oncology TPS or RT database. The DL-ODA downloads the exported RT data from the clinical network onto a research
workstation and begins processing using the desired AI model. Once finished, any output files generated by the DL-ODA are uploaded back onto
the network drive where they are subsequently uploaded to the Eclipse server. Alternatively, QA results are emailed as a report to appropriate clinical
personnel. (B) Overview of our built-in automated DL model-training pipeline with access to available clinical datasets. (C) The various AI models
integrated into the DL-ODA.
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for the given disease site. DL segmentation outputs can be pushed

back onto the clinical network where they are automatically

uploaded onto the TPS. Additionally, a summary of QA results

can be emailed to the appropriate clinical personnel. As all tasks are

completed fully within the scope of the clinical network, the data are

protected by the institutional firewall which absolves the need for

additional deidentification of patient sensitive information. For fast

deployment, DL-ODA has been designed with an interface that

allows exporting image data using a binary format which exports

only the raw pixel data and geometrical information. For this mode,

no patient information leaves the treatment planning system.

We developed, tested, and prospectively deployed DL-ODA at

our institution’s RT clinic. Medical professionals activate a request

for the DL-ODA through (1): a TPS while viewing a given patient

image scan for the desired disease site, in which DL-ODA acquires

relevant image data and returns DL segmentations to be

automatically uploaded back to the TPS for immediate

visualization, or (2) a radiation oncology clinical informatics

database or EMR, in which RT planning data are downloaded

and processed in order to perform a specified QA task. All auto-

segmentation tasks are processed using an NVIDIA RTX A4000

graphics processing unit. The methodology and implementation are

simple and can be adopted for any RT clinic using our open-source

deployment scripts accessible via ModelHub.ai (https://mhub.ai/

models/DL-ODA).
2.1 Model-training pipeline to facilitate
end-to-end training to deployment

We implemented a fully automated pipeline model-training

pipeline for clinical datasets (Figure 1A). Image and structure set

data are downloaded, preprocessed, and converted into a format

compatible with the nnU-Net framework. Resulting model

segmentations are postprocessed and validated based on DSC or

other metrics. Both preprocessing and postprocessing routines are

customizable, allowing users to set desired thresholds for

windowing, image cropping, and normalization. This model-

training pipeline is ideal for large clinical datasets, but automatic

image augmentation based on translation, rotation, dilation, and

noise generation is also available for smaller datasets. Our

institutional models were trained with two NVIDIA RTX A6000

GPUs using either TensorFlow (version 2.10.1) or PyTorch (version

2.0.1) frameworks and the Python programming language (version

3.9.12) for scripting. Once training is completed, the model

performance is automatically evaluated by comparing AI

prediction volumes from the test set against ground truth

segmentations using metrics such as volumetric Dice coefficient

(DSC) (28), Hausdorff distance (HD) (29), average symmetric

surface distance (ASSD) (30), and relative volume difference (30).

The median and interquartile ranges for test performance

distributions are exported along with box plots for user review.

Additionally, we perform dosimetric validation by calculating and

comparing DVHs for all structures.
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2.2 On-demand deployment pathway for
efficiency, research or real-time QA

For rapid DL segmentation and contour visualization, we

achieve DL-ODA activation through our Departmental TPS

(Eclipse, Siemens Healthineers, Erlangen, Germany) using our

custom Application Programming Interface (API) script written

in the C# programming language (Figures 2A–C). The user selects

the requested DL model from a drop-down list and exports the

appropriate image data to a location on a clinical network drive. For

dose delivery QA, dose distribution data is also exported to allow

calculation of dose metrics of our choosing. This routine supports

two export formats (1): Digital Imaging and Communications in

Medicine (DICOM), and (2) our custom binary format which filters

the export data down to only the essential components (image

volume data, voxel spacing, orientation, and space origin) to reduce

data transfer and computation time. Both formats include

information about the Series Instance UID to uniquely identify

the given treatment plan as well as the desired DL model

information embedded in the output folder and file names. The

DL-ODA detects any new patient image data outputs from the

user’s Eclipse server on the network drive and downloads

the exported data to the research workstation to begin processing

and model deployment. When finished, the DL segmentations are

uploaded back onto the clinical network and the Eclipse API

uploads them into the TPS for immediate contour visualization

(Figure 2D). The DL-ODA handles multiple simultaneous requests

by processing each request sequentially on a first-come first-

served basis.
2.3 Ambient deployment pathway for QA
applications and reporting

The QA tasks are accomplished by exporting desired RT data

(including image, dose, plan, and/or structure set data) to the

clinical network in DICOM format via SQL DICOM query

retrieve from the Departmental clinical database and radiation

oncology EMR (ARIA, Varian Medical Systems). The DL-ODA

pulls this data onto the research workstation for processing.

Common to all models is the contour QA which evaluates

existing manual segmentations against DL segmentations for the

same structure. The DSC is computed for each pair of manual and

matching DL segmentations, using the entire manual and DL

volumes for comparison (Full DSC). A separate DSC is computed

based on manual and DL sub-volumes contained within any axial

slices that were manually contoured (Partial DSC). The latter

accounts for cases where clinicians only contoured the portion of

a given structure deemed sufficient in representing clinically

significant dosimetric consequences (such as partial esophagus) as

this would otherwise provide a reduced Full DSC value. The DL-

ODA automatically generates an email report including results for

all matched pairs to clinical end-users. As with the On-Demand

pathway, the dose delivery QA for the Ambient pathway involves
frontiersin.org
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calculation of selected dose metrics pertaining a given treatment

plan based on the overlap of the dose distribution with the

contoured structures.
2.4 Pre-loaded auto-segmentation models

To improve the cost effectiveness and accessibility of AI

implementation in a given department’s clinic, the DL-ODA

system was specifically designed to be used with both publicly

available models and models developed within our own institution.

This section summarizes all pre-loaded auto-segmentation models

which include publicly available models, institutional models trained

prior to the development of DL-ODA, and models trained using the

aforementioned DL-ODA end-to-end model-training pipeline.

2.4.1 Publicly available model
– TotalSegmentator

The DL-ODA utilizes whole-body DL segmentations provided

by TotalSegmentator (31), a publicly available medical image

segmentation tool based on the nnU-Net framework (32) that can

generate over 100 different anatomical structures from CT imaging,

including gastrointestinal organs (esophagus, stomach, duodenum,

small bowel, large bowel, and bladder), cardiovascular structures

(heart chambers, aorta, pulmonary artery, portal vein and splenic
Frontiers in Oncology
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vein, inferior vena cava, iliac artery, and iliac veins), cervical and

thoracic structures (brain, face, trachea, bronchi, lung lobes, lung

vessels, adrenal glands, spleen, liver, gallbladder, pancreas, and

kidneys), skeleton (clavicles, humeri, scapulae, hip bones, femurs,

ribs, vertebrae and sacrum), and muscles (autochthons, iliopsoases,

and gluteal muscles).

2.4.2 Institutional previously trained models
The following are institutional AI models created before the

development of DL-ODA that were incorporated into the system

post-facto. These models are primarily based on CT image

segmentation. However, DL-ODA can be used for other imaging

modalities as well. We have successfully trained and validated a GU

model transrectal US based images acquired during HDR

brachytherapy. We further developed a GYN model for our MRI

guided brachytherapy program allowing contour propagation and

dose assessments during treatments.

2.4.2.1 Gynecological brachytherapy

Our custom Gynecological Brachytherapy model assists with

treatment planning patients undergoing interstitial brachytherapy

for the cervix. The model quickly contours daily anatomy

(including bladder, rectum, sigmoid colon, and small bowel) and

evaluates dose to OARs for verification. Model training was

performed using the nnU-Net framework.
A B

D

C

FIGURE 2

(A) Screenshot of Eclipse treatment planning interface showing access to our custom Eclipse API which activates the DL-ODA. (B) Once activated,
the DL-ODA allows a user to choose from a selection of built-in DL models. (C) The relevant patient image data can be exported for processing with
the chosen model. (D) The resulting DL segmentations are automatically uploaded into the Eclipse treatment planning system for visualization.
Shown are axial (left), coronal (middle), and sagittal (right) views for an example treatment planning case with auto-segmentations via the Full
Segmentation model consisting of whole-body segmentations (TotalSegmentator) and heart substructures segmentations with coronary
arteries visible.
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2.4.2.2 Prostate brachytherapy

We trained a custom model for segmenting critical OARs from

ultrasound images related to prostate brachytherapy. Prostate,

urethra, bladder, and rectum segmentations are rapidly generated.

Robust model performance was verified based on a testing subset of

prostate brachytherapy cases independent of training (33).

2.4.2.3 Whole heart

A whole-heart model trained using radiologically-acquired

ground truth labels was implemented and evaluated based on a

clinical trial involving an independent real-world dataset of 5677

breast cancer patients treated with radiation therapy at the Dana-

Farber/Brigham and Women’s Cancer Center without retraining

the model (27, 34). The resulting DL heart segmentations are highly

accurate and demonstrate a successful transfer of learning to this

real-world clinical dataset.

2.4.3 Models trained using the model-
training pipeline

The following models were trained with the DL-ODA model-

training pipeline drawing from existing clinical datasets.

2.4.3.1 Esophagus

We trained a model for whole esophageal segmentation and

incorporated into the DL-ODA to provide reference AI contours for

clinicians who desire quick confirmation for this structure that is both

challenging to delineate (35) and prone to segmentation variations

between individuals (36). Training was achieved based on a cohort of

394 patients treated at our institution predominantly for lung cancer

using a modified U-Net architecture via TensorFlow. This model is

currently used to detect inconsistencies and variations in esophagus

delineations between different observers in treatment planning.

2.4.3.2 Heart and heart substructures

For particular applications where sparing of the heart and coronary

arteries are critical (for example, in lung RT), we trained a collection of

heart segmentation models for the heart (34) and heart substructures,

including left and right atria, left and right ventricles, and five coronary

arteries including the left main, left anterior descending, left circumflex,

right, and posterior descending arteries (LM, LAD, LCX, RCA, and

PDA, respectively) (26, 37). Separate models were trained for all

structures based on a multi-institutional cohort of 699 CTs image

datasets with manually contoured heart and substructure masks. Final

training of each model was achieved using nnU-Net.
2.5 Clinical model deployment and testing

Prospective clinical deployment and testing involved assessment

of auto-segmentation and QA performances of the various

requestable AI interventions available through the DL-ODA system.

2.5.1 Whole-body segmentation, full
segmentation, and QA

The whole-body segmentation is based on TotalSegmentator.

Full segmentation involves the combination of whole-body
Frontiers in Oncology 06
segmentation via TotalSegmentator and the Heart Substructures

model. Though TotalSegmentator already provides segmentations

for the chambers of the heart, these are replaced with the more

accurate Heart Substructures segmentations (Figure 2D). Contour

QA is available for both pathways and involves the evaluation of

existing manual segmentations against DL segmentations from

TotalSegmentator (provided the given structure is included as one

of the DL outputs) with results emailed to end-users.
2.5.2 End-to-end model training and deployment
for breast segmentation

In 2023, our institution clinically deployed a vendor-

implemented DL algorithm designed to provide a baseline set of

contours that are readily editable by radiation oncology staff.

Numerous clinical breast specialists within our department

expressed a particular desire for AI breast segmentations that

more closely reflect established clinical practice compared with

those generated by the vendor algorithm. This prompted us to use

the model-training pipeline built into the DL-ODA to train left and

right breast segmentation models optimized to our clinicians’

practice. To assess the efficiency of our model-training pipeline,

we timed the entire workflow from start to finish, including

procuring and exporting the training data, downsampling the

image and label volumes, training all models, upsampling

prediction outputs for validation, and deploying the finalized

models into the clinic. Model training was achieved via the nnU-

Net framework. These breast segmentations are currently

undergoing clinical evaluation.
2.5.3 Retrospective evaluation of contours for QA
The contour QA functionality of the DL-ODA was tested based

on a retrospective cohort of 4,284 RT treatment plans drawn from

3,399 lung and 885 spine treatments procured from a RT database

representing a large, multi-center department that treats roughly

5,000 patients with RT annually. For each case, CT image data were

auto-segmented using our Full Segmentation routine

(TotalSegmentator and our Heart and Heart Substructures

model) while manual contours were acquired for comparison.

Full DSC and Partial DSC metrics were computed for manual-DL

segmentation pairs automatically detected by comparing the

structure labeling nomenclature, based on the American

Association of Physicists in Medicine Task Group 263 (38), to

known TotalSegmentator output labels. In addition, this allows us

to analyze plan quality and evaluate dosimetric trends for individual

structures. Currently, our department uses a DSC score of 0.85 as a

threshold for passing geometric agreement (34). For future work,

we envision relying on dose metrics to automatically trigger a

detailed review if a discrepancy in prescribed metrics between the

clinical and the DL-ODA structures is discovered.

2.5.4 QA for dose delivery for approved clinical
RT plans

The DL-ODA features automated DVH calculation for all DL-

generated structures using dose distribution data acquired from

approved clinical RT plans (39). This allows for verification of
frontiersin.org
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dosimetric coverage and targeting if desired. Currently, this feature

is enabled for spine RT treatment plans and RT plans for which

dosimetric sparing of the heart and coronary arteries are critical

(such as lung RT). The results of both the spine and heart

applications are currently being prepared for publication.

Spine RT treatment planning is prone to wrong-anatomic-level

treatment errors resulting from incorrect enumeration due to

morphology with only partial imaging of the spine and occurrence

of variant spine anatomy (40–42). The DL-ODA can provide

vertebral segmentations from TotalSegmentator as quick

confirmation of vertebral contours and to help prevent labeling

errors. DL vertebral segmentations (with associated labels) that are

uploaded onto a TPS serve as a visual reference for clinicians as they

verify dosimetric targeting. Alternatively, DVH calculations for each

individual DL vertebrae facilitates identification of target levels which

are compared with documented levels in the RT prescription. The

results are emailed to the appropriate clinical personnel.

For dose delivery QA for the heart, we use DL segmentations

generated from our own Whole Heart and Heart Substructures

models. As with the spine RT plan QA, output DL segmentations

from the Heart Substructures or the Whole Heart models can either

be uploaded to the TPS for immediate viewing or be used in DVH

calculations. For the latter case, the DL-ODA generates a report

containing contour QA for each structure as well as dose metrics for

heart and coronary arteries. A summary of the results is emailed to

the appropriate clinical personnel.

2.5.5 Segmentation of lung vessels for research
To demonstrate an example of utilizing DL-ODA as a useful

platform for research, we implemented a Lung Vessels segmentation

pathway with the prospect that dose to these structures may be used to

predict patient survivability. The Lung Vessels model is an extension of

whole-body segmentation in which pulmonary vasculature is generated

along with the lungs, trachea, and bronchi. The goal is to provide

dosimetric measures for those structures during lung RT.
2.6 Prospective clinical deployment of
DL-ODA

In addition to retrospective testing, the DL-ODA has been

prospectively deployed for clinical use in our institution’s

treatment planning system. All ambient QA emails generated

following deployment have been carefully examined manually.
3 Results

3.1 Evaluation of end-to-end training and
deployment of breast models

The model-training pipeline successfully trained left and right

breast models using a dataset of 1,823 breast RT cases (935 for left

breast and 888 for right) within 9 hours and 21 minutes and

retrieved all training data from the clinical database in 46 hours.

Both models were validated based on testing subsets with prediction

label volumes closely matching ground truth delineations
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contoured by clinical experts (Figure 3), thus confirming that the

pipeline successfully enabled breast segmentations that are clinically

desirable. Comparisons between ground truth and AI prediction

segmentations were evaluated using DSC, HD, ASSD, and VD

(Table 1). The breast segmentation models were also evaluated

dosimetrically based on quantifying differences of Dmax and Dmean

between ground truth and AI prediction volumes (Table 2). The

results of both geometric and dosimetric evaluations yielded close

agreement between AI- and manually generated structures.
3.2 Evaluating on-demand contour
QA application

The retrospective contour QA study revealed ten most common

organs-at-risk (OARs) that were contoured for greater than 100 cases

out of the 4,284 total cases (Table 1). Median Full DSC metrics

exceeded 0.9 for heart, left and right lungs, liver, and left and right

kidneys (Figure 4A), indicating that model segmentations for lungs,

liver, and kidneys are in close agreement with those provided by clinical

experts. The heart segmentations from our Heart Substructures model

are also highly consistent with manual delineations. Lower median Full

DSC was exhibited by esophagus (0.76), trachea (0.57), stomach (0.74),

and small bowel (0.46). However, median partial DSC metrics were

markedly improved for trachea (0.73), stomach (0.86), and small bowel

(0.70) with lesser improvement for esophagus (0.81), possibly

indicating prevalence of incomplete or inaccurate manual contouring

of these structures by clinicians (Figure 4B). Similar trends between full

and partial segmentation comparisons are also observed for HD, ASSD,

and VD. The average time required to process a given RT plan across

all models was roughly ten minutes.
FIGURE 3

Axial image output for a representative test breast RT case
demonstrating high similarity between the expertly contoured
ground truth label for the right breast and the prediction label
generated by the right breast segmentation model trained using the
model-training pipeline.
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3.3 Clinical deployment of ambient QA
email reports

All QA results processed by the DL-ODA system were

successfully generated and emailed to appropriate RT personnel.

On-Demand contour QA reports for individual treatment plans

included information about the patient, RT plan, prescription dose,
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and Full DSC as well as Partial DSC for any detected manual-DL

segmentation pairs (Figure 5). Ambient contour QA reported the

same information included in On-Demand contour QA reports but

for a collection of all treatment plans for the given day (Figure 6).

Ambient QA for Heart Substructures includes information

about the patient, RT plan, prescription dose, and contour QA

for whole heart. Additional dose metrics such as mean dose to the

heart and coronary arteries are also provided. All results are emailed

as a report to the appropriate personnel. This Ambient QA has

processed over 2,500 treatment plans over the past 9 months. For

Ambient spine RT QA, verification of dosimetric targeting is

relayed to clinical staff via email reports which includes alerts for

any targets that overdosed or underdosed. The report also raises

alerts for any vertebral geometric inconsistencies that are detected

based on the DL spine segmentations, indicating potential variant

spine anatomy or presence of other anomalous factors (e.g.

hardware or implants, sacralization, or collapsed vertebrae).
TABLE 1 Ground truth versus AI segmentations were geometrically evaluated for 183 breast contours from the test sets of the breast segmentation
models (94 for left and 89 for right breast).

Structure Number
of Cases

Median
Full
DDSC
(IQR)

Median
Partial
DDSC
(IQR)

Median
Full DHD
(IQR)
(mm)

Median
Partial
DHD
(IQR)
(mm)

Median
Full
DASSD
(IQR)
(mm)

Median
Partial
DASSD
(IQR) (mm)

Median
Full DVD
(IQR)
(cm3)

Median
Partial
DVD
(IQR)
(cm3)

Breast Segmentation Results

Left Breast 94 0.91 (0.87
- 0.93)

0.91 (0.87
- 0.93)

19.7 (13.2
– 26.4)

18.4 (13.3
– 24.9)

2.83 (2.09
– 3.47)

2.70 (1.81
– 3.29)

156 (58.8
– 302)

156 (59.5
– 302)

Right Breast 89 0.92 (0.89
- 0.94)

0.92 (0.89
- 0.94)

19.6 (12.0
– 25.5)

19.7 (16.0
– 27.3)

2.74 (2.14
– 3.51)

2.80 (2.03
– 3.58)

145 (60.5
– 264)

145 (70.7
– 264)

Contour QA Results

Heart 3,258 0.91 (0.87
- 0.93)

0.94 (0.92
- 0.95)

13.8 (10.7
– 20.0)

12.0 (9.52
– 16.1)

3.29 (2.42
– 4.81)

1.77 (1.35
– 2.50)

85.9 (43.5
– 159)

44.1 (19.2
– 83.3)

Left Lung 2,159 0.96 (0.95
- 0.97)

0.96 (0.95
- 0.97)

16.4 (12.0
– 25.5)

15.8 (11.5
– 23.8)

1.17 (0.897
– 1.64)

1.14 (0.887
– 1.61)

62.3 (33.3
– 108)

61.4 (32.4
– 107)

Right Lung 2,169 0.97 (0.95
- 0.97)

0.97 (0.95
- 0.97)

15.8 (12.0
– 23.8)

15.0 (11.5
– 21.8)

1.32 (0.986
– 1.84)

1.30 (0.971
– 1.80)

65.6 (28.7
– 117)

63.7 (27.8
– 114)

Esophagus 2,893 0.76 (0.59
- 0.81)

0.81 (0.76
- 0.84)

18.8 (11.3
– 62.2)

10.5 (7.57
– 15.5)

1.78 (1.24
– 7.07)

1.17 (0.925
– 1.52)

7.75 (3.30
– 16.3)

3.58 (1.54
– 6.98)

Trachea 394 0.57 (0.51
- 0.63)

0.73 (0.67
- 0.79)

47.8 (39.6
– 55.8)

7.38 (5.47
– 11.6)

7.44 (5.64
– 9.16)

2.08 (1.53
– 2.57)

6.34 (3.01
– 12.2)

11.4 (6.97
– 16.7)

Liver 367 0.94 (0.93
- 0.95)

0.95 (0.93
- 0.96)

20.0 (15.1
– 30.6)

18.2 (14.5
– 24.9)

1.79 (1.49
– 2.51)

1.70 (1.40
– 2.18)

60.3 (27.8
– 115)

48.9 (22.1
– 89.0)

Stomach 216 0.74 (0.53
- 0.85)

0.86 (0.79
- 0.90)

51.5 (28.6
– 86.9)

22.6 (13.6
– 38.4)

5.99 (2.68
– 12.3)

2.11 (1.47
– 3.36)

60.0 (23.3
– 136)

22.7 (8.31
– 49.3)

Small Bowel 134 0.46 (0.26
- 0.60)

0.70 (0.55
- 0.80)

116 (80.0
– 149)

57.5 (37.9
– 75.3)

17.2 (8.78
– 31.1)

4.74 (2.71
– 9.41)

390 (233
– 533)

71.2 (25.3
– 191)

Left Kidney 363 0.91 (0.88
- 0.93)

0.91 (0.88
- 0.93)

10.2 (7.65
– 13.8)

9.88 (7.48
– 13.1)

1.63 (1.13
– 2.27)

1.57 (1.07
– 2.13)

17.1 (6.83
– 30.8)

16.2 (6.54
– 29.1)

Right Kidney 364 0.91 (0.88
- 0.93)

0.91 (0.88
- 0.93)

10.5 (7.81
– 13.7)

10.1 (7.58
– 13.3)

1.61 (1.17
– 2.19)

1.54 (1.12
– 2.12)

15.1 (6.55
– 28.8)

15.1 (6.29
– 28.3)
Additionally, manual-DL segmentation pairs were evaluated for ten organs-at-risk (OARs) that were contoured for greater than 100 cases out of 4,284 total for the retrospective contour QA.
Geometric distributions were acquired via pairwise subtraction of Dice similarity coefficient (DSC), Hausdorff distance (HD), average symmetric surface distance (ASSD), and volume difference
(VD) for each patient. Median values and interquartile ranges (IQRs) are reported for each distribution of metric differences (DDSC, DHD, DASSD, DVD) based on full ground truth and AI
segmentations as well as partial segmentations which include only portions of structures that appear on axial slices which were manually contoured.
TABLE 2 Dosimetric distributions were acquired via pairwise subtraction
of Dmax, V100, and V105 of AI full breast segmentations from those of
the ground truth volumes for each of 183 test patients from the breast
segmentation model training datasets.

Median DDmean

(IQR) (cGy)
Median DV100
(IQR) (%)

Median DV105
(IQR) (%)

-50.6 (-111 – -1.40) -3.5 (-8.0 – 0.0) 0.0 (-1.0 – 0.0)
The median and IQR are reported for each distribution of metric differences (DDmax, DV100,
and DV105).
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Generated email reports include information about the patient, RT

plan, intended clinical target levels, and dose prescription. The

Ambient QA for spine RT has processed over 230 treatment plans

over the past 5 months.
3.4 Dosimetric quantification of
lung vessels

The Lung Vessels model successfully segmented vasculature in

left and right lungs and exported DVHs for both lungs, lung vessels,

and combined trachea and bronchi structures, thus informing on

dosimetric trends usable in research purposes (Figure 7).
4 Discussion

The DL-ODA system is capable of drastically enhancing

clinicians’ RT planning experience by providing automated
Frontiers in Oncology 09
segmentations for various disease sites as well as feedback for

contour delineations and dosimetric targeting or coverage. The

system thus serves as an efficient aid for clinical staff by reducing the

time required to perform manual delineations or QA checks. The

implementation of DL-ODA is simple and based on zero-cost

software components including the Python programming

language, TensorFlow, TotalSegmentator, and a Linux-based

operating system, rendering customization towards a particular

clinical institution’s needs an easy task. It is currently running on

one of our lab computers, though migration to a more dedicated

server is planned for the near future. The novelty of deploying DL-

ODA not only as an auto-segmentation tool but also as an

automated QA system is particularly advantageous. Given the

rising complexity of RT treatment planning that is correlated with

an increased use of ancillary devices and new treatment techniques,

automation systems are crucial for reducing RT inaccuracies due to

manual contouring, data entry, and setups (43).

Our model-training pipeline successfully generated new DL

algorithms for breast segmentation in an exceptionally efficient
A B

FIGURE 4

(A) Full DSC distributions for the ten organs-at-risk (OARs) listed in Table 1. Generally close agreement between manual and DL segmentations is
observed for heart, lungs, liver, and kidneys but is significantly lower for esophagus, trachea, stomach, and small bowel. (B) Partial DSC distributions
for the same ten OARs. Improved similarity is observed in all cases. This is especially true for esophagus, trachea, stomach, and small bowel, possibly
indicating prevalence of incomplete or inaccurate contouring of these structures by clinicians.
FIGURE 5

Screenshot of an example email report issued by the contour QA functionality built into the DL-ODA. The results shown are for a spine RT treatment
plan. The low DSC values for small bowel would likely necessitate manual review of the manual delineation for this structure.
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timespan. Furthermore, the test prediction segmentations of the

trained breast models closely resembled the breast delineations

provided by clinical experts, confirming the immediate utility of

the model-training pipeline as an end-to-end system for integrating
Frontiers in Oncology 10
new AI models that satisfy specific departmental needs. The results

from the retrospective contour QA confirm the utility of leveraging

DL segmentations from TotalSegmentator both for providing

automated delineations and for verifying contours for up to 104
FIGURE 6

Screenshot of an example email report issued by the Ambient Contour QA from the DL-ODA system for all treatment plans created on a given day.
This collection of treatment plans features a variety of disease sites.
FIGURE 7

Dose-volume histograms (DVHs) for a lung RT case treated using VMAT with standard fractionation for confirmation of dosimetric consequences to
relevant critical structures. The left lung, right lung, lung vessels, and combined trachea and bronchi structures were auto-segmented
using TotalSegmentator.
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different structures. By reporting on both Full DSC and Partial DSC

metrics, the DL-ODA alerts users of contours showing poor

agreement with DL segmentations and offers guidance as to

whether the contours need to be revisited.

One drawback of the DL-ODA system is that it currently runs

ma in l y on spe c ifi c DL f r amework s (nnU-Ne t and

TotalSegmentator). However, the flexibility and generalizability of

our workflow will allow for seamless incorporation of alternative

models in future releases of DL-ODA. Given the rapid

advancements of AI-based technologies in radiation oncology,

new and improved AI segmentation platforms are constantly on

the horizon, including Auto3DSeg from MONAI (44), which rivals

the nnU-Net framework, and Segment Anything Model by Meta AI

(45) which, like TotalSegmentator, specializes in full image

segmentation. Another drawback is that the DL-ODA is an on-

premises solution, requiring use of local computers and hospital

networks. Latency issues or network outages would prevent users

from using our system. One potential solution would be to adopt a

cloud-based implementation. Although this would likely necessitate

additional measures regarding patient data encryption, our system

framework is already designed to accommodate any file-sharing

protocol at any institution and a cloud-based solution could be

adopted to scale up DL-ODA usage. In addition, DL-ODA is

agnostic to patient demographic representations that are included

in model training datasets. It is important for users to be aware of

potential differences in clinical outcomes that may arise from

deploying models that were trained using insufficient data

representing marginalized communities. One possible solution is

to train dedicated models specifically for these communities,

utilizing the data augmentation tools built into our model-

training pipeline for small datasets.

The DL-ODA is being prospectively evaluated by our clinic and

we are in the process of gathering data regarding the employment of

DL-ODA in clinical practice. Currently, the model training pipeline

is run by two of our staff who are familiar with the source code

whereas a more user-friendly interface is planned for the future.

Ambient QA has been set up by one of our lab members to run

every night, and it has been running without major downtime for

over a year (any downtime thus far has been due to power outages

and expired user accounts). The Ambient QA currently runs on one

of our lab computers, though in the future we aim to host it on one

of our institution’s servers maintained by our IT department. The

On-Demand QA is based on the Eclipse Scripting API with a small

graphical user interface that allows intuitive selection of tasks.

In conclusion, we have successfully developed, tested, and

prospectively deployed DL-ODA in the clinic as an efficient, fully

automated system that significantly improves RT planning tasks

involving structure delineations and provides critical QA feedback

for whole-body, heart, lung, and spine RT as well as gynecological

and prostate brachytherapy. With the DL-ODA system, scripting,

and models made publicly available to facilitate a more widespread

adoption of AI technology, our efforts mark a major milestone in

promoting accessibility of AI applications and in enabling rapid

clinical translation.
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24. Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based
FDA-approved medical devices and algorithms: an online database. NPJ Digit Med
(2020) 3(1). doi: 10.1038/s41746-020-00324-0

25. Heilemann G, Buschmann M, Lechner W, Dick V, Eckert F, Heilmann M, et al.
Clinical implementation and evaluation of auto-segmentation tools for multi-site
contouring in radiotherapy. Phys Imaging Radiat Oncol (2023), 100515. doi: 10.1016/
j.phro.2023.100515

26. Guthier CV, McKenzie E, Zeleznik R, Bitterman DS, Bredfeldt JS, Aerts H, et al.
Deep learning-based automated cardiac sub-structure contouring with dosimetric and
clinical outcomes validation. Int J Radiat OncologyBiologyPhysics (2022) 114(3):S46–7.
doi: 10.1016/j.ijrobp.2022.07.417

27. Bitterman DS, Selesnick P, Bredfeldt J, Williams CL, Guthier C, Huynh E, et al.
Dosimetric planning tradeoffs to reduce heart dose using machine learning-guided
decision support software in patients with lung cancer. Int J Radiat Oncol Biol Phys
(2022) 112(4):996–1003. doi: 10.1016/j.ijrobp.2021.11.009

28. Dice LR.Measures of the amount of ecologic association between species, Vol. 26.
(1945).

29. Taha AA, Hanbury A. Metrics for evaluating 3D medical image segmentation:
Analysis, selection, and tool. BMCMed Imaging (2015) 15(1). doi: 10.1186/s12880-015-
0068-x

30. Yeghiazaryan V, Voiculescu I. Family of boundary overlap metrics for the
evaluation of medical image segmentation. J Med Imaging (2018) 5(01):1. doi: 10.1117/
1.JMI.5.1.015006

31. Wasserthal J, Meyer M, Breit HC, Cyriac J, Yang S, Segeroth M.
TotalSegmentator: robust segmentation of 104 anatomical structures in CT images
(2022). Available at: http://arxiv.org/abs/2208.05868.

32. Isensee F, Petersen J, Klein A, Zimmerer D, Jaeger PF, Kohl S, et al. nnU-net:
self-adapting framework for U-net-based medical image segmentation(2018). Available
at: http://arxiv.org/abs/1809.10486.

33. King MT, Kehayias CE, Chaunzwa T, Rosen DB, Mahal AR, Wallburn TD, et al.
Observer preference of artificial intelligence-generated versus clinical prostate contours
for ultrasound-based high dose rate brachytherapy. Med Phys (2023). doi: 10.1002/
mp.16716

34. Zeleznik R, Foldyna B, Eslami P, Weiss J, Alexander I, Taron J, et al. Deep
convolutional neural networks to predict cardiovascular risk from computed
tomography. Nat Commun (2021) 12(1). doi: 10.1038/s41467-021-20966-2

35. Fechter T, Adebahr S, Baltas D, Ben Ayed I, Desrosiers C, Dolz J. Esophagus
segmentation in CT via 3D fully convolutional neural network and random walk. Med
Phys (2017) 44(12):6341–52. doi: 10.1002/mp.12593

36. Collier DC. Assessment of consistency in contouring of normal-tissue anatomic
structures. J Appl Clin Med Phys (2003) 4(1):17.

37. Guthier CV, Kehayias CE, Bitterman DS, Atkins KM, Mak RH. Deployment of a
deep learning automated cardiac sub-structure contouring algorithm to measure
coronary dose exposure trends in lung cancer radiation therapy. Int J Radiat
OncologyBiologyPhysics [Internet] (2023) 117(2) :S54–5. doi : 10.1016/
j.ijrobp.2023.06.345

38. Mayo CS, Moran JM, Bosch W, Xiao Y, McNutt T, Popple R, et al. Report of
AAPM task group 263: standardizing nomenclatures in radiation oncology. Int J Radiat
oncol biol Phys (2018) 100.

39. Kehayias CE, Bontempi D, Quirk S, Friesen S, Bredfeldt JS, Huynh MA, et al.
Deep learning-based automated quality assurance for palliative spinal treatment
planning in radiotherapy. Int J Radiat OncologyBiologyPhysics (2023) 117(2):S50. doi:
10.1016/j.ijrobp.2023.06.332

40. Ezzell G, Chera B, Dicker A, Ford E, Potters L, Santanam L, et al. Common error
pathways seen in the RO-ILS data that demonstrate opportunities for improving
treatment safety. Pract Radiat Oncol (2018) 8(2). doi: 10.1016/j.prro.2017.10.007

41. Longo UG, Loppini M, Romeo G, Maffulli N, Denaro V. Errors of level in spinal
surgery: An evidence-based systematic review. B J Bone Joint Surg - Ser B (2012) 94. doi:
10.1302/0301-620X.94B11.29553

42. Shah M, Halalmeh DR, Sandio A, Tubbs RS, Moisi MD. Anatomical variations
that can lead to spine surgery at the wrong level: part I, cervical spine. Cureus (2020).
doi: 10.7759/cureus.8667

43. Klein EE, Drzymala RE, Purdy JA, Michalski J. Errors in radiation oncology: a
study in pathways and dosimetric impact. J Appl Clin Med physics/American Coll Med
Physics (2005) 6(3):81–94. doi: 10.1120/jacmp.v6i3.2105

44. Cardoso MJ, Li W, Brown R, Ma N, Kerfoot E, Wang Y, et al.MONAI: An open-
source framework for deep learning in healthcare (2022). Available at: http://arxiv.org/
abs/2211.02701.

45. Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L, et al. Segment
anything (2023). Available at: http://arxiv.org/abs/2304.02643.
frontiersin.org

https://doi.org/10.1158/1055-9965.EPI-16-1023
https://doi.org/10.1038/s41571-020-0417-8
http://www.appliedradiationoncology.com
https://doi.org/10.1016/j.radi.2021.07.012
https://doi.org/10.1038/nature21056
https://doi.org/10.1016/j.ijrobp.2018.01.114
http://arxiv.org/abs/1809.04430
https://doi.org/10.1002/acm2.12161
https://doi.org/10.1016/j.phro.2021.11.007
https://doi.org/10.3389/fonc.2022.871871
https://doi.org/10.3389/fonc.2023.1099994
https://doi.org/10.7759/cureus.2548
https://doi.org/10.1118/1.2134958
https://doi.org/10.1016/S2589-7500(22)00129-7
https://doi.org/10.1016/S2589-7500(22)00129-7
https://doi.org/10.1007/s10278-019-00227-x
https://doi.org/10.3390/su13031224
https://doi.org/10.3390/su13031224
https://doi.org/10.1155/2022/9580991
http://arxiv.org/abs/2211.09562
http://arxiv.org/abs/2211.09562
https://doi.org/10.1186/s13014-021-01896-1
https://doi.org/10.1002/acm2.13668
https://doi.org/10.1016/j.aej.2020.10.046
https://doi.org/10.1038/s41591-018-0307-0
https://doi.org/10.1038/s41591-018-0307-0
https://doi.org/10.1159/000512172
https://doi.org/10.1038/s41746-020-00324-0
https://doi.org/10.1016/j.phro.2023.100515
https://doi.org/10.1016/j.phro.2023.100515
https://doi.org/10.1016/j.ijrobp.2022.07.417
https://doi.org/10.1016/j.ijrobp.2021.11.009
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1117/1.JMI.5.1.015006
https://doi.org/10.1117/1.JMI.5.1.015006
http://arxiv.org/abs/2208.05868
http://arxiv.org/abs/1809.10486
https://doi.org/10.1002/mp.16716
https://doi.org/10.1002/mp.16716
https://doi.org/10.1038/s41467-021-20966-2
https://doi.org/10.1002/mp.12593
https://doi.org/10.1016/j.ijrobp.2023.06.345
https://doi.org/10.1016/j.ijrobp.2023.06.345
https://doi.org/10.1016/j.ijrobp.2023.06.332
https://doi.org/10.1016/j.prro.2017.10.007
https://doi.org/10.1302/0301-620X.94B11.29553
https://doi.org/10.7759/cureus.8667
https://doi.org/10.1120/jacmp.v6i3.2105
http://arxiv.org/abs/2211.02701
http://arxiv.org/abs/2211.02701
http://arxiv.org/abs/2304.02643
https://doi.org/10.3389/fonc.2023.1305511
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Prospective deployment of an automated implementation solution for artificial intelligence translation to clinical radiation oncology
	1 Introduction
	2 Materials and methods
	2.1 Model-training pipeline to facilitate end-to-end training to deployment
	2.2 On-demand deployment pathway for efficiency, research or real-time QA
	2.3 Ambient deployment pathway for QA applications and reporting
	2.4 Pre-loaded auto-segmentation models
	2.4.1 Publicly available model – TotalSegmentator
	2.4.2 Institutional previously trained models
	2.4.2.1 Gynecological brachytherapy
	2.4.2.2 Prostate brachytherapy
	2.4.2.3 Whole heart

	2.4.3 Models trained using the model-training pipeline
	2.4.3.1 Esophagus
	2.4.3.2 Heart and heart substructures


	2.5 Clinical model deployment and testing
	2.5.1 Whole-body segmentation, full segmentation, and QA
	2.5.2 End-to-end model training and deployment for breast segmentation
	2.5.3 Retrospective evaluation of contours for QA
	2.5.4 QA for dose delivery for approved clinical RT plans
	2.5.5 Segmentation of lung vessels for research

	2.6 Prospective clinical deployment of DL-ODA

	3 Results
	3.1 Evaluation of end-to-end training and deployment of breast models
	3.2 Evaluating on-demand contour QA application
	3.3 Clinical deployment of ambient QA email reports
	3.4 Dosimetric quantification of lung vessels

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


