
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Jing Zhang,
University of South Dakota, United States

REVIEWED BY

Jinwei Li,
Sichuan University, China
Pei Shengbin,
Chinese Academy of Medical Sciences and
Peking Union Medical College, China
Yingling Chen,
University of Nebraska Medical Center,
United States

*CORRESPONDENCE

Fei Mao

maofeidoctor@njmu.edu.cn

Shan Zhou

zhoushancjha@163.com

RECEIVED 22 December 2024
ACCEPTED 28 January 2025

PUBLISHED 19 February 2025

CITATION

Yang H, Wei C, Zhou S and Mao F (2025)
Machine learning-based identification of
high-risk bone metastasis factors after radical
prostatectomy in prostate cancer.
Front. Oncol. 15:1549851.
doi: 10.3389/fonc.2025.1549851

COPYRIGHT

© 2025 Yang, Wei, Zhou and Mao. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 19 February 2025

DOI 10.3389/fonc.2025.1549851
Machine learning-based
identification of high-risk bone
metastasis factors after radical
prostatectomy in prostate cancer
Haijun Yang1, Chengxiang Wei1, Shan Zhou2* and Fei Mao3,4*

1Department of Urology, Huai’an Hongze District People’s Hospital, Huai’an, Jiangsu, China,
2Department of Ultrasound, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical
University, Huai’an, China, 3Department of Urology, Huaian Clinical College of Xuzhou Medical
University, Huai’an, China, 4Department of Urology, The Affiliated Huai’an No.1 People’s Hospital of
Nanjing Medical University, Huai’an, China
Background: Bone metastasis is a serious complication following radical

prostatectomy in prostate cancer patients, significantly affecting their long-

term survival. This study aims to develop a clinical predictive model utilizing

Magnetic Resonance Imaging (MRI) and advanced machine learning algorithms

to identify key factors that increase the risk of bone metastasis (BM).

Patients and methods: The study analyzed a cohort of 1161 prostate cancer

patients, including 38 who developed bone metastasis. Preoperative T2-weighted

images (T2WI) were obtained, and tumor lesions were manually delineated to

extract relevant features from the imaging data. Spearman correlation analysis, the

least absolute shrinkage and selection operator (LASSO) algorithm, and logistic

regression were used to select and construct the model. Four machine learning

algorithms—extreme gradient boosting (XGBoost), random forest (RF), support

vector machine (SVM), and k-nearest neighbor (KNN)—were employed to predict

BM occurrence, integrating these with clinical information.

Results: Among the four prognostic models evaluated, the XGBoost algorithm

performed the best. In the training dataset, the XGBoost model achieved an AUC

of 0.926 (0.870-0.982), an accuracy of 0.847 (0.773-0.921), a sensitivity of 0.880

(0.835-0.926), and a specificity of 0.829 (0.755-0.904). In the validation dataset,

the XGBoost model attained an AUC of 0.706 (0.586-0.826), an accuracy of

0.687 (0.661-0.713), a sensitivity of 0.693 (0.557-0.829), and a specificity of 0.664

(0.505-0.822). The external validation dataset yielded an AUC of 0.91,

demonstrating the robust predictive capabilities of the XGBoost model.

Conclusion: The predictive model for bone metastasis in prostate cancer,

developed using the XGBoost machine learning algorithm, shows high

accuracy and significant clinical relevance. This model provides a valuable tool

for identifying high-risk patients, potentially informing better management and

treatment strategies.
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Background

Prostate cancer stands as one of the most prevalent malignancies

affecting men, presenting a significant challenge in achieving long-term

survival (1). With the global population aging, the incidence of prostate

cancer is anticipated to rise steadily (2). In areas lacking effective cancer

prevention and treatment strategies and with limited healthcare

resources, the efficacy of prostate cancer treatment becomes even

more critical.

Prostate cancer has a unique tendency to metastasize to bone

more frequently than to visceral organs (3). This presents a significant

challenge for clinicians, as patients with bone metastasis (BM) face a

systemic malignancy often managed only with palliative care. BM can

lead to severe complications such as bone pain, pathological fractures,

and physical disabilities (4). Additionally, BM may cause systemic

issues such as hypercalcemia, leading to neurological, cardiovascular,

and other health problems that severely impact quality of life (5).

Recent advancements have improved our understanding of prostate

cancer’s pathogenesis and clinical management. Raboy’s pioneering

work on radical prostatectomy has established it as an effective

treatment, known for its improved surgical safety and oncological

outcomes (6). Minimally invasive techniques have further reduced

postoperative complications. Moreover, new medical technologies

have introduced various anti-cancer treatments, progressively

reducing BM incidence and enhancing long-term survival rates.

Despite these advancements, some patients still experience

metastasis, with BM being particularly difficult to treat. Early

detection and intervention are crucial in managing BM from

prostate cancer. Diagnostic methods such as single photon emission

computed tomography (SPECT) and positron emission tomography-

computed tomography (PET-CT) are widely used for diagnosing BM

(7). While these methods are highly effective in identifying BM lesions

and their effects on surrounding tissues, they also contribute to

significant financial burdens for patients and healthcare systems.

Artificial intelligence (AI) holds significant promise in medicine,

especially through machine learning algorithms. These algorithms

can analyze large datasets to uncover complex patterns and

relationships, offering enhanced predictive capabilities for disease

outcomes (8, 9). Unlike traditional predictive methods based on

statistical models and heuristic rules, machine learning algorithms are

adaptable and can handle diverse data complexities, minimizing

errors due to researcher subjectivity and methodological constraints.

In this study, we employ an AI framework to analyze clinical

profiles and imaging datasets of prostate cancer patients, aiming to

predict high-risk factors for postoperative BM. This dual approach

not only aids clinicians in identifying at-risk patients more swiftly

but also plays a crucial role in developing precise and personalized

diagnostic and therapeutic strategies.
Materials and methods

Study subjects

This study utilized clinical imaging data from Huai’an Hongze

District People’s Hospital and Huai’an First People’s Hospital.
Frontiers in Oncology 02
Inclusion Criteria:
1. Patients who underwent robotic-assisted radical

prostatectomy or laparoscopic-assisted radical prostatectomy.

2. The surgical team included experienced surgeons skilled in

performing in-house radical prostatectomy procedures.

3. Patients diagnosed with prostate cancer bone metastasis

(BM) through surgical exploration, ECT/PET-CT imaging,

or pathological biopsy.

4. Patients who had undergone preoperative prostate MRI.
Exclusion Criteria:
1. Patients with concomitant diagnoses of other malignant

tumors.

2. Patients with other distant metastases, such as prostate

cancer lung metastases.

3. Patients with severe organic disorders affecting the liver

or kidneys.

4. Patients with a history of autoimmune diseases.

5. Patients with a history of steroid medication use.

6. Patients with documented viral or bacterial infections

during preoperative evaluations.

7. Patients with incomplete case documentation, missing

clinical details, non-evaluable images due to poor quality,

or those who were lost to follow-up.
All patients included in this study were followed up postoperatively

until June 2023.
Data preprocessing

Prostate cancer patients treated between January 2015 and

January 2021 in Huai’an Hongze District People’s Hospital were

selected as the internal validation cohort. Simultaneously, prostate

cancer patients from Huai’an First People’s Hospital during the

same period were designated as the external validation cohort. For

the internal validation cohort, the data were randomly divided into

a training subset (70%) and a test subset (30%).
Clinical imaging methods

A 3.0T MRI scanner (MAGNETOM Verio, Siemens

Healthcare, Erlangen, Germany) was utilized for this study. The

imaging process was overseen by a skilled imaging physician, who

adhered to a standardized technical protocol. Prior to the scan, the

physician instructed the patient to drink a moderate amount of

water to ensure the bladder was sufficiently filled without causing an

urgent need to urinate. The patient was positioned supine with a

head-first orientation, and scanning of the pelvis was performed

using an abdominal phased-array coil. T2-weighted images (T2WI)

obtained from multiparametric MRI (mpMRI) were used to

construct the predictive model for bone metastasis (BM) in

prostate cancer.
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Imaging histology modeling

Two radiologists, each with over five years of experience in

diagnosing prostate cancer, carefully imported the multiparametric

MRI (mpMRI) images into MRIcroGL software. They meticulously

delineated three-dimensional regions of interest (VOIs) around the

tumor, ensuring that the contours did not extend beyond the tumor

boundaries. In cases where significant discrepancies were noted between

the VOIs marked by the two radiologists, an additional imaging

specialist was brought in to revise the VOIs. Following a thorough

discussion, a consensus was achieved to finalize the definitive VOIs.

This study adhered to the guidelines established by the Image

Biomarker Standardization Initiative (IBSI) and employed the

PyRadiomics v3.0.1 package within Python 3.6 for extracting

imageomics features from the images in the internal validation cohort.

A crucial step involved normalizing and standardizing the various

imageomics features. This process aimed to harmonize the scales,

units, and ranges across different image datasets, improving their

comparability and facilitating integration into analytical models.

Additionally, the data were remapped into specific ranges to optimize

them for further processing and training. Spearman correlation analysis

was used to exclude features with a correlation coefficient of ≥ 0.70. The

remaining features were then refined using the least absolute shrinkage

and selection operator (LASSO) with 10-fold cross-validation.

An imaging histology model will be developed through logistic

regression analysis, utilizing the meticulously selected imaging histology

feature data. The imaging histology score (Radscore) for each patient will

be computed, and graphical representations of the Radscore

distributions for both the training and test datasets will be generated.
Clinical data collection and screening of
clinical variables

A comprehensive dataset of 33 variables was compiled,

encompassing preoperative, intraoperative, and postoperative factors.

Preoperative Variables:
Fron
• Patient Demographics: Age, smoking history, alcohol abuse

history, and body mass index (BMI).

• Clinical Attributes: American Society of Anesthesiologists

(ASA) score, Nutritional Risk Screening 2002 (NRS2002)

score, history of previous surgeries, family medical history,

and history of endocrine therapy.

• Medical History: Conditions such as anemia, diabetes

mellitus, hypertension, hyperlipidemia, and coronary

heart disease (CHD).

• Tumor-Specific Characteristics: Pathological Gleason score,

T-stage, N-stage, extracapsular extension (ECE), peripheral

nerve infiltration (PNI), site of cancer invasion, pathological

tumor volume, and laboratory markers including albumin

(ALB), Prostate-Specific Antigen (PSA), and Alkaline

Phosphatase (ALP).
Intraoperative Variables:
tiers in Oncology 03
• Surgical approach, duration of surgery, intraoperative blood

loss, and whether lymph node dissection was performed.
Postoperative Variables:
• Laboratory indicatorsmeasured within 48 hours post-operation

included PSA, procalcitonin (PCT), C-Reactive Protein (CRP),

neutrophil-to-lymphocyte ratio (NLR), and serum amyloid A

(SAA). PSA levels were measured 6 months after the operation.
The primary outcome variable of interest was the development of

prostate cancer bonemetastasis (BM). To identify independent predictors

of BM, univariate analysis was performed on the internal validation set,

followed by logistic regression analysis of relevant variables.

Subsequently, four distinct machine learning models—Extreme

Gradient Boosting (XGBoost), Random Forest (RF), Support Vector

Machine (SVM), and K-Nearest Neighbors (KNN)—were employed to

evaluate the significance of each clinical feature and rank them based on

their weighted importance. Features that ranked within the top ten

across all four models and demonstrated statistical significance in both

univariate and multivariate analyses were selected for further evaluation.
Construction and evaluation of predictive
models for machine learning algorithms

The selected clinical variables and Radscore were integrated into

four machine learning algorithms—Support Vector Machine (SVM),

Random Forest (RF), Extreme Gradient Boosting (XGBoost), and K-

Nearest Neighbors (KNN)—for predictive modeling. Receiver

Operating Characteristic (ROC) curves were generated to compute the

Area Under the Curve (AUC) values, assessing the predictive

performance of each model. Calibration curves were plotted to

evaluate the models’ practical utility, and Decision Curve Analysis

(DCA) was performed to measure the clinical benefits of the models

in guiding interventional therapy.

For internal validation, k-fold cross-validation was used to ensure

robust performance assessment. The model that demonstrated the best

performance in internal validation was then subjected to external

validation using an independent test dataset. ROC curves were again

constructed to evaluate the model’s generalizability and predictive

accuracy on the external dataset.

To enhance the interpretability of the model, Shapley Additive

Explanations (SHAP) summary plots were employed to rank the

importance of risk factors. Additionally, single-sample SHAP plots

were used to analyze and understand the prediction outcomes for

individual samples.
Results

Basic clinical information of the patient

The study involved 1,161 prostate cancer patients, of whom 38

(3.27%) had prostate cancer bone metastasis (BM) (refer to
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Figures 1A, B). Within this cohort, 800 patients were allocated to

the internal validation set, with 25 cases (3.125%) identified as

having prostate cancer BM. The external validation set included 361

patients, among whom 13 (3.60%) had prostate cancer BM.

Detailed data from the study are presented in Supplementary

Table S1.
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Imaging histology feature screening
and modeling

Two radiologists meticulously delineated the three-dimensional

tumor regions layer by layer (see Figures 2A–C). Spearman correlation

analysis was employed to investigate the relationships among imaging
FIGURE 1

Model-making process and flowchart of the study. (A) Study design flow chart. (B) Flow diagram of patients included in the study.
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histological variables, resulting in the exclusion of nine variables with

significant correlations (Figure 3A). The remaining features were

further refined using the Lasso regression algorithm with 10-fold

cross-validation. A l value of 0.022 was applied, leading to the

removal of 94 features. The final set of significant features included

original_glszm_LargeAreaHighGrayLevelEmphasis, original_glrlm_

ShortRunHighGrayLevelEmphasis, original_gldm_SmallDependence

HighGrayLevelEmphasis, original_glcm_SumAverage, original_

glcm_DifferenceEntropy, and original_shape_Maximum2DDiameter

Column (see Figures 3B, C).

An imaging histology model was constructed using these six key

features. The Radscore for each patient was computed using the

following formula: Radscore= -0.8829567743441374 * original_

shape_Maximum2DDiameterColumn - 0.07422776022174774 *

original_glcm_DifferenceEntropy + 0.03633822348870328 *

original_glcm_SumAverage + 1.0492049674143458 * original_gldm_

SmallDependenceHighGrayLevelEmphasis + 0.07224865665312416 *

original_glrlm_ShortRunHighGrayLevelEmphasis + 0.0001173
Frontiers in Oncology 05
0863502181296 * original_glszm_LargeAreaaHighGrayLevelEmphasis

- 0.12357927365537154 (Figures 4A, B).
Screening of clinical risk factors for bone
metastases from prostate cancer

Both univariate and multivariate analyses revealed that several

factors—specifically, ALP levels, Gleason Score, extracapsular

extension (ECE) invasion, pathological tumor volume, preoperative

PSA levels, postoperative PSA levels, and postoperative procalcitonin

(PCT) values—significantly influenced the occurrence of postoperative

bone metastasis (BM) in prostate cancer, with all factors showing

statistical significance (P<0.05) (see Table 1).

To assess their impact on postoperative BM risk factors, we

rigorously evaluated the performance of the XGBoost, Random

Forest (RF), Support Vector Machine (SVM), and K-Nearest

Neighbor (KNN) models. The analysis identified key factors
FIGURE 2

Schematic representation of ROI profiles. (A) Illustrates the T2WI sequence featuring prostate cancer situated in the peripheral zone. (B) Describes
the ROI profile of a patient with bone metastasis from prostate cancer. (C) Shows the 3D ROI contour of the tumor foci of a patient with bone
metastasis from prostate cancer.
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contributing to postoperative BM risk, including ALP levels,

Gleason Score, ECE invasion, pathological tumor volume, and

both preoperative and postoperative PSA levels (see Figures 5A–D).
Machine learning modeling and evaluation

The ROC curve analysis demonstrated that the XGBoost model

outperformed the other three models, achieving an AUC of 0.926

for the training set and 0.706 for the validation set (see Table 2;

Figures 6A, B). Calibration curves for all models closely matched

the ideal curves, indicating a strong alignment between predicted
Frontiers in Oncology 06
and actual outcomes (Figure 6C). Decision curve analysis (DCA)

illustrated that each model provided a net clinical benefit compared

to both the all-therapy and no-therapy scenarios (Figure 6D).

To assess model generalizability, we employed k-fold cross-

validation. For the XGBoost model, with a test set consisting of 240

cases (30.00%), and the remaining samples used for 5-fold cross-

validation, the model achieved an AUC of 0.8914 ± 0.0367 for the

validation set and an AUC of 0.8772 for the test set, with an

accuracy of 0.9417 (Figures 7A–C). The Random Forest (RF) model

produced an AUC of 0.7830 ± 0.0923 for the validation set and an

AUC of 0.8610 for the test set, with an accuracy of 0.9917. The

Support Vector Machine (SVM) model recorded an AUC of 0.8376
FIGURE 3

Screening process for imaging histologic features. (A) Correlation of imaging histologic features. (B) The Lasso coefficient profile of 100 features,
with each curve representing a feature. (C) The most optimal parameter selected in Lasso regression by using the 10-fold cross-validation. Red dots
indicate the likelihood of deviance values, gray lines represent the standard error (SE), and vertical dot lines correspond to optimal values by
minimum criteria, and 1-SE, respectively.
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± 0.1205 for the validation set and an AUC of 0.8739 for the test set,

with an accuracy of 0.8292. Lastly, the K-Nearest Neighbor (KNN)

model achieved an AUC of 0.7452 ± 0.1492 for the validation set

and an AUC of 0.8723 for the test set, with an accuracy of 0.9917.

Based on these comprehensive evaluations, the XGBoost algorithm

was identified as the most effective model for this study.
External validation of models

The ROC curve analysis for the external validation set revealed

an AUC of 0.91, highlighting the model’s excellent accuracy in

identifying the disease (Figure 7D).
Model interpretation

The SHAP summary plot highlighted the following risk factors

for bone metastasis (BM) in prostate cancer, ordered by their

importance: Radscore (higher), Gleason Score (higher),

pathological tumor volume (larger), elevated ALP levels, elevated

postoperative PSA, elevated preoperative PSA, and extracapsular

extension (ECE) invasion of the tumor (Figures 8A, B).

The SHAP force plots offered detailed insights into the model’s

predictions for two patients with prostate cancer BM. For Patient 1,
Frontiers in Oncology 07
the model predicted a 0.919 probability of BM, driven primarily by a

preoperative PSA ≥ 20 ng/ml and a Radscore ≥ 23.5306 (Figure 8C).

For Patient 2, the model estimated a much lower probability of

0.003 for BM, influenced by a preoperative PSA ≥ 0.2 ng/ml, a

pathological tumor volume ≥ 60 mm², and a Radscore ≥

-3.3362 (Figure 8D).
Discussion

This study assessed risk prediction models for prostate cancer

bone metastasis (BM) using four distinct machine learning

algorithms. Among these, the XGBoost algorithm demonstrated

superior performance, characterized by its versatility and

interpretability (10). XGBoost outperformed the Random Forest

(RF) algorithm in processing efficiency, thanks to its advanced

features like multithreaded processing and feature-based splitting,

which enhance training and prediction speeds (11). Unlike Support

Vector Machine (SVM) and K-Nearest Neighbors (KNN), XGBoost

supports both L1 and L2 regularization, which effectively controls

model complexity and reduces overfitting risks (10, 12).

Consequently, XGBoost was chosen for constructing the

predictive model for postoperative BM in prostate cancer patients.

According to the “seed-soil” hypothesis by Paget, tumor

metastasis involves the implantation of tumor cells in a favorable
FIGURE 4

Radscore plots of the imagingomics model in the training and validation sets. (A) Radscore plots of imaging histology models in the training set. (B) Imaging
histology model radscore plots in the validation set.
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TABLE 1 Univariate and multivariate analysis of variables related to BM.

Variables
Univariate analysis Multivariate analysis

OR 95%CI P-value OR 95%CI P-value

Age
<65 Reference

≥65 1.342 [0.572, 3.148] 0.499

BMI
<25 kg/m2 Reference

≥25 kg/m2 1.21 [0.515, 2.845] 0.662

ASA
<3 Reference

≥3 1.547 [0.693, 3.456] 0.287

ALB
≥30 g/l Reference

<30 g/l 1.578 [0.711, 3.506] 0.262

NRS2002 score
<3 Reference Reference

≥3 2.622 [1.163, 5.915] 0.02 1.69 [0.571, 5.082] 0.339

ALP
<360 U/L Reference Reference

≥360 U/L 3.493 [1.564, 7.801] 0.002 4.441 [1.494, 13.419] 0.007

Family history
No Reference Reference

Yes 2.791 [1.207, 6.452] 0.016 2.106 [0.619, 6.747] 0.215

Drinking history
No Reference Reference

Yes 2.305 [1.030, 5.162] 0.042 2.18 [0.74, 6.354] 0.15

Smoking history
No Reference

Yes 2.16 [0.971, 4.806] 0.059

Prostate
electrosurgery

history

No Reference

Yes 1.285 [0.529, 3.127] 0.58

Anemia
No Reference

Yes 2.197 [0.953, 5.063] 0.065

Hyperlipidemia
No Reference

Yes 1.016 [0.375, 2.751] 0.975

Hypertension
No Reference Reference

Yes 2.655 [1.184, 5.951] 0.018 2.154 [0.664, 6.624] 0.185

Diabetes
No Reference

Yes 2.232 [0.968, 5.146] 0.06

CHD
No Reference Reference

Yes 3.696 [1.423, 9.599] 0.007 2.552 [0.553, 10.148] 0.2

Gleason Score
<8 Reference Reference

≥8 5.182 [2.314, 11.607] <0.001 6.184 [1.952, 20.572] 0.002

ECE
No Reference Reference

Yes 5.521 [2.204, 13.826] <0.001 5.576 [1.297, 22.667] 0.017

Endocrine
therapy

No Reference

Yes 1.64 [0.726, 3.705] 0.234

Cancer tissue
invasion site

Non-tip
and bottom

Reference Reference

(Continued)
F
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microenvironment, facilitating their growth and spread (13). This

process is complex and involves the proliferation of neoplastic cells,

their detachment from the primary tumor, migration, and secondary

growth (14, 15). The predictive model developed in this study,

leveraging imaging data, offers high precision in forecasting BM

onset, which is crucial for early detection of high-risk patients.

Our analysis included 109 imaging histological attributes to

predict BM occurrence in prostate cancer using nuclear magnetic

resonance imaging data. After rigorous selection, six key attributes
Frontiers in Oncology 09
were chosen: original_glszm_LargeAreaHighGrayLevelEmphasis,

original_glrlm_ShortRunHighGrayLevelEmphasis, original_gldm_

SmallDependenceHighGrayLevelEmphasis, original_glcm_Sum

Average, original_glcm_DifferenceEntropy, and original_shape_

Maximum2DDiameterColumn. This approach integrates both

clinical and imaging data, offering a more comprehensive risk

assessment compared to studies focused solely on clinical

parameters. This integration is crucial for early intervention and

tailored therapeutic strategies.
TABLE 1 Continued

Variables
Univariate analysis Multivariate analysis

OR 95%CI P-value OR 95%CI P-value

Tip and bottom 2.701 [1.139, 6.404] 0.024 2.365 [0.575, 8.899] 0.211

Pathological
tumour volume

<6cc Reference Reference

≥6cc 3.548 [1.588, 7.925] 0.002 8.629 [2.687, 30.993] <0.001

T-stage
T1~T2 Reference

T3~T4 2.01 [0.851, 4.748] 0.111

N-stage
N0 Reference

N1 1.687 [0.619, 4.597] 0.306

PNI
No Reference Reference

Yes 2.815 [1.186, 6.679] 0.019 2.027 [0.584, 6.424] 0.242

Preoperative PSA
<20 ng/ml Reference Reference

≥20 ng/ml 3.988 [1.748, 9.100] 0.001 6.11 [1.842, 21.048] 0.003

Postoperative
PSA

<0.2 ng/ml Reference Reference

≥0.2 ng/ml 5.184 [2.291, 11.732] <0.001 4.011 [1.238, 12.712] 0.018

Surgical
procedure

Laparoscopic
surgery

Reference

Robotic surgery 1.064 [0.479, 2.361] 0.879

Lymph
node dissection

No Reference

Yes 0.882 [0.391, 1.990] 0.763

Surgery time
<270 min Reference Reference

≥270 min 2.436 [1.094, 5.422] 0.029 2.476 [0.822, 7.48] 0.103

Intraoperative
bleeding

<100 ml Reference

≥100 ml 1.889 [0.846, 4.214] 0.12

PCT level
<0.05 ng/ml Reference Reference

≥0.05 ng/ml 5.174 [2.303, 11.622] <0.001 4.84 [1.622, 15.012] 0.005

CRP level
<10 mg/l Reference Reference

≥10 mg/l 2.529 [1.095, 5.840] 0.03 2.493 [0.726, 8.146] 0.133

SAA level
<10 mg/l Reference Reference

≥10 mg/l 2.427 [1.071, 5.501] 0.034 2.921 [0.951, 8.938] 0.057

NLR
<3 Reference

≥3 1.867 [0.791, 4.406] 0.154
OR, odds ratio; CI, confidence interval; BMI, body mass index; ASA, the American Society of Anesthesiologists; ALB, albumin; PCT, procalcitonin; CRP, C-reactive protein; SAA, serum amyloid
A; NRS2002, nutrition risk screening 2002; CHD, coronary heart disease; ALP, alkaline phosphatase; NLR, neutrophil-to-lymphocyte ratio; ECE, extracapsular extension; PNI, peripheral nerve
invasion; PSA, Prostate-specific antigen.
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SHAP analysis further elucidated the risk factors associated

with BM in prostate cancer, highlighting the significant roles of

pathological tumor volume, ECE invasion, ALP levels, Gleason

score, and PSA values (preoperative and postoperative). The link

between pathological tumor volume and malignancy is well-

documented, with larger tumors often exhibiting increased

invasiveness and a higher propensity for metastasis (16). Larger

tumors require greater blood supply, leading to tumor angiogenesis
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and increased potential for metastatic spread (17, 18). Additionally,

the Gleason score provides a detailed assessment of tumor

aggressiveness, which is crucial for determining appropriate

treatment (19). Our findings align with previous research,

reinforcing the significance of these factors in predicting BM risk.

The study also noted that prostate cancer cells with ECE

invasion are more likely to metastasize, potentially due to

increased surgical challenges and inflammatory responses during
FIGURE 5

The variable influence factor ranking plots of the four models. (A) Variable importance ranking diagram of XGBoost model. (B) Variable importance
ranking diagram of RF model. (C) Variable importance ranking diagram of SVM model. (D) Variable importance ranking diagram of KNN model.
TABLE 2 Evaluation of the performance of the four models.

AUC (95%CI) Accuracy (95%CI) Sensitivity (95%CI) Specificity (95%CI)

KNN
training set 0.859 (0.750-0.969) 0.969 (0.964-0.974) 0.786(0.718-0.853) 0.916 (0.862-0.971)

validation set 0.597 (0.475-0.720) 0.906 (0.892-0.920) 0.341(0.088-0.594) 0.862 (0.764-0.960)

XGBoost
training set 0.926 (0.870-0.982) 0.847 (0.773-0.921) 0.880(0.835-0.926) 0.829 (0.755-0.904)

validation set 0.706 (0.586-0.826) 0.687 (0.661-0.713) 0.693(0.557-0.829) 0.664 (0.505-0.822)

RF
training set 0.905 (0.836-0.974) 0.833 (0.783-0.883) 0.854(0.810-0.897) 0.817 (0.767-0.867)

validation set 0.704 (0.576-0.832) 0.723 (0.635-0.810) 0.676(0.589-0.763) 0.680 (0.594-0.765)

SVM
training set 0.770 (0.639-0.901) 0.731 (0.592-0.870) 0.787(0.577-0.996) 0.719 (0.564-0.875)

validation set 0.517 (0.391-0.643) 0.783 (0.610-0.955) 0.845(0.686-1.004) 0.335 (0.134-0.536)
AUC, area under the curve; RF, random forest; XGBoost, extreme gradient boosting; SVM, support vector machine; KNN, k-nearest neighbor algorithm; CI, confidence interval.
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surgery (20). This observation is consistent with Guerra et al.’s

research, which found that ECE invasion enhances tumor cell

motility, facilitating metastasis (21).

Elevated ALP levels were identified as a significant risk factor

for BM. ALP, an enzyme involved in various biological processes,

including bone metabolism, is released in response to tumor-

induced bone resorption (22). Elevated ALP levels have been

linked to poorer survival outcomes in cancer patients (23).

Our study utilized two distinct sample cohorts to validate the

predictive model for BM in prostate cancer, emphasizing the role of

PSA levels (both preoperative and postoperative) as crucial risk

factors. Elevated PSA levels correlate with increased tumor activity

and metastatic potential, impacting patient prognosis (24). Our

prostate cancer bone metastasis (PCBM) risk prediction model has

wide applications across various clinical settings, including

preoperative planning, intraoperative guidance, and postoperative
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management. During initial physical exams or outpatient

screenings, the model enables early identification of high-risk

individuals and recommends further imaging studies, such as

bone scans or CT scans. At the preoperative stage, the model

assists in assessing the risk of prostate cancer bone metastasis

when preparing for related treatments. For high-risk patients, the

model helps formulate detailed treatment strategies, including

preoperative adjustments to anticoagulation or metabolic therapy.

For asymptomatic patients diagnosed with prostate cancer bone

metastasis, the model supports the assessment of recurrence or

complication risks, helping clinicians determine whether preventive

interventions are necessary. Additionally, for high-risk prostate

cancer bone metastasis patients, the model guides optimization of

preoperative management, such as implementing enhanced

immunotherapy strategies. During treatment, the model provides

critical insights, aiding physicians in designing treatment plans or
FIGURE 6

Evaluation of the four models for predicting BM. (A) ROC curves for the training set of the four models. (B) ROC curves for the validation set of the
four models. (C) Calibration plots of the four models. The 45°dotted line on each graph represents the perfect match between the observed (y-axis)
and predicted (x-axis) complication probabilitys. A closer distance between two curves indicates greater accuracy. (D) DCA curves of the four
models. The four solid lines representing the four machine learning models have the intersection with the “all” curve as the starting point and the
intersection with the “none” curve as the node within which the corresponding patient can benefit.
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increasing treatment intensity, such as adjusting radiation therapy

or chemotherapy protocols, thereby reducing the risks associated

with bone metastasis. Postoperatively, the model facilitates

personalized surveillance plans, including routine imaging and

biochemical monitoring, particularly suitable for long-term

follow-up of prostate cancer bone metastasis patients to assess the

risk of recurrence or other bone-related complications.

While parametric regression models have been effective for

predicting metastasis in prostate cancer, they may not adequately

address the complexity of clinical data with nonlinear relationships

(25, 26). This study’s use of the XGBoost algorithm provided a robust

predictive model for BM post-radical prostatectomy, demonstrating

high performance and clinical utility. However, limitations include the

exclusion of imaging data from other modalities and the lack of

consideration for targeted therapies (27–31). Future research should

incorporate multicenter studies to enhance the robustness and

reliability of these findings. It is well known that many aspects of
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postoperative management, such as medication, diet, and daily

activities, can influence the occurrence of prostate cancer bone

metastasis. This study primarily focused on exploring the potential of

preoperative MRI imaging data in predicting prostate cancer bone

metastasis, while overlooking the impact of other factors on tumor

metastasis. In future research, we plan to develop a comprehensive

prediction model that incorporates postoperative management and

other clinical factors to further enhance the model’s predictive ability

and clinical applicability.
Conclusion

In this study, we developed a predictive model integrating

imaging histology and machine learning algorithms to estimate the

risk of tumor bone metastasis (BM) following radical prostatectomy

for prostate cancer. The model demonstrated high predictive
FIGURE 7

Validation of XGBoost model. (A) ROC curve of XGBoost model for the training set. (B) ROC curve of XGBoost model for the validation set. (C) ROC
curve of XGBoost model for the test set. (D) External validation of XGBoost model.
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accuracy and substantial clinical utility, providing surgeons with a

valuable tool for early diagnosis and intervention. Key findings

indicate that BM remains a significant challenge for prostate cancer

patients, with its risk strongly correlated with elevated alkaline

phosphatase (ALP) levels, larger tumor sizes, higher Gleason scores,

extraprostatic extension (ECE) invasion, and increased prostate-

specific antigen (PSA) levels both preoperatively and postoperatively.
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FIGURE 8

Interpretability of machine learning models. (A) SHAP summary plot. Risk factors are arranged along the y-axis based on their importance, which is given by
the mean of their absolute Shapley values. The higher the risk factor is positioned in the plot, the more important it is for the model. (B) Characteristic
importance ranking plot. (C) Patient I’s SHAP force plot. The contributing variables are arranged in the horizontal line, sorted by the absolute value of their
impact. Blue represents features that have a negative effect on disease prediction, with a decrease in SHAP values; red represents features that have a
positive effect on disease prediction, with an increase in SHAP values. (D) Patient II’s SHAP force plot.
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