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Molecular imaging has witnessed a great progress in the field of oncology over the

past few decades. Radiolabeled amino acid (AA) tracers are particularly helpful in the

areas where the utility of 18F-Fluorodeoxyglucose (18F-FDG) positron emission

tomography with computed tomography imaging has been limited such as in

evaluating brain tumors, neuroendocrine tumors (NETs), and prostate cancer.

Radiolabeled AA tracers such as 6-[18F]-L-fluoro-L-3, 4-dihydroxyphenylalanine

(18F-FDOPA), 18F-fluoro-ethyl-tyrosine (18F-FET), and 11C-methionine have found

wide applications in brain tumors, which, unlike 18F-FDG, concentrate in the tumor

tissue to a greater extent than that in normal brain tissue by providing accurate

information about tumor volume and boundaries. 18F-FDOPA is also useful in

evaluating NETs. Tracers such as 18F-FACBC (Fluciclovine) and anti-1-amino-2-

[18F]fluorocyclopentyl-1-carboxylic acid (18F-FACPC) are used in imaging of

prostate cancer and provide valuable information of locoregional, recurrent, and

metastatic disease. This review highlights AA tracers and their major applications in

imaging, viz., in evaluating brain tumors, NETs, and prostate cancer.
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Introduction

Cancer is characterized by alterations in cellular metabolism, and these alterations are

useful targets for imaging and therapy. 18F-FDG has proved to be a pathbreaking tracer in

oncologic imaging and has been widely used in staging, restaging, response evaluation, and

prognosticating various cancers. However, there are certain limitations for FDG PET

(positron emission tomography) imaging: difficulty in identifying primary and metastatic

brain lesions due to high background and low contrast; some cancers such as prostate, NETs,

liver cancer, and renal cell carcinoma may show low or non-specific FDG uptake, leading to

false-positive or false-negative studies; and low specificity in differentiating inflammation/

infection from malignant lesions. Radiolabeled amino acids (AAs) can be used for non-

invasive visualization of important metabolic changes and have wide applicability in the

oncologic imaging due to biologic diversity of the transport systems of AAs and their

metabolic pathways. Certain specific AA transporters play an important role in altered
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metabolism in various cancers that can be of particular interest for

diagnostic and therapeutic applications. AA tracers have been most

commonly used for imaging brain tumors, prostate cancer (PCa), and

neuroendocrine tumors (NETs) (Table 1). However, their

applications are widely growing, and promising results have been

published from animal studies. This review highlights important

tracers, mechanisms, and applications of AAs in oncologic imaging

(10, 11).
Amino acid metabolism and oncologic
imaging: Mechanisms

AAs enter cells through AA transporters, and upregulation of

these transporters such as LAT1 and ASCT2 is noted in several

cancers, which, in turn, increase uptake of AAs in tumors by several

folds. On the basis of the requirement of sodium ions, AA transport

system is classified as (i) Na+-dependent and (ii) Na+-independent

transport systems. L-AAs are nutritionally essential for cell growth

and maintenance of nitrogen balance, as they play an important role

in metabolism, protein synthesis, cellular signalling, gene expression

regulation, synthesis of some hormones, neurotransmitters, and other

nitrogenous substances. L-AAs are obtained from either intracellular

protein recycling or transport from extracellular surroundings via

transport systems in the cell membrane. System A, which is a member

of solute carrier 38 (SCL38) gene family, is a Na+-dependent

transporter for small aliphatic AAs such as serine, alanine, and

glutamine. System L is Na+-independent and takes up branched AA

such as phenylalanine, isoleucine, tryptophan, valine, methionine,

and histidine from the extracellular space. To fulfill their increased

demand for proliferation, tumor cells utilize more AAs compared

with normal cells. AA transporters have a higher expression in tumor

cells, particularly LAT1, ASCT2, xCT, ATB0, etc. ASCT2 and LAT1

reveal a threefold increase expression in most of the cancerous lesions

(12–14). Most of the available PET tracers are labeled with positron-

emitting radionuclides 18F and C11. 18F-labeled AAs comprise an

important and most commonly used class of agents used for

oncologic imaging that detect increased metabolism of AAs in the

tumor by targeting the upregulated AA transporters. Properties of the

ideal labeled AA tracers include a simple and practical labeling
Frontiers in Oncology 02
technique, quick transport to tumor cells, high uptake and

optimum retention time, no affinity toward inflammatory tissue

components, high plasma clearance, and good Blood brain barrier

(BBB) permeability (when used for brain tumor evaluation) (15–17).
Brain tumors

Neuroimaging plays a crucial role in the management of primary

and metastatic brain tumor. Gliomas are the most common intra-

axial brain tumors in adults and are graded from I to IV. High-grade

gliomas (III and IV) are aggressive and treated with combinations of

surgery, radiotherapy, and chemotherapy. Low-grade gliomas are

slowly growing and carry comparatively better long-term survival

but may undergo transformation into high-grade gliomas. Grade,

extent, and location of gliomas are key characteristics in planning

treatment. Radiolabeled AA tracers can be advantageous over 18F-

FDG PET/computed tomography (CT) by helping in better

delineation of tumor boundaries, targeting biopsy sites, and

radiotherapy. Most commonly used AA tracers used in evaluating

brain tumors are 11C-MET (methionine), 18F-FET, and 18F-

FDOPA. Contrast-enhanced MRI plays a key role in evaluating

gliomas that includes diagnosis, staging, treatment response

evaluation, and assessment of recurrence but cannot accurately

evaluate non-enhancing parts of gliomas, as some part of the

glioma may have relatively intact BBB and do not show contrast

enhancement. It is also difficult to distinguish whether a recurrence or

residual tumor from radiation necrosis PET imaging with 18F-labeled

AAs can delineate metabolic tumor volume (MTV) and tumor

metabolic load and whether it is more useful in treatment response

evaluation than MRI. Compared with 18F-FDG PET/CT, 18F-labeled

AAs offer an advantage of a low uptake and retention in the normal

brain and their ability to delineate the entire tumor volume. 18F-

FDOPA, [18F]6-fluoro-3-O-methyl-L-3,4-dihydroxyphenylalanine

(18F-OMFD) (metabolite of 18F-FDOPA), 18F-FET, L-[3-(18)F]-a-
methyltyrosine (18F-FAMT), 2-18F-fluoro-L-tyrosine (2-FTyr), 18F-

BPA (boron phenylalanine), (4S)-4-(3-[18F]fluoropropyl)-L-

glutamate (18F-FSPG), and 4-18F-(2S,4R)-fluoro-glutamine (18F-

FGln) are useful PET radiotracer for evaluating gliomas of which
TABLE 1 Important amino acid tracers.

S. No. Study (reference) Agent Type of cancer

1. Zhao et al. (1) 11C-MET Brain tumors

2. Katsanos et al. (2) 11C-MET and 18F-FET Brain tumors

3. Kim et al. (3) 11C-MET Brain tumors

4. Dunet et al. (4) 18F-FET Brain tumors

5. Galldiks et al. (5) 18F-FET Brain tumors

6. Popperl et al. (6) 18F-FET Brain tumors

7. Nihashi et al. (7) 18F-FET vs. 18F-FDG Brain tumors

8. Piccardo et al. (8) 18F-DOPA NET

9. Gusman et al. (9) 18F-FACBC (Fluciclovine) Prostate cancer
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18F-DOPA (derivative of L-tyrosine) and 18F-FET (derivative of

L-phenylalanine) are most commonly used. 18F-FET PET/CT

provides a good contrast and is a valuable modality for diagnosing

primary brain tumors, distinguishing low-grade from high-grade

gliomas, and distinguishing recurrent brain metastasis from

radiation necrosis after radiotherapy, and offers an added advantage

in cases of brainstem and spinal cord gliomas when compared with

MRI. 18F-FET shows a lower uptake by inflammatory cells than 11C-

MET or 18F-FDG, thereby clearly delineating tumor from

inflammation (18, 19).

11C-MET has a superior diagnostic accuracy than 18F-FDG in

detecting, grading, and delineating boundaries; detecting recurrences;

prognosis prediction; and treatment response evaluation in higher-grade

gliomas (19). In the meta-analysis by Zhao et al., the pooled sensitivity,

pooled specificity, and area under the receiver operating characteristic

curve (AUC) for differentiating brain tumors of 11C-MET PET were

0.91, 0.86, and 0.94, respectively, whereas that of 18F-FDG were 0.71,

0.77, and 0.80, respectively. These findings of this meta-analysis suggest

that 11C-MET PET has excellent diagnostic accuracy in differentiating

brain tumors. Moreover, 18F-FDG-PET has a limited role in brain tumor

differentiation (1). In another meta-analysis by Katsanos et al., the pooled

sensitivity rates of MET PET (0.94) and FET PET (0.88) were found to be

higher than that of FDG PET (0.63) (P < 0.001). However, the pooled

specificity of FDG PET (0.89) was higher than that of MET PET (0.55)

and FET PET (0.57) (P = 0.002). In addition, this meta-analysis showed

the superiority of FDG PET due to higher positive likelihood ratio than

FET PET and MET PET (2). The meta-analysis by Kim et al. concluded

that the tumor-to–normal tissue ratio (TNR) and MTV of 11C-MET

PET are significant prognostic parameters in gliomas. Higher TNR poses

higher risk of death, and higher MTV has a higher risk of adverse events

or death. The effect of the TNR andMTV on survival was determined by

the effect size of the hazard ratio (3).

In the meta-analysis by Dunet et al., 18F-FET PET has a pooled

sensitivity of 0.82, specificity of 0.76, and AUC of 0.84 for the diagnosis of

primary brain tumors and concluded that 18F-FET PET has excellent

performance for diagnosing primary brain tumors (4). In the study by

Galldiks et al., 18F-FET PET was found to have a high accuracy in

differentiating local brain metastasis recurrence from radionecrosis, as

assessed by mean and maximum tumor-to-background ratios (TBRs)

that were significantly higher in recurrent metastasis than that in

radiation necrosis (P < 0.001) (5). Popperl et al. evaluated the potential

of FET PET for tumor grading in untreated patients. The results of their

study show significant difference (P = 0.001) between low-grade and

high-grade gliomas using the standard method by calculating TBR. In

addition, a dynamic evaluation distinguished low-grade gliomas from

high-grade gliomas with a higher diagnostic accuracy (sensitivity of 0.94,

specificity of 1, and AUC of 0.967) (6).

Nihashi et al. studied the diagnostic accuracy of PET imaging for

diagnosis of recurrent glioma. The results of their meta-analysis

showed a pooled sensitivity of 0.70 for 11C-MET PET and 0.77 for

FDG PET. The pooled specificity was found to be 0.93 for 11C-MET

PET and 0.78 for 18F-FDG PET. They concluded that 18F-FDG and

11C-MET PET have a moderately good accuracy for diagnosing

recurrence in gliomas suspected by CT or MRI (7).

18F-FDOPA PET/CT is useful in detection of primary, metastatic,

and recurrent brain tumor, delineating tumor volume as well as

determining and grading proliferative activities. Visual and semi-
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quantitative indices in 18F-DOPA PET provide a high accuracy for

detection of recurrence in glioblastoma and predict progressive-free

survival, and 18F-DOPA PET/CT or PET/MRI can detect a striatal

involvement in pediatric gliomas. 18F-BPA is useful in the boron neutron

capture therapy of gliomas and other head and neck cancers, as it is used

for the TNR. 18F-Gln demonstrates a high tumor uptake in the gliomas

but a low background brain uptake, which helps in clear delineation of

tumor (18, 19).
Neuroendocrine tumors

NETs originate from peptidergic neurons and neuroendocrine cells

and originate in different locations. Clinical presentation and symptoms

occur depending upon the biologically active substances such as

hormones or vasoactive peptides. Common NETs include carcinoid

tumors, pheochromocytoma, medullary thyroid cancer, small cell lung

cancer, and neuroblastoma (20). 18F-FDG is a non-specific tracer for

evaluating NETs, and 18F-DOPA PET/CT is sensitive and

comparatively better than CT or MRI in posttreatment evaluation of

pheochromocytoma and paraganglioma. 18F-DOPA is also useful in

evaluating Gastroenteropancreatic neuroendocrine tumors (GEPNETs)

and neuroblastomas. 18F-DOPA PET/CT is more sensitive than CT

and SRS in detecting positive lesions of carcinoid tumors. However,

obviously, the somatostatin receptor expression cannot be evaluated

using 18F-DOPA PET/CT. 18F-DOPA is also useful in the evaluating

MTC. NETs have increased activity of LDOPA decarboxylase and

therefore show a high concentration of 18F-DOPA. 18F-FDOPA PET

is more sensitive than 11C-HTP in gastrointestinal NETs. For

pancreatic NETs, the results are opposite (21–23).

In the systematic review and meta-analysis for head-to-head

comparison between 18F-DOPA and 68Ga-DOTA peptides PET/CT

in detection of intestinal NETs by Piccardo et al., they calculated

sensitivity in terms of patient-based analysis (PBA), region-based

analysis (RBA), and lesion-based analysis (LBA). A non-negligible

difference in favor of 18F-DOPA PET/CT was found (95% vs. 82%) on

LBA, i.e., lesion detection. However, no significant difference was

observed in PBA and RBA (8).

Lee et al. conducted a network meta-analysis by comparing five

different PET tracers for detecting medullary thyroid carcinoma. They

compared 18F-FDG, 18F-DOPA, 68Ga somatostatin analogs, 18F-

FDOPA, and 11C-MET. 18F-DOPA PET had a significantly higher

detection rate than FDG PET in PBA and LBA (OR of 2.44 and 5.74,

respectively). In addition, regardless of serum calcitonin or

Carcinoembryonic Antigean (CEA) levels and calcitonin doubling

time, 18F-DOPA showed the highest surface under the cumulative

ranking curve value in both PBA and LBA (24).
Prostate cancer

PCa is complex and biologically heterogeneous tumor, which is one

of the most common malignancies in men. Accuracy of CT and MRI is

limited in detecting primary tumor and metastases in regional lymph

nodes. Overexpression of several AA transporter systems is noted in PCa,

particularly the system ASC transporter ASCT2 and the system L

transporter LAT1, which are associated with tumor aggressiveness and
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poor survival. Fluciclovine is not metabolized and is not incorporated in

proteins (25, 26).

FDG uptake is lower in PCa lesions. 18F-FACBC (fluciclovine) (L-

leucine analog) and 18F-FACPC (analog of FACBC) are labeled AA

tracers, which provide higher sensitivity and specificity rates in detecting

tumor and metastatic lymph nodes. The pathologic activity of 18F-

FACBC in prostate tumors and nodal metastatic disease peaks rapidly

(4–10 min) due rapid influx and efflux of AAs. Another advantage of

18F-FACBC is its slow excretion into the bladder that is helpful in clear

visualization of adjacent pelvic lesions. 18F-FACBC PET/CT also helps to

assess aggressiveness of tumors by differentiating between cancer tissue

and benign tissue. 18F-FACBC is transported into cells by LAT1 and

ASCT2. 18F-FACBC appears to be superior to choline in biochemical

relapse and is approved by the United States Food and Drug

Administration (US FDA) for the detection of recurrent PCa (9, 27).

18F-FACBC is also superior to 111In-capromab and 11C-choline and

also offers an advantage of a longer half-life compared with C11-

choline (28).

18F-FACBC offers practical advantages in terms of biodistribution

(negligible urinary activity in one hours after injection), image quality,

lower background, and acquisition protocol that improves lesion

detection. Although 18F-FACBC seems to be highly sensitive for

detecting recurrent disease but has low-to-moderate specificity at its

best, with a relatively higher rate of false positivity that may falsely

upstage the disease. Studies comparing 11C/18F-choline with 18F-

FACBC are few. In general, 18F-FACBC is superior in detecting

biochemical recurrence and outperforms 11C-choline in detecting true-

positive and true-negative lesions in prostate bed, lymph nodes, and

bones (27, 29, 30).
Other tumors

Sensitivity of 18F-FAMT is shown to be higher than that of 18FFDG

in evaluating maxillofacial tumors. 11CMeAIB can be used in imaging of

head and neck cancers and also in pulmonary and mediastinal mass

lesions. 18F-DMT (tyrosine derivative) that is transported via LAT1 has

shown a higher specificity than 18F-DFMT in Non-small cell lung

cancers (NSCLC) and head and neck cancers. 18F-FBPA (4-borono-2-

18F-fluoro-phenylalanine) predicts 10B concentrations after

administration of boron-containing drugs for neutron capture therapy.

18F-FACBC PET/CT can be used in visualization of invasive lobular and

invasive ductal breast cancers, and 18F-FACBC uptake is significantly

higher in primary and metastatic lesions of breast cancer such as in

lymph nodes and in bones than that in benign or normal breast tissues.

However, liver metastasis could not be sensitively detected because of a

high background physiological uptake. On treatment response

evaluation, changes in 18F-FACBC avidity correlated well with a

percentage tumor reduction caused by treatment. 18F-5-fluoro-

aminosuberic acid (18F-FASu) has been tried for diagnosis and

treatment response evaluation in certain breast cancers. 18F-FGln can

be used to track the glutamine pool size of the cell in triple-negative breast

cancer (31–36).
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Conclusions

Although AA tracers do not have as widespread applications as

18F-FDG, they have certain specific and valuable applications in

oncologic imaging especially when they overcome the shortcomings

of 18F-FDG PET/CT imaging. 18F-FDOPA and 18FFET have a well-

established role in diagnosis, staging, treatment response, and

evaluation of recurrence in gliomas. In addition, 18F-FDOPA is also

useful in assessment of NETs where it has shown a high sensitivity in

evaluating posttreatment lesions of pheochromocytomas and

paragangliomas. It is also useful in imaging GEPNETs and

neuroblastoma. 18F-FACBC and 18F-FACPC can accurately detect

primary tumor and regional metastatic lymph nodes in PCa. However,

the role of radiolabeled AA is limited to diagnostic imaging only; as

with the evolution of theranostics, other tracers have a larger role in

imaging and treatment of NETs and PCas. Glutaminolysis is

upregulated in several cancer cells, which provides alternate source of

carbon and energy; therefore, glutamine is an area of interest.

Radiolabeled glutamine analogs would allow to explore this arena in

human cancers. Transporter system L has been a key area for

developing tracers for tumor imaging (e.g., 11C-MET, 18F-FET, and

18F-FDOPA), which has also resulted in several radiolabeled AA

tracers that are effective for imaging NETs (18F-FDOPA) and PCa

(18F-FACBC). Although AA-based imaging has evolved over the years,

some challenges need to be addressed for further expansion of their

applications such as a better understanding of their transport

mechanisms, deeper insights into structure–activity relationships for

tracers designing for specific transporters, and clinical application of

these tracers into current grey areas in oncologic imaging.
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