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High mobility group protein 1 (HMGB1) plays a complex role in tumor biology.

When released into the extracellular space, it binds to the receptor for advanced

glycation end products (RAGE) located on the cell membrane, playing an

important role in tumor development by regulating a number of biological

processes and signal pathways. In this review, we outline the multifaceted

functions of the HMGB1/RAGE axis, which encompasses tumor cell

proliferation, apoptosis, autophagy, metastasis, and angiogenesis. This axis is

instrumental in tumor progression, promoting tumor cell proliferation,

autophagy, metastasis, and angiogenesis while inhibiting apoptosis, through

pivotal signaling pathways, including MAPK, NF-kB, PI3K/AKT, ERK, and STAT3.

Notably, small molecules, such as miRNA-218, ethyl pyruvate (EP), and

glycyrrhizin exhibit the ability to inhibit the HMGB1/RAGE axis, restraining

tumor development. Therefore, a deeper understanding of the mechanisms of

the HMGB1/RAGE axis in tumors is of great importance, and the development of

inhibitors targeting this axis warrants further exploration.
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1 Introduction

Tumors are abnormal growths that occur when a specific cell within the body loses its

normal growth regulation at the genetic level due to various tumorigenic factors.

Consequently, tumor cells exhibit abnormal morphology, metabolism, and function,

often losing their ability to differentiate and mature properly. Tumors are a major health

concern, and despite the current treatment options, including surgery, radiation therapy,
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and chemotherapy, the outcomes remain unsatisfactory in terms of

their effectiveness. However, in recent years, novel treatment

modalities such as targeted therapy and immunotherapy have

emerged, largely due to our advanced understanding of the

molecular mechanisms of tumor development.

The High Mobility Group Protein 1 (HMGB1), which is

categorized as a damage-associated molecular pattern (DAMP)

molecule, is widely expressed in the nuclei of eukaryotic cells.

Under normal circumstances, it remains in the nucleus. However,

it can be actively secreted or passively released into the extracellular

space upon stimulation or under stressed conditions. Due to its

various locations and interactions with different receptors, HMGB1

exhibits a multitude of functions. Notably, when released into the

extracellular space, its interaction with its receptors, such as the

receptor for advanced glycation end products (RAGE), influences

downstream signaling pathways, further contributing to its impact on

various cellular functions. Recent studies have revealed that the

HMGB1/RAGE axis is intricately involved in cell proliferation,

apoptosis, metastasis, autophagy, and angiogenesis in various types

of malignant tumors. In this review, provide an overview of the

diverse functions of the HMGB1/RAGE axis in tumor development

and delve into the associated signaling pathways, aiming to illustrate

its potential role in tumorigenesis and therapeutic intervention.
1.1 HMGB family proteins

In, 1973, researchers accidentally discovered a group of proteins

unrelated to histones during the process of histone separation,

which were named non-histone chromosomal protein HMG. These

proteins were named after their high electrophoretic mobility in

polyacrylamide gels. The HMGB family is the most abundant

member of the high mobility group (HMG) superfamily of

proteins (1). The HMGB family is the most abundant member of

the high mobility group (HMG) superfamily of proteins (2). The

proteins in this family are widely expressed and highly conserved in

mammals throughout evolution (3). The family includes four

members: HMGB1, HMGB2, HMGB3, and HMGB4 (4). All the

proteins in the HMGB family have a structural and functional motif

called the HMGB domain. Mammalian HMGB proteins consist of

two HMG box domains, each composed of about 80 amino acids,
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and an acidic C-terminal tail (5). However, HMGB4 protein lacks

the acidic C-terminal tail (6) (Figure 1). The carboxyl-terminal

region of HMGB1 contains about 30 consecutive Glu/Asp residues,

while HMGB2 and HMGB3 contain about 22 and 20 Glu/Asp

residues, respectively (4). The nucleotide sequence conservation of

HMGB4 is the lowest among the HMG protein family (7). As

nuclear proteins, HMGB proteins are involved in regulating

transcription, DNA damage repair, and other nuclear processes

(8). Therefore, they play important roles in aging, tumors,

autoimmune diseases, inflammation, and other diseases (9).

Furthermore, post-translational modifications of HMGB proteins

can affect their interactions with DNA and other proteins, as well as

their cellular localization (8).

1.1.1 HMGB1
High mobility group box 1 (HMGB1) was first purified from the

cell nucleus in the, 1970s and belongs to a typical damage-

associated molecular pattern (DAMP) molecule. When cells are

stimulated, HMGB1 is released into the extracellular space, acting as

an alarm signal (10). The HMGB1 gene encodes a 215-amino acids

protein, consisting of a 69-amino acid A box (8-76), an 80-amino

acid B box (93-163), and a negatively charged acidic C-terminus.

The molecular weight of the protein is 25-30 kDa (11). The A box

and B box domains each contain three alpha helices that fold into an

L or V shape. The acidic tail at the C-terminus interacts with

specific residues in the HMGB1 boxes, regulating the protein’s 3D

structure and DNA binding. The acidic tail is an unstructured

region of the protein that determines its interaction with histones.

HMGB1 is expressed in almost all eukaryotic cells and is highly

conserved in evolution (12). The homology between rat and mouse

HMGB1 proteins is 100%, while the amino acid sequence of human

and mouse HMGB1 proteins differs by only two amino acids at

positions 189 and 202. Specifically, human 189 and 202 are glutamic

acid and aspartic acid, respectively, while mouse 189 and 202 are

aspartic acid and glutamic acid. Both aspartic acid and glutamic

acid side chains contain carboxyl groups, the homology between

human and mouse HMGB1 proteins exceeds 99%.

HMGB1 has three subcellular locations: the nucleus, cytoplasm,

and cell membrane. Under normal conditions, HMGB1 is mainly

found in the cell nucleus, where it binds to chromatin and

participates in the formation of nucleoli and protein binding,
FIGURE 1

Schematic diagram of HMGB protein family members.
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contributing to the maintenance of nucleolar structure. However,

when cells are under stress, HMGB1 translocates from the nucleus

to the cytoplasm and is subsequently secreted into the extracellular

space (13). It plays a role as a DAMP molecule in guiding

inflammation and immune responses (14, 15). Additionally,

HMGB1 is involved in DNA transcription, replication, and repair

(16). The localization and activity of HMGB1 are influenced by

post-translational modifications such as acetylation, methylation,

and phosphorylation, which can regulate its translocation and

release into the extracellular space under various stress conditions

(17, 18).

HMGB1 plays a pivotal role in shaping the immunological

landscape of tumorigenesis. In hepatocellular carcinoma (HCC)

and gastric cancer (GC), HMGB1 facilitates tumorigenesis by

inducing the polarization of macrophages toward an M2

phenotype. In HCC, HMGB1 triggers M2 macrophage

polarization through the TLR2/NOX2/autophagy axis, a

transformation that promotes tumor growth via upregulation of

IL-10 expression (19). In gastric cancer, exosomes originating from

gastric cancer cells expressed HMGB1, which prompted M2

macrophage polarization through the inhibition of the NF-kB
signaling pathway. This process involves interactions with the

transcription factor POU2F1 (20). Overall, current evidence

indicates that HMGB1 potentiates the pro-tumorigenic activity of

M2 macrophages by interacting with the receptor RAGE (21).

The HMGB1/RAGE axis also profoundly impacts the tumor

microenvironment by activating the gd T cell population. In

melanoma, the interaction between HMGB1 and RAGE leads to

the accumulation of M2 macrophages, which secrete

immunoregulatory factors such as IL-10 (22), thereby suppressing

the immune response against tumor. The gd T cells and cytotoxic

lymphocytes have complex roles in tumor immunity. They are also

activated by the HMGB1/RAGE pathway, promoting tumor growth

and strengthening immunosuppression through the production of

cytokines like IL-23 and IL-17. It underscores the central role of the

HMGB1/RAGE-IL-23-IL-17-IL-6-Stat3 in the progression of

melanoma (23). Furthermore, HMGB1 contributes to anti-tumor

immunity through immunogenic cell death (ICD) (24). The release

of HMGB1 from dying cells during ICD, a distinct type of cell

demise, not only represents the demise of the cell but also elicits an

anti-tumor immune response that assists in eradicating tumor cells.

1.1.2 HMGB2
HMGB2 is widely expressed in embryonic stem cells (25),

particularly enriched in the thymus, lymphoid organs, and testes

of adult mice (4). Knockout mice lacking HMGB2 (hmgb2-/-) can

survive, but the body weight of male mice decreases (26). HMGB2 is

highly homologous to HMGB1 and exhibits high inter-species

conservation among mammals. Similar to HMGB1, HMGB2

contains two DNA-binding domains, box A and box B, as well as

an acidic C-terminal tail composed of glutamic acid and aspartic

acid residues. The main difference between HMGB1 and HMGB2 is

that the C-terminal tail of HMGB1 consists of 30 amino acid

residues, while HMGB2 has 22 amino acid residues in its

C-terminal tail (3). Both HMGB1 and HMGB2 are regulated by
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post- translat ional modificat ions such as acety lat ion,

phosphorylation, glycosylation, and methylation. These

modifications can affect the protein’s interactions with DNA/

chromatin and regulate its translocation from the nucleus to the

cytoplasm and extracellular space (27). HMGB2 plays a similar role

to HMGB1 in the development of cardiovascular diseases. In

vascular pathologies, HMGB2 has autocrine and paracrine

functions and can be released and bind to the membrane

molecule RAGE, promoting intracellular signaling (3).

Additionally, HMGB2 is involved in cellular aging processes (28)

and promotes the proliferation of cervical cancer cells and

melanoma cells through various mechanisms (29, 30).

1.1.3 HMGB3
HMGB3 was initially discovered by Marco Bianchi et al. in,

1998 and was found to be highly expressed during embryonic

development, while almost undetectable in adult tissues (31).

Knockout mice lacking HMGB3 (hmgb3-/-) are able to survive,

and HMGB3 is crucial for normal development of the eyes and

brain (32). HMGB3 contains two HMG boxes and a C-terminal tail

composed of 20 amino acids. Early studies have shown that

HMGB3 is involved in regulating innate immune activity and the

differentiation of normal hematopoietic stem cells (33). In normal

adult cells, the expression level of HMGB3 is relatively low, but it is

upregulated in tumor tissues such as breast cancer (34), non-small

cell lung cancer (35), and glioma (4, 36). HMGB3 is closely

associated with tumor occurrence, development, and

chemotherapy resistance. In esophageal squamous cell carcinoma,

HMGB3 was predominantly localized in the nucleus of tumor cells

as determined by immunohistochemical staining, and partially

expressed in the cytoplasm. In ovarian cancer, HMGB3 promotes

tumor resistance to chemotherapy drugs by regulating DNA

damage response pathways (37), and the MAPK/ERK signaling

pathway also contributes to the HMGB3-mediated progression of

ovarian cancer (38).

1.1.4 HMGB4
In, 2009, a new member of the HMGB (high mobility group

box) family called HMGB4 was first discovered by Irwin Davidson

et al. HMGB4 is primarily expressed in testicular germ cells and has

lower expression in the brain, with no detectable expression in other

tissues (31). The molecular weight of HMGB4 protein is 21 kDa,

and its main difference from other HMGB members is that it only

contains two HMG box domains and lacks the acidic C-terminal tail

(6). HMGB4 typically acts as a transcriptional repressor and is

encoded by a gene without introns (5). It can tightly bind to DNA,

regulate chromatin structure, and participate in the differentiation

of neuronal cells. Studies have found that HMGB4 can specifically

block the formation of complexes between cisplatin (a commonly

used anticancer drug) and DNA, thereby enhancing the sensitivity

of testicular germ cell tumor cells to cisplatin (39). In addition,

HMGB4 also participates in retinoblastoma (RB)-associated

pathways by inhibiting cell cycle and proliferation and enhancing

the cytotoxic effects of radiotherapy and cisplatin on cancer cells

(40). Currently, the phenotype of HMGB4-deficient mice is not
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clear, and the biological functions of HMGB4 are largely unknown,

requiring further research to reveal its mechanisms and functions in

the organism.

HMGB1, a member of the HMGB family, exhibits the highest

expression and has been extensively studied. This article focuses on

the role and mechanism of HMGB1 and its receptors in

tumor development.
1.2 The Receptor of HMGB1

1.2.1 TLR2
In the innate immune system, Toll-like receptors (TLRs) are

among the key molecules and belong to the pattern recognition

receptor (PRR) family. All TLRs share a common synthesis

pathway, where they are synthesized in the endoplasmic

reticulum (ER), transported to the Golgi apparatus, and

eventually localized to the cell surface or different subcellular

compartments (41). The expression level of TLR2, its interaction

with different ligands, and the types of co-receptors it carries

determine its role in mediating pro-inflammatory or anti-

inflammatory responses (42). On various cell types including

monocytes, tissue-resident macrophages, T cells, and B cells,

TLR2 can form homodimers or heterodimers with TLR1 or TLR6

(43). TLR2 is able to recognize endogenous damage-associated

molecular patterns (DAMPs) released during infection, tissue

necrosis, and injury, such as heat shock proteins and HMGB1.

The protein-protein interaction between HMGB1 and TLRs,

including TLR2, was first demonstrated by Park et al (44), the

binding of TLR2 to HMGB1 is negatively regulated by the C-

terminal tail of HMGB1. The HMGB1/TLR2 axis plays a critical

role in the pathogenesis of various diseases, including myocardial

ischemia/reperfusion injury, peripheral arterial disease, deep vein

thrombosis, and lupus nephritis (45, 46). Upon binding, the

HMGB1/TLR2 axis plays important roles in cells through

signaling pathways such as MyD88-SP1 (47), YAP/HIF-1a (48),

and NLRP3-NF-kB (49).

1.2.2 TLR4
TLR4 is a pattern recognition receptor belonging to the TLR

family, and it consists of extracellular and intracellular domains

(50). TLR4 is widely expressed on the surface of various cells in the

human body, including immune cells, intestinal cells, microglia,

astrocytes, and neurons. As a multi-ligand receptor, TLR4 can

recognize both exogenous pathogen-associated molecular patterns

(PAMPs) and endogenous damage-associated molecular patterns

(DAMPs), initiating innate immune responses (50). In, 2006, it was

demonstrated through fluorescence resonance energy transfer

(FRET) experiments and immunoprecipitation that TLR4 can

interact with HMGB1 (44). As a receptor, TLR4 binds to the

ligand HMGB1 and exerts its biological effects through the 89-

108 residues of the HMGB1 B box (51). Once the ligand binds to

TLR4, it activates the NF-kB signaling pathway, leading to the

production of downstream pro-inflammatory cytokines. This

process plays important roles in innate immune defense, protein
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clearance mechanisms such as autophagy and glial cell

phagocytosis, microglial activation, neuronal excitotoxicity, and

neurodegeneration (52). The binding of HMGB1 to TLR4 and

subsequent NF-kB-mediated cytokine production are strictly

regulated by cysteine oxidation-reduction modifications (43). In

addition to NF-kB, the HMGB1/TLR4 axis can also impact

signaling pathways such as NLRP3-GSDMD (53), MyD88 (54),

PI3K/Akt/mTOR (55), and MAPK-p38 (56).

1.2.3 RAGE
The receptor for advanced glycation end products (RAGE) is

also an important receptor for HMGB1 protein (57). RAGE was

named for its initial discovery as a receptor that can bind to

advanced glycation end products (AGEs) (58, 59). In addition to

AGEs, RAGE can interact with many endogenous ligands, including

S100/calgranulins, HMGB1, amyloid b-protein (Ab), and

exogenous ligands such as lipopolysaccharide (LPS) (60). RAGE

and Toll-like receptors may share some ligands (such as HMGB1,

S100A8/A9, and LPS) and signaling pathways, and may play similar

roles in innate immune responses (61, 62). Before binding to

ligands, RAGE assembles into multimers on the cell surface (63,

64); Biochemical analysis has shown that these multimers consist of

at least four RAGE molecules, and high cell surface concentrations

of RAGE facilitate the formation of multimers (65). Studies have

shown that monomeric RAGE has weak affinity for monomeric

ligands, hence the formation of multimeric RAGE is necessary for

binding to its ligands in a multimeric form (63, 64).

The receptor for advanced glycation end products (RAGE) is

composed of 11 exons and is highly conserved at the DNA and

protein levels across different mammalian species (66). RAGE is a

late-evolving member of the cell surface molecule immunoglobulin

superfamily (59, 67) and is located in the major histocompatibility

complex (MHC) class III region on chromosome 6 (68), which

contains many genes essential for both the innate and adaptive

immune systems. RAGE is involved in various diseases, including

cardiovascular and neurodegenerative diseases, cancer, and diabetes

(69). RAGE is a protein that contains multiple domains, including

an extracellular domain (V domain, C1 domain, and C2 domain), a

transmembrane domain (a single transmembrane helix), and an

intracellular domain (a short cytoplasmic tail) (70). The three main

domains are as follows: the first is the hydrophobic extracellular

domain present in amino acid residues 23-342. The hydrophobic

extracellular domain further refines into three immunoglobulin-like

domains, namely the variable domain V (amino acids 23-116), and

two constant domains C1 and C2; C1 and C2 are located at amino

acids 124-221 and 227-317, respectively. The second domain is the

short transmembrane domain (TM) present in amino acid residues

343-363, and the third domain is the cytoplasmic domain present in

amino acid residues 364-404. The VC1 domain, which is formed by

the integration of the V domain and C1 domain, contains positively

charged chemical groups. Some studies have shown that the VC1

domain on RAGE can interact with negatively charged molecules

on certain proteins, such as S100/calgranulins, AGEs, HMGB1, and

Ab, to exert specific biological effects (71–73). The binding of

HMGB1 to RAGE can activate multiple signaling pathways,
frontiersin.org

https://doi.org/10.3389/fonc.2024.1336191
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fan et al. 10.3389/fonc.2024.1336191
including NF-kB, MAPK, MEK, ERK1/2, PI3K, Akt, and TGF-b,
which are associated with tumor progression (61, 74–76).

Currently, the only known direct binding partner of the

cytoplasmic domain of RAGE is mDia1 (17), as identified by

yeast two-hybrid screening (77). The crystal structure of RAGE/

mDia1 has shown that the arginine at position 366 and the

glutamine at position 367 of RAGE interact with the FH1 domain

of mDia1 (78).
2 HMGB1/RAGE axis and
tumor development

2.1 HMGB1/RAGE axis and
tumor proliferation

Uncontrolled proliferation and unlimited replication are major

characteristics of malignant tumors, and inhibiting tumor cell

proliferation is necessary to control tumor development. In 13

types of malignant tumors, the HMGB1/RAGE axis has been

reported to promote tumor cell proliferation, and several studies

have elucidated the signaling pathways involved. Inhibition of cell

proliferation can be achieved by blocking cell cycle progression. It

has been shown that RAGE is significantly upregulated in

hepatocellular carcinoma tissue, and treatment of hepatocellular

carcinoma cells (Huh7) with HMGB1 promotes cancer cell

progression from the G1 phase to the S phase, accelerating cell

division and proliferation (79). Cheng et al. discovered that ethyl

pyruvate (EP) (80), a potent inhibitor of HMGB1, inhibits cell cycle

progression, and suppresses the growth and proliferation of liver

cancer cells by reducing the expression of HMGB1, RAGE, and

serine/threonine kinase (AKT) (81). In the study of non-small cell

lung cancer, ethyl pyruvate was also found to inhibit the HMGB1/

RAGE axis and suppress cell growth through the NF-kB/STAT3
pathway (82).

The HMGB1/RAGE axis has been found to affect proliferation

in cervical cancer, glioma, and clear cell carcinoma through the

Mitogen-Activated Protein Kinase (MAPK) signaling pathway. He

et al. demonstrated through experiments using human cervical

cancer HeLa cells and human colon cancer HT29 cells that

radiation induces tumor cell necrosis and apoptosis, leading to

the passive release of HMGB1. HMGB1 then binds to RAGE

receptors through paracrine signaling, activating downstream

ERK and p38 signaling pathways and promoting cell proliferation

(83). In glioma, it has been reported that HMGB1 can be passively

released from dead cells into the extracellular space (84–86).

Extracellular HMGB1 interacts with RAGE to stimulate tumor

growth (86). Efthalia et al. found that the RAGE/MEK/ERK1/2

signaling pathway mediates HMGB1-induced glioma cell

proliferation (87). Grade IV glioblastoma, the most aggressive

form of glioma, exhibits unique widespread tissue hypoxia

characteristics (88), which can increase HMGB1 expression and

extracellular release. Hypoxia-induced HMGB1 activates the

RAGE-dependent ERK1/2 signaling pathway, maintaining

glioblastoma proliferation, regulating glioma stem cells’ self-

renewal, and further promoting tumor progression (89). In clear
Frontiers in Oncology 05
cell carcinoma, HMGB1 binds to RAGE to initiate intracellular

signal transduction and activate ERK, leading to increased cell

growth (90). In pancreatic cancer and human breast cancer, the

HMGB1/RAGE axis controls cancer cell proliferation through the

NF-kB signaling pathway. Priyanka Swami et al. observed that

RAGE in pancreatic cancer mice can affect the classical NF-kB
signaling pathway by reducing the phosphorylation levels of p65. In

human pancreatic cancer cells and tumors, it has been

demonstrated that both RAGE ligands, HMGB1 and S100P,

stimulate RAGE. However, the animal model used by the authors

does not express functional S100P, suggesting that HMGB1

activation of RAGE can stimulate pancreatic cancer cells and

promote their proliferation (91). Lan et al. showed that in human

breast cancer cells, quercetin inhibits cell survival and proliferation

by protecting against cell death, reducing the expression of HMGB1

and RAGE, inhibiting p65 nuclear translocation, and suppressing

NF-kB activation (92).

Two articles have demonstrated that the HMGB1/RAGE axis

can promote proliferation in nasopharyngeal carcinoma (NPC). In

colorectal cancer and gastric cancer, the HMGB1/RAGE axis also

plays a role in tumor promotion. In, 2015, a study showed for the

first time that knockdown of HMGB1 inhibited the activation of the

HMGB1/RAGE axis, downregulated the expression of p-ERK1/2,

and suppressed the proliferation of NPC cells (93). In a study on

NPC in, 2016, it was reported that after stimulation with Epstein-

Barr virus (EBV), HMGB1 was significantly upregulated in the

cytoplasm in a dose-dependent manner, while it was significantly

downregulated in the nucleus. The levels of HMGB1 in the

supernatant increased significantly, and RAGE was also

significantly upregulated, leading to accelerated proliferation of

NPC cells. Zhu et al. demonstrated that the pro-proliferative

effect of HMGB1 in NPC cells is RAGE-dependent (94). In

colorectal cancer, the overexpression of HMGB1 and RAGE

signaling may activate the transcription factor Yes-associated

protein 1 (Yap1) through direct interaction with K-Ras, thereby

promoting the proliferation and stemness of colorectal cancer cells

(95). The HMGB1/RAGE axis regulates gastric cancer cell

proliferation through the Akt/mTOR and ERK signaling

pathways (96). Consistent with previous reports (97, 98), the

expression levels of HMGB1 in gastric cancer tissues and cells

were higher than those in adjacent lung tumor tissues and normal

gastric epithelial cells (96). Tang et al. found that overexpression of

HMGB1 in gastric cancer cells increased RAGE expression, but not

TLR2 and TLR4. The expression levels of cyclin D1, cyclin E1, and

proliferating cell nuclear antigen (PCNA) were elevated, and the cell

proliferation ability was enhanced (96).

Functional RNAs, including long non-coding RNAs (lncRNAs)

and endogenous non-coding RNAs (microRNAs or miRNAs), have

been found to regulate the HMGB1/RAGE axis and affect

proliferation in liver cancer and glioblastoma. Many lncRNAs

have complementary sequences with protein-coding genes,

suggesting that they may play a role in mRNA splicing, editing,

transport, translation, and degradation. One such lncRNA, TP73-

AS1, targets miR-200a to inhibit its expression, thereby

upregulating HMGB1/RAGE expression and promoting

proliferation in liver cancer cells (99). Gu et al. discovered that
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microRNA-218 inhibits glioblastoma cell proliferation by negatively

regulating the HMGB1-RAGE axis (3) (Figure 2).

The HMGB1/RAGE axis promotes tumor cell proliferation in

various malignant tumors, including hepatocellular carcinoma,

non-small cell lung cancer, cervical cancer, glioma, clear cell renal

cell carcinoma, pancreatic cancer, breast cancer, nasopharyngeal

carcinoma, colorectal cancer, and gastric cancer. Additionally, the

role and mechanism of the HMGB1/RAGE axis in promoting

tumor proliferation in other tumor types such as osteosarcoma,

lung cancer, and thyroid cancer remain to be elucidated. The

interaction between HMGB1 and its receptor RAGE promotes

cell proliferation through cell cycle progression, MAPK, NF-kB,
Akt/mTOR, ERK, and other signaling pathways. Certain functional

RNAs, including long non-coding RNAs and microRNAs, regulate

the expressions of HMGB1/RAGE and impact tumor cell

proliferation. However, there are also some functional RNAs have

the potential to inhibit HMGB1/RAGE axis, representing a

promising avenue for research. Furthermore, the development of

molecular drugs that inhibit the HMGB1/RAGE axis is crucial for

cancer therapy.
2.2 HMGB1/RAGE axis and Tumor

2.2.1 Apoptosis
Cell apoptosis is a fundamental biological phenomenon that

plays a crucial role in the evolution of organisms, maintenance of

internal environment stability, and development of multiple
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systems. It also plays an important role in inhibiting tumor

development. Numerous studies have revealed a significant

association between the HMGB1/RAGE axis and cell apoptosis in

tumors. Cell apoptosis, known as programmed cell death, is

typically triggered by excessive DNA damage that cannot be

adequately repaired. Currently, gemcitabine (GEM) (100) is the

most widely used cytotoxic drug for treating pancreatic cancer in

clinical settings. DNA damage induced by gemcitabine can lead to

cell apoptosis (101). In a mouse model of pancreatic cancer treated

with gemcitabine, inhibition of RAGE enhances gemcitabine-

induced cell apoptosis. Hence, RAGE is believed to play a role in

inhibiting cell apoptosis in pancreatic cancer (91). Silencing RAGE

in prostate tumor cells results in decreased HMGB1 expression and

increased expression of death receptors DR4 and DR5,

demonstrating that disruption of the HMGB1-RAGE axis induces

apoptosis in prostate tumors (102). Inhibition of the HMGB1-

RAGE axis in pancreatic cancer cells also induces cell apoptosis (9).

In another study on pancreatic tumors, downregulation of RAGE

expression increases caspase-3 activity and enhances tumor cell

apoptosis. Conversely, when RAGE is present, it restricts the

translocation of p53 to mitochondria, thereby inhibiting cell

apoptosis. Experiments have also demonstrated that silencing

HMGB1 increases the expression of cleaved PARP, an apoptosis

marker, in pancreatic cancer cells with downregulated RAGE

expression, further promoting apoptosis (72).

Multiple small chemical molecules have been reported to have

anti-tumor effects and promote tumor cell apoptosis. 4-

acetylquinone B (4-AAQB) is an ubiquitin-ketone derivative from
FIGURE 2

Mechanisms of HMGB1/RAGE axis in tumor proliferation. EP, ethyl pyruvate;EB virus,Epstein-Barr virus;NF-kB, Nuclear factor kappa-B;K-Ras, Kirsten-
rat sarcoma viral oncogene homolog;Yap1,Yes-associated protein 1;MAPK, Mitogen-activated protein kinase;AKT, Protein kinase B;mTOR,
mammalian target of rapamycin;STAT3, Signal Transducer And Activator Of Transcription 3;MEK, Mitogen-activated protein kinase kinase;ERK1/2,
extracellular regulated protein kinases.
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the Formosan camphor tree, known for its anti-inflammatory and

antioxidant abilities (103). In pancreatic cancer cells treated with 4-

AAQB, there is a significant increase in Bax, a significant decrease in

Bcl-xL, and a significant increase in the Bax/Bcl-xL ratio, promoting

pancreatic cancer cell apoptosis (104). Aloin (ALO), extracted from

aloe vera, is a bioactive compound with anti-tumor effects that can

induce apoptosis in lung cancer, colorectal cancer, and breast cancer

cells (105, 106). Tao et al. demonstrated that ALO can reduce the

expression levels of HMGB1 and its receptor RAGE, inhibiting the

release of HMGB1. In breast cancer cells with silenced HMGB1,

ALO can suppress the activation of the Akt-mTOR-P70S6K and

ERK-P90RSK-CREB signaling pathways induced by HMGB1 (107).

Two anti-cancer drugs, quercetin and lucidone A, inhibit the

HMGB1/RAGE axis to promote apoptosis in breast cancer and

pancreatic cancer, respectively. Ethyl pyruvate (EP), an inhibitor of

HMGB1, enhances apoptosis in liver cancer cells. Quercetin, a well-

known anti-cancer agent, is a natural flavonoid that inhibits the

expression of HMGB1 and RAGE in human breast cancer at the

transcription and translation levels. Treatment with quercetin in

breast cancer MCF7 cells increases cytoplasmic p65 expression,

inhibiting its nuclear translocation and thus suppressing NF-kB

activation. Additionally, quercetin treatment downregulates the

levels of mitochondrial cytochrome C, procaspase-7, and the anti-

apoptotic protein Bcl-2. These findings suggest that quercetin

induces apoptosis through the inhibition of the HMGB1-RAGE

axis (92). Ethyl pyruvate (EP), a simple ester derived from pyruvic

acid, is an effective inhibitor of HMGB1 and can disrupt the AKT

pathway (108). In liver cancer, EP inhibits the expression of

HMGB1 and RAGE. EP reduces p-AKT expression through the
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HMGB1-RAGE axis and increases the Bax/Bcl-2 ratio, promoting

apoptosis in liver cancer (81). Lucidone, a naturally occurring

cyclopentenedione analogue, extracted from the fruit of Lindera

erythrocarpa Makino, a plant widely distributed in Asia, has been

shown to exhibit anti-inflammatory effects through the mediation

of NF-kB and MAPK signaling pathways (109). Experimental

results indicate that lucidone reduces the levels of the anti-

apoptotic protein Bcl-xL and increases the ratio of the pro-

apoptotic protein Bax/Bcl-xL in human pancreatic cancer MIA

Paca-2 cells. Many patients with pancreatic ductal adenocarcinoma

(PDAC) develop resistance to gemcitabine (GEM). Further

experiments reveal that lucidone significantly inhibits the protein

levels of HMGB1 and RAGE in GEM-resistant pancreatic cancer

cells. In conclusion, lucidone promotes apoptosis in human

pancreatic cancer cells through the HMGB1-RAGE axis

(110) (Figure 3).

Collectively, the HMGB1/RAGE axis has been found to be

closely related to tumor cell apoptosis, and several small-molecule

chemical drugs have been reported to have anti-tumor effects by

promoting tumor cell apoptosis via HMGB1/RAGE axis. These

drugs include 4-acetylquinoline B, aloin, quercetin, ethyl pyruvate,

and ganoderone. These studies suggest that the HMGB1/RAGE axis

plays an important role in tumor cell apoptosis, and these related

drugs have therapeutic potential in tumor treatments. Future

research can further explore the molecular mechanisms of the

HMGB1/RAGE axis in tumor cell apoptosis, search for more

anti-tumor drugs, and investigate their relationship with the

HMGB1/RAGE axis. In addition, personalized therapy for tumors

is also a research hotspot, and further research can explore the
FIGURE 3

Mechanisms of HMGB1/RAGE axis in tumor apoptosis. EP, ethyl pyruvate;GEM, gemcitabine;DR4, death receptors 4;DR5, death receptors 5;NF-kB,
Nuclear factor kappa-B;PARP, Poly ADP-ribose polymerase;AKT, Protein kinase B;mTOR, mammalian target of rapamycin;ERK1/2, extracellular
regulated protein kinases 1/2;P70S6K, p70 ribosomal protein S6 kinase;P90RSK, p90 ribosomal protein S6 kinase;CREB, cAMP -response element
binding protein.
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different responses of patients to anti-tumor drugs, as well as the

role of the HMGB1/RAGE axis in this process. Overall, the

relationship between the HMGB1/RAGE axis and tumor cell

apoptosis provides new ideas and potential targets for tumor

treatment, but further research is needed to deepen our

understanding of its mechanisms and develop more effective

treatment strategies.
2.3 HMGB1/RAGE axis and tumor
migration, invasion, EMT

Metastasis is the main cause of death in most cancer patients,

posing a significant challenge in the fight against cancer. Metastasis

in tumor cells is characterized by migration, invasion, and

epithelial-mesenchymal transition (EMT). In the growth

processes of liver cancer, colon cancer, colorectal cancer, cervical

cancer, prostate cancer, and pancreatic cancer, the HMGB1/RAGE

axis can promote tumor migration and invasion through the NF-kB

signaling pathway. In the liver cancer cell line HCCLM3,

overexpression of HMGB1 and RAGE is observed, and inhibition

of the HMGB1/RAGE axis reduces the expression of p50 and p65 in

the NF-kB signaling pathway, thereby inhibiting the migration and

invasion of HCCLM3 (111). In, 2013, it was reported that the

addition of exogenous HMGB1 to H22 liver cancer cells, acting on

RAGE and through the NF-kB pathway, increases the expression of

matrix metalloproteinase 9 (MMP9), promoting the invasion of

H22 cells (112). In the colon cancer cell line LoVo, translationally

controlled tumor protein (TCTP) upregulates the expression and

secretion of HMGB1. Experimental evidence suggests that the

HMGB1/RAGE axis mediates the NF-kB signaling pathway,

promoting the invasion of LoVo cells in vitro and the metastasis

of colon cancer in vivo (113). Pang et al. found that inhibition of the

HMGB1/RAGE/Snail/NF-kB signaling pathway can reverse

HMGB1-induced EMT in colorectal cancer cell line CRC, thereby

preventing the migration and invasion of CRC cells (114). In, 2016,

an article reported that HMGB1 may be involved in the invasion,

migration, and EMT of cervical cancer cells by activating the NF-kB

signaling pathway through binding to RAGE (115). Zhang et al.

suggested that HMGB1 promotes EMT in prostate cancer PC3 cells

by activating the RAGE/NF-kB signaling pathway, upregulating the

expression of EMT markers MMP-1, MMP-3, and MMP-10, and

promoting prostate cancer metastasis (116). Studies have shown

that HMGB1 activates RAGE to affect the NF-kB signaling pathway

by reducing p65 phosphorylation levels, promoting pancreatic

cancer metastas i s , and inducing chemores is tance to

gemcitabine (91).

In glioblastoma, clear cell renal cell carcinoma, gastric cancer,

nasopharyngeal carcinoma, melanoma, and non-small cell lung

cancer, the HMGB1/RAGE axis plays a role in tumor metastasis

through the MAPK signaling pathway. When human glioblastoma

cells undergo necrosis, HMGB1 is released into the extracellular

environment, where it can act on adjacent cells to promote tumor

progression. HMGB1 regulates the migration of T98G glioblastoma

cells through the RAGE/MEK/ERK signaling pathway (86). The

binding of HMGB1 to RAGE initiates intracellular signaling and
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activates ERK, leading to increased migration and invasion of clear

cell renal cell carcinoma cells (RCCC) (90). In gastric cancer cells,

HMGB1 acts on RAGE to enhance Akt/mTOR and ERK signaling

pathway phosphorylation, promoting cell migration (96).

Knockdown of HMGB1 in nasopharyngeal carcinoma cells

inhibits the activation of the HMGB1/RAGE pathway,

downregulating the expression of p-ERK1/2 and reducing the

migration and invasion capabilities of cancer cells (93).

Glycyrrhizin improves lung metastasis in melanoma, and further

experiments show that it weakens NF-KB and ERK1/2 expression

by acting on the HMGB1/RAGE axis, inhibiting melanoma lung

metastasis (117). In, 2019, it was reported that ethyl pyruvate (EP)

reduces MMP9 levels and attenuates the migration and invasion of

non-small cell lung cancer (NSCLC) cells by inhibiting the

HMGB1/RAGE axis (82).

The HMGB1/RAGE axis is involved in the metastasis of breast

cancer, chondrosarcoma, and prostate cancer through the PI3K-

AKT-mTOR signaling pathway, respectively. Research has shown

that fibroblasts in breast cancer activate HMGB1 release into the

tumor microenvironment, where it interacts with RAGE and

promotes invasion of breast cancer cells and the expression of

programmed death ligand 1 (PD-L1) through the PI3K/AKT

signaling pathway (118). The HMGB1/RAGE axis enhances the

expression of integrin a5b1 in chondrosarcoma cells and promotes

their migration through the PI3K/Akt/c-Jun/AP-1 signaling

pathway (119). Verbascoside inhibits TGF-b and the EMT

process through the HMGB1/RAGE axis, thereby reducing cell

proliferation and invasiveness in prostate cancer via the PI3K/AKT/

mTOR pathway (120). In gastric cancer, prostate cancer,

rhabdomyosarcoma, breast cancer, and hypopharyngeal cancer,

the HMGB1/RAGE axis is involved in the migration, invasion,

and EMT of these cancers. Clinical evidence suggests that high

expression of HMGB1 and RAGE is associated with a significant

decrease in the five-year survival rate in gastric cancer patients with

diabetes compared to those with low expression (96). mRNA

expression of HMGB1 and RAGE is upregulated in prostate

cancer tissues, and increased RAGE expression induces the

invasive ability of prostate cancer (121). Francesca et al.

concluded that HMGB1 activates RAGE in rhabdomyosarcoma

cells via autocrine signaling. Forced expression of RAGE in RAGE-

negative rhabdomyosarcoma cells TE671 resulted in decreased

invasive ability (122). The secretion of HMGB1 in breast cancer

cells is positively correlated with their metastatic potential. Further

experiments have shown that HMGB1 secretion in breast cancer

cells promotes fibroblast activation, which, through RAGE,

upregulates aerobic glycolysis and promotes the metastasis of

breast cancer cells (123). Li et al. demonstrated that HMGB1 can

attenuate TGF-b-induced invasion, migration, and epithelial-

mesenchymal transition in hypopharyngeal cancer cells FaDu by

regulating RAGE expression (124).

Recent studies have revealed the involvement of small RNAs

and chemical substances in the HMGB1/RAGE axis. In

hepatocellular carcinoma (HCC) cell line HCC, the decreased

expression levels of circRNA, 101368 and miR-200a inhibit HCC

migration. The circRNA, 101368/miR-200a axis regulates HCC

migration through the HMGB1/RAGE signaling pathway (115).
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The interaction between HMGB1 and RAGE enhances the

migration activity of human squamous cell carcinoma SCC7 cells,

while nifedipine dose-dependently inhibits the HMGB1-RAGE

interaction in SCC cells (125). MIR-218 may negatively regulate

the HMGB1/RAGE axis by targeting HMGB1, thereby inhibiting

the invasion of glioblastoma cells (Figure 4).

Overall, the HMGB1/RAGE axis is involved in the migration,

invasion, and metastasis of various cancers. It regulates the

epithelial-mesenchymal transition (EMT) process of cells through

different signaling pathways, including NF-kB, MAPK, PI3K/AKT/

mTOR, etc., promoting cancer cell metastasis. High levels of

HMGB1 and RAGE expression in tumors are associated with

poor prognosis, suggesting a role of HMGB1/RAGE axis in tumor

prognosis. Although many chemical drugs and small RNAs have

been found to regulate the HMGB1/RAGE axis and inhibit tumor

cell metastasis and invasion, their research is still in the early stage

and further studies are needed to validate their efficacy and safety.

Additionally, future research is required to explore the exact

molecular mechanisms of the HMGB1/RAGE axis in tumor cell

apoptosis and search for more drugs having the potential to regulate

HMGB1/RAGE axis. Furthermore, an essential avenue is

personalized therapy, developing treatment strategies tailored to

individual variances, aiming to enhance treatment effectiveness

while minimizing side effects. In summary, additional

investigation is warranted to comprehend the involvement and

regulatory mechanisms of the HMGB1/RAGE axis in tumor

metastasis, which will offer novel insights and approaches for

advancing tumor treatment.
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2.4 HMGB1/RAGE axis and
tumor autophagy

Autophagy, also known as self-eating, is a process in which

eukaryotic cells utilize lysosomes to degrade their own cytoplasmic

proteins and damaged organelles under the regulation of

autophagy-related genes (ATGs). Autophagy serves as a cellular

self-protective mechanism, preventing cell damage and promoting

cell survival under conditions of nutrient deprivation. It plays a

beneficial role in cell growth and development, protecting cells from

metabolic stress and oxidative damage, and maintaining cellular

homeostasis, as well as the synthesis, degradation, and recycling of

cellular products (126). During the early stages of tumorigenesis,

autophagy can prevent tumor formation and inhibit cancer

progression. However, as tumors advance and face environmental

pressures, autophagy, as a dynamic degradation and recycling

system, contributes to the survival and growth of established

tumors, promoting cancer invasiveness by facilitating

metastasis (127).

Currently, research on autophagy in pancreatic cancer is

relatively comprehensive. The HMGB1/RAGE axis has been

shown to promote autophagy in pancreatic cancer and contribute

to its progression in multiple studies. In autophagy regulation,

HMGB1 is a multifunctional protein with location-dependent

functions. Under normal conditions, HMGB1 is located in the

cell nucleus, but under stress conditions, it can translocate to the

cytoplasm or be released into the extracellular space (128). Reduced

HMGB1 promotes cancer cell autophagy, while oxidized HMGB1
FIGURE 4

Mechanisms of HMGB1/RAGE axis in tumor migration,invasion and EMT. EP,ethyl pyruvate;PI3K,Phosphatidylinositol-3-kinase;AKT,Protein kinase B;
AP-1,activator protein-1;NF-kB, Nuclear factor kappa-B;MAPK, Mitogen-activated protein kinase;mTOR, mammalian target of rapamycin;STAT3,
Signal Transducer And Activator Of Transcription 3;MEK, Mitogen-activated protein kinase;ERK1/2, extracellular regulated protein kinases 1/2;MMP,
Matrix metalloproteinases.
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promotes cancer cell apoptosis. After reduction, HMGB1 is released

by cancer cells into the extracellular space, where it interacts with

RAGE, inducing Beclin-dependent autophagy (129). As a cellular

defense mechanism, cytoplasmic HMGB1 directly interacts with

Beclin 1 (130). Antioxidant enzymes, such as superoxide dismutase,

and small molecule antioxidants, such as N-acetyl-l-cysteine, inhibit

HMGB1 activation and pancreatic autophagy induction (131).

Inhibition of the HMGB1-RAGE axis leads to reduced autophagy

in pancreatic cancer and inhibits its progression. In pancreatic

cancer, RAGE-mediated autophagy acts by reducing the

phosphorylation level of mammalian target of rapamycin

(mTOR) and limiting the formation of the Beclin-1/VPS34

autophagy complex. Exogenous rhHMGB1 can promote

autophagy in pancreatic cancer cell lines through RAGE-

dependent signaling pathways (132). Clinical evidence shows that

pancreatic cancer patients develop chemoresistance and cytotoxic

effects to gemcitabine (GEM) chemotherapy related to autophagy

(133). Bax can directly inhibit autophagy (134), and treatment of

pancreatic cancer cells with 4-AAQB enhances the expression of

pro-apoptotic protein Bax and reduces the expression levels of

autophagy-related proteins (Atg5, Beclin-1, and LC3 II). Chen et al.

demonstrated that 4-AAQB downregulates autophagy through

inhibition of the HMGB1/RAGE-initiated PI3K/Akt/MDR1

signaling pathway (104). They also showed that lucidone

combined with gemcitabine reduces autophagy and promotes cell

apoptosis through the HMGB1/RAGE/PI3K/Akt signaling

pathway, thereby slowing down the development of pancreatic

cancer (110). Currently, besides surgery, the main treatment

methods for patients with exocrine pancreatic cancer in clinical

practice are radiotherapy and chemotherapy, which can

significantly activate autophagy in pancreatic cancer cells (135,

136). Compared to other epithelial cancers, pancreatic cancer

typically exhibits high basal levels of autophagy, which is

associated with poor prognosis in patients (137).

In addition to pancreatic cancer, increased autophagy mediated

by the HMGB1/RAGE axis has been observed in renal cell

carcinoma, colorectal cancer, and clear cell renal cell carcinoma.

Knocking down HMGB1 in renal cell carcinoma significantly

inhibits the expression of RAGE, as well as the expression of

autophagy proteins LC3II and Beclin1. The HMGB1-RAGE axis

mediates autophagy in renal cancer cells (138). Huang et al. found

that both HMGB1 and RAGE are significantly upregulated in

colorectal cancer tissues. Experimental evidence has shown that in

colorectal cancer cells, extracellular HMGB1 activates ERK1/2

through its interaction with RAGE. The HMGB1-RAGE axis

activates the phosphorylation of dynamin-related protein 1

(Drp1) (139, 140) leading to mitochondrial fission and cell

autophagy, which promotes chemotherapy resistance and tumor

growth in colorectal cancer (141). HMGB1, RAGE, and autophagy

proteins LC3, Beclin-1, and PI3K are significantly increased in clear

cell renal cell carcinoma. Experimental evidence has demonstrated

that the interaction between HMGB1 and RAGE initiates signaling

pathways such as ERK1/2 phosphorylation, NF-kB, and MAPK,

thereby promoting autophagy in ccRCC (142) (Figure 5).

These investigations suggest that the activation of the HMGB1/

RAGE axis can stimulate autophagy in tumor cells by elevating the
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expression of autophagy-related proteins LC3 and Beclin-1,

achieved through the activation of signaling pathways like PI3K/

Akt, MAPK, and NF-kB. Furthermore, the distinct roles played by

the reduced and oxidized states of HMGB1 in tumor cells

necessitate further exploration. Subsequent studies should probe

into the autophagy regulatory mechanisms governed by the

HMGB1/RAGE axis in tumors and explore additional therapeutic

approaches targeting this axis. Additionally, research efforts should

investigate the interplay between the HMGB1/RAGE axis and other

signaling pathways for a more comprehensive understanding of the

regulatory network governing autophagy in tumor cells.
2.5 HMGB1/RAGE axis and
tumor angiogenesis

The process of angiogenesis is primarily initiated by the tumor

itself (143). As a malignant tumor grows to a certain size, it leads to

cellular hypoxia. Hypoxia is a crucial trigger for tumor angiogenesis

(144). Hypoxia causes an increased expression of angiogenic

molecules, including growth factors, cytokines, bioactive lipids,

and matrix-degrading enzymes, in hypoxic cells. These molecules

bind to receptors on adjacent vascular endothelial cells to initiate

the formation of new blood vessels (145). Once tumor

neovascularization occurs, an adequate vascular system and blood

supply continue to provide oxygen and nutrients to cancer cells,

thereby promot ing tumor growth , progress ion , and

metastasis (145).

In several types of tumors, including renal cell carcinoma, oral

squamous cell carcinoma, laryngeal squamous cell carcinoma, and

colorectal cancer, angiogenesis is closely associated with malignant

tumor progression. Experimental evidence has shown that

inhibiting the HMGB1/RAGE axis can suppress tumor

angiogenesis. HMGB1 and RAGE are overexpressed in

glioblastoma, and the impact of RAGE ablation in the tumor

microenvironment (TME) on glioblastoma growth appears to be

due to reduced tumor inflammation and impaired angiogenesis

(146). Knocking down RAGE in glioblastoma leads to decreased

inflammation and tumor angiogenesis, inhibiting tumor

development. In renal cell carcinoma cell lines, reducing the

expression of HMGB1 and RAGE significantly decreases the

expression of vascular endothelial growth factors (VEGF) and its

receptor VEGFR2. The HMGB1/RAGE axis regulates angiogenesis

in renal cell carcinoma (138). Late-stage oral squamous cell

carcinoma (OSCC) is mainly characterized by local invasion and

lymph node metastasis (147), and angiogenesis is one of the main

factors contributing to OSCC progression (148). The expression of

RAGE in OSCC tumor tissues is significantly correlated with VEGF,

and experimental evidence has shown that HMGB1 induces VEGF

secretion in OSCC cell lines HSC-3 and HSC-4 (149). A study on

laryngeal squamous cell carcinoma (LSCC) has shown that HMGB1

increases lymphangiogenesis by activating RAGE on M2

macrophages (150). For many LSCC patients, the main cause of

death is tumor dissemination, and lymph node metastasis is early

evidence of tumor dissemination (151). All-thiol HMGB1 (at-

HMGB1) binds to its receptor RAGE, promoting the secretion of
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the angiogenic factor VEGF, thereby facilitating angiogenesis in

colorectal cancer patients. The HMGB1/RAGE axis is an important

target for treating tumor angiogenesis (152).

Tumor endothelial cells (ECs) secrete HMGB1 and increase the

expression of RAGE, promoting the angiogenic capacity of tumor

ECs. Evodiamine (EVO), a bioactive compound derived from the

plant Evodia rutaecarpa, effectively inhibits the HMGB1/RAGE

pathway. In a study conducted in, 2013, it was found that

activated ECs secrete HMGB1, which stimulates the migration

and angiogenic capacity of ECs in vitro and in vivo through

autocrine or paracrine mechanisms. In vivo experiments using

HMGB1 antibodies successfully targeted and inhibited tumor

angiogenesis in the chorioallantoic membrane (CAM) of chick

embryos. In vitro experiments demonstrated that exogenous

HMGB1 increased the expression of RAGE and TLR4 in ECs,

further confirming that RAGE is the primary receptor for HMGB1

in tumor ECs (153). In, 2021, Ren et al. predicted through

bioinformatics that EVO, a bioactive compound from Evodia

rutaecarpa, could interact with RAGE or its major ligands.

Previous studies have reported that EVO exhibits inhibitory

effects on tumor proliferation and promotes apoptosis in various

studies (154, 155). Subsequent in vitro and in vivo experiments

demonstrated that EVO inhibits the growth and angiogenesis of

oral squamous cell carcinoma (OSCC) and is associated with the

HMGB1/RAGE axis. The authors suggest that EVO directly binds

to HMGB1 and may also participate in protein degradation. It can

reduce the activity of the RAGE pathway by influencing the binding

of HMGB1 to RAGE (156).
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Hypoxia prompts the expression of angiogenic molecules

within tumor cells, thereby instigating the development of new

blood vessels. Angiogenesis is intricately linked to the progression

of diverse malignancies, such as renal cell carcinoma, oral squamous

cell carcinoma, laryngeal squamous cell carcinoma, and colorectal

cancer. The HMGB1/RAGE axis plays a crucial role in regulating

angiogenesis, and its inhibition has been demonstrated to curb

tumor angiogenesis and progression. Rutaecarpine, the active

compound in Evodia rutaecarpa, has been identified as a

suppressor of the HMGB1/RAGE pathway, exhibiting the

potential to hinder tumor growth and angiogenesis. Future

investigations should delve deeper into the regulatory

mechanisms of this axis and strive to develop more effective

strategies for addressing tumor angiogenesis, offering valuable

contributions to scientific publications.
3 Conclusion

Due to the various subcellular localization of HMGB1 and its

interaction with diverse receptors, its role in tumors is complex.

HMGB1 can be actively released or passively secreted into the

extracellular space in tumor cells, where it binds to the receptor

RAGE on the cell membrane, acting as an alarm signal to influence

a diverse processes in tumor initiation and progression by

modulating downstream signaling pathways.

In terms of tumor proliferation, the HMGB1/RAGE axis

promotes tumor cell growth through several signaling pathways,
FIGURE 5

Mechanisms of HMGB1/RAGE axis in tumor autophagy. GEM,gemcitabine;4-AAQB,4-acetylquinone-B;PI3K,Phosphatidylinositol-3-kinase;AKT,
Protein kinase B;MDR1, Multi-drug Resistance-1;mTOR, mammalian target of rapamycin;NF-kB, Nuclear factor kappa-B;MAPK, Mitogen-activated
protein kinase;ERK1/2, extracellular regulated protein kinases 1/2;Drp1, dynamin-related protein 1.
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including NF-kB, K-Ras, MAPK, AKT, mTOR, STAT3, MEK, and

ERK1/2. In terms of tumor apoptosis, the HMGB1/RAGE axis

mediates tumor cell death through signaling pathways involving

NF-kB, AKT, mTOR, and ERK1/2. It also enhances the expression

of cell factors, including p65, p53, PARP, Bax, procaspase7, Bcl-2,

Bcl-xl, and Cyt-C, further inhibiting tumor cell apoptosis. Inhibitors

of the HMGB1/RAGE axis, such as EP, Quercetin, and Aloin, as

well as gemcitabine (GEM), which suppresses HMGB1 and RAGE

expression, can impact downstream signaling pathways.

Regarding tumor migration, invasion, and epithelial-

mesenchymal transition (EMT), the HMGB1/RAGE axis

upregulates the expression of cell factors like integrin a5b1,
MMP1, MMP3, MMP9, and MMP10, through signaling pathways

involving NF-kB, PI3K-AKT-mTOR, Snail, MAPK, TGF-b,
STAT3, MEK-ERK1/2, thereby promoting tumor migration,

invasion, and EMT. Inhibitors of the HMGB1/RAGE axis, such as

microRNA-218, Glycyrrhizin, Verbascoside, Nifedipine, and EP,

exert inhibitory effects. Moreover, the downregulation of small

molecule RNAs like circRNA101368 and miRNA-200a can also

inhibit the HMGB1/RAGE axis and subsequent signaling pathways.

In terms of tumor autophagy, the HMGB1/RAGE axis induces

cellular autophagy through signaling pathways involving PI3K-

AKT-MDR1, mTOR, NF-kB, MAPK, and p-ERK1/2. It

upregulates the expression of cell factors like Bax, Beclin-1, LC3-

II, Atg5, Beclin-1/VPS34 autophagosome complex, and p-Drp1,

thereby promoting cellular autophagy. Compounds like Lucidone

and GEM can inhibit the HMGB1/RAGE axis when used in

combination, as can 4-AAQB. Regarding tumor angiogenesis,

inhibiting the HMGB1/RAGE axis leads to a decrease in the

expression of vascular endothelial growth factor (VEGF) and its

receptor VEGFR2, thereby inhibiting tumor angiogenesis. EVO, an

active compound found in Ampelopsis, acts as an anticancer agent

by directly binding to HMGB1 and inhibiting the HMGB1/RAGE

axis, ultimately inhibiting angiogenesis.

Considering the critical role of HMGB1/RAGE axis in tumor

biology, HMGB1/RAGE may serve as a promising therapeutic

target for cancers. Certain small molecule RNAs, such as

microRNA-218 and lncRNA (TP73-AS1), can suppress the

HMGB1/RAGE axis. Additionally, compounds like ethyl pyruvate

(EP) and Epstein-Barr virus also exert inhibitory effects on this axis.
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This article comprehensively reviews the signaling pathways and

molecular changes dependent on the HMGB1/RAGE axis, as well as

various inhibitors of the HMGB1/RAGE axis, providing

preliminary information for further research on the role of

HMGB1/RAGE in tumors, as well as the development of targeted

therapies and molecular inhibitors in clinical settings.
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