
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Takahiro Kodama,
Osaka University, Japan

REVIEWED BY

Maria Pilar Martinez Moral,
Wadsworth Center, United States
Shouzhi Yang,
Shanghai Jiao Tong University, China

*CORRESPONDENCE

Jun Fang

rong_20213@163.com

Xuewei Zhuang

xue_2022@yeah.net

†These authors have contributed
equally to this work

‡These authors have contributed
equally to this work and share
first authorship

RECEIVED 07 February 2025

ACCEPTED 31 March 2025

PUBLISHED 24 April 2025

CITATION

Qian J, Liu Q, Wang J, Zhuang X and Fang J
(2025) Identifying novel biomarkers for biliary
tract cancer based on volatile organic
compounds analysis and machine learning.
Front. Oncol. 15:1572460.
doi: 10.3389/fonc.2025.1572460

COPYRIGHT

© 2025 Qian, Liu, Wang, Zhuang and Fang.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 24 April 2025

DOI 10.3389/fonc.2025.1572460
Identifying novel biomarkers for
biliary tract cancer based on
volatile organic compounds
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Background: The current diagnostic methods for biliary tract cancer (BTC) have

limitations in sensitivity and specificity. This study aims to explore the use of

volatile organic compounds (VOCs) in serum to distinguish BTC and benign

biliary diseases (BBD).

Method:We collected 158 serum samples from BTC and BBD patients, and used

gas chromatography ion mobility spectrometry (GC-IMS) for VOCs detection. Six

machine learning methods (RF, SVM, LDA, KNN, LASSO, and XGBoost) were used

to construct and evaluate diagnostic prediction models.

Result: We detected a total of 40 VOCs in patients, of which 14 VOCs were

statistically significant (p < 0.05), including 11 up-regulated and 3 down-regulated

VOCs. In BTC and BBD patients, the diagnostic model was constructed based on

six machine learning method. Among them, RF had the highest diagnostic

performance (AUC = 0.935, p < 0.001), with a sensitivity of 76.2% and a

specificity of 96.3%. Based on the importance score, we selected the top 4

VOCs, and constructed an optimized diagnostic model through five fold cross

validation. The model’s AUC was 0.982, sensitivity was 87.9%, and specificity was

96.7%, which improved the diagnostic sensitivity and reduced FNR. In addition, in

patients with cholangiocarcinoma and BBD, we further screened for 4-VOCs and

constructed diagnostic model, with an AUC of 0.977, accuracy of 92.4%,

specificity of 98.9%, sensitivity of 77.5%.

Conclusion: The diagnostic model based on 4-VOCs may be a feasible method

for distinguishing the diagnosis of BTC and BBD patients.
KEYWORDS

volatile organic compounds, machine learning, biliary tract cancer, novel biomarkers,
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1 Introduction

Biliary tract cancer (BTC) was an invasive malignant tumor of

the hepatobiliary pancreatic system, including cholangiocarcinoma,

gallbladder cancer, and Vater ampulla cancer (1). At present, in

developing countries, the incidence rate was increasing year by year

(2). At the beginning of the disease, patients usually have no specific

symptoms, leading to late diagnosis. The main treatment scheme of

BTC relies on surgical resection plus adjuvant chemotherapy, but

the recurrence rate was still high (3). The 5-year survival rate of

patients was between 5% and 15% (4, 5). Therefore, it was crucial to

identify novel and effective diagnostic biomarkers for BTC.

Human volatile organic compounds (VOCs) was an ultimate

metabolite, which reflect the metabolic changes caused by external

and internal factors (such as inflammation, necrosis and disease,

including cancer), and can be detected in exhaled breath, blood,

urine and other body fluid samples (6). At present, more and more

attention has been paid to the development of diagnostic markers

based on its detection. VOCs has been confirmed to have content

changes in diabetes, infectious diseases, lung cancer, breast cancer,

pancreatic cancer and other tumors, and has been explored as a

biomarker (7–9). It was worth noting that the analysis of VOCs in

urine and bile samples has shown good sensitivity and specificity in

exploring biomarkers for malignant biliary stenosis (10, 11).

Serum was a biological sample containing a large amount of

cellular metabolism and was easy to collect and store. However,

there were currently no studies reporting the analysis of VOCs in

serum to discover novel biomarkers for BTC. This study aims to

explore the change in VOCs in the serum of patients with BTC and
Frontiers in Oncology 02
benign biliary diseases (BBD), and to construct a novel diagnostic

model for BTC patients through machine learning.
2 Method

2.1 Research population

As shown in Figure 1, this study included 66 BTC patients and 92

BBD patients who visited the Third Hospital of Shandong Province

from January to August 2024. The inclusion criteria for BTC patients

were: (1) patients who have not been diagnosed with other tumors or

received tumor treatment before seeking medical attention; (2) the

final result of the patient’s pathological diagnosis shall be determined

by at least two pathologists; (3) complete clinical information; The

inclusion criteria for BBD patients were: (1) diagnosis of benign

biliary obstruction based on clinical symptoms, imaging examination,

ERCP, or pathological examination; (2) first diagnosis; (3) complete

clinical information. This study has been approved by the Ethics

Committee of Shandong Third Hospital of Shandong University

(No.KYLL-2023084).
2.2 Samples

Extract 5mL of fasting peripheral venous blood from the

patient, centrifuge at 3000 r/min for 10 minutes, separate the

supernatant, divide it, and store it at -80°C. We used the fully

automated chemiluminescence analyzer (Beckman, AU5800) to
FIGURE 1

Design flowchart for this study.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1572460
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qian et al. 10.3389/fonc.2025.1572460
measure alanine aminotransferase (ALT, U/L), aspartate

aminotransferase (AST, U/L), mitochondrial aspartate

aminotransferase (mAST, U/L), g-glutamyl transferase (g-GGT,
U/L), alkaline phosphatase (ALP, U/L), gluathione reductase (GR,

U/L), albumin (ALB, g/L), total bilirubin (TBIL, umol/L), direct

bilirubin (DBIL, umol/L), indirect bilirubin (IBIL, umol/L), and

total bile acod (TBA, umol/L).
2.3 VOCs detection

We used gas chromatography ion mobility spectrometry (GC-

IMS, Dortmund Gas, Germany) instrument to detect VOCs in

serum samples (12). The sample was heated in an incubator and

placed in a sample tray. The sample was extracted by an injector and

separated once in gas chromatography, and then separated twice in

ion migration spectra. Due to the different mass, charge, collision

interface, and spatial configuration of the sample, their migration

rates in the electric field were different, and the time they arrive at

the detector was also different. The detector collects the ion signal to

form a gas phase ion migration spectrum, and analyzes it to obtain

the substance content.

The specific testing information was as follows: 1) Take 200

microliters of serum and place it in a headspace vial, incubate at 55

°C for 5 minutes. 2) The temperature of HS syringe was 85°C, the

injector temperature was 80°C, the injection was splitless. Extract 1

milliliter of headspace gas for analysis; 3) The program parameter

settings are as follows: Nitrogen is used as the carrier gas. The IMS drif

gas flow rate is maintained at 75 mL/min, and the carrier gas gradient

is as follows: 0 min: 2 mL/min; 1 minute: 2 milliliters per minute; 8

minutes: 100 milliliters per minute; 10 minutes: 150 milliliters per

minute; 15 minutes: 150 milliliters per minute. T1 diversion pipe

temperature: 45°C; T2 gas chromatography column temperature: 60°

C; Inlet temperature of T3 chromatographic column converter: 80°C;

T4 connection line 1: 80°C, T5 connection line 2: 45°C. Ionic mode:

Positive ion mode. The chromatographic column model was MXT-5

(Restek Company), which was a stainless steel capillary column coated

with fused silica. Its stationary phase was cross-linked bonded 5%

diphenyl, 95% dimethyl polysiloxane, with an inner diameter of 0.53

mm, a film thickness of 1 micron, and a length of 15 meters.
2.4 VOCs identification

The detected VOCs were identified based on the retention index

(RI) of gas chromatography (GC) and the relative migration time

(Drift time. Dt) of ion mobility spectrometry (IMS). The RI data

was obtained from the NIST database (NIST 2020RI), and the Dt

data was obtained from the self built IMS database (Hanon 2024

IMS). The peak position of volatile organic compounds was

confirmed by comparing it with the peak position of the standard

substance (n-ketones of C4-C9), and the RI and Dt of the test

substance must be consistent with the data of the standard

substance. The requirement for the compound signal on the

spectrum was that the three-dimensional signal on the spectrum
Frontiers in Oncology 03
should have a regular peak shape, and its peak intensity should be at

least three times greater than the baseline noise. In addition, by

normalizing RIP, the deviation in absolute migration time of ions

can be eliminated. All names of volatile organic compounds were

taken from the NIST spectral library. In chemistry, these naming

conventions were also typical and can be accurately defined by the

CAS number (Chemical Abstracts Service, abbreviated as CAS), an

organization under the American Chemical Society. Use peak

intensity for semi quantitative analysis of substances, the unit was

volt (V). We used the supporting VOCal analysis software and

Reporter, Gallery Plo plugins to analyze the data.
2.5 Statistical analysis

The classified data in the clinical information of patients in this

study were displayed as frequency and percentage, and the

continuous data were displayed as median (25% numerical value,

75% numerical value). The categorical data were compared using

the c2 square test, and the continuous data between the two groups

were compared using the Mann Whitney U test. A p -value < 0.05

was considered statistically significant; Use IBM SPSS software

(version 22.0) and GraphPad Prism (version 8.3.0) for data analysis.

We used six machine learning methods including RandomForest

(RF), Support Vector Machine (SVM), Latent Dirichlet Allocation

(LDA), K-Nearest Neighbors (KNN), Least Absolute Shrinkage and

Selection Operator (LASSO), and Extreme Gradient Boosting

(XGBoost) to construct a diagnostic model. Each method randomly

divided 70% of patients into a training set and 30% into a validation

set, plotted Receiver Operating Characteristic (ROC) curves, and

calculated accuracy {[True Positive (TP) + True Negative (TN)]/TP +

TN + False Positive (FP) + False Negative (FN)}, precision (TP/TP +

FP), sensitivity (TP/TP + FN), specificity (TN/TN+ FP), false positive

rate (FPR = FP/FP + TN), false negative rate (FNR = FN/TP + FN).

The p - value < 0.05 was considered statistically significant. In the

random forest method, out of bag data (OOB) was used to calculate

feature importance. The higher the score, the greater the role of the

substance in the decision-making process of the random forest

model. We used grid search to call GridSearchCV from sklearn.

Each set of parameter combinations was performed five fold cross

validation, and selected the best super parameter combination to

achieve the effect of model optimization.
3 Result

3.1 Clinical characteristics of patients

The average age of patients with BTC included in this study was

67 years, with 50% male and 50% female. Compared with patients

with BBD, patients with BTC had higher levels of AST (p = 0.026),

mAST (p = 0.042), g-GGT (p < 0.001), ALP (p < 0.001), GR

(p < 0.001), ALB (p < 0.001), TBIL (p < 0.001), DBIL (p < 0.001),

and TBA (p < 0.001). However, there was no difference in ALT and

IBIL levels between BTC patients and BBD patients (Table 1).
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3.2 Analysis of VOCs

We used GC-IMS technology to analyze VOCs in the serum of

BTC patients and BBD patients. Figure 2A shows a three-

dimensional spectrum consisting of gas retention time, ion

migration time, and signal peak intensity. The VOC signal peaks

of each sample were also characterized. Figure 2B shows a two-

dimensional spectrum, which was a vertical view of a three-

dimensional spectrum, with peak intensity represented by colors,

displaying the difference in VOC signal peaks in BTC patients and

BBD patients. Based on the above analysis, a total of 40 VOCs were

detected in the serum of BTC and BBD patients (Figure 2C),

including 34 VOCs and 6 unknown VOCs. Supplementary

Table 1 provides detailed information on these compounds,

including name, CAS number, Formula molecular formula,

molecular weight (MW), retention index (RI), retention time (Rt),

migration time (Dt) and detection frequency.
3.3 Differential analysis of VOCs between
BTC and BBD patients

Compared with BBD patients, we found that there were significant

differences in the peak intensity of 14 VOCs in BTC patients. (p < 0.05,

Table 2, Figure 3), among which 11 VOCs were up-regulated,

including Ethanol (2.396 vs. 2.085, p < 0.001), 1-Propanol (1.162 vs.

0.954, p = 0.001), 1-Pentanol (0.037 vs. 0.025, p = 0.004), Toluene

(3.504 vs. 3.439, p = 0.009), and 1-Octen-3-one (0.051 vs. 0.044, p =
Frontiers in Oncology 04
0.011). Three VOCs were down regulated, including Propanol (1.270

vs. 1.469, p < 0.001). Acetaldehyde (0.032 vs. 0.078, p = 0.004) and 1-

butanol (0.500 vs. 0.540, p = 0.026). Subsequently, we included these 14

VOCs for further model construction. In addition, we further

demonstrated the fingerprint spectra of these 14 characteristic peaks

in patients (Supplementary Figure 1).
3.4 Construction of diagnostic models
using machine learning

We used six machine learning methods (RF, SVM, LDA, KNN,

LASSO, and XGBoost) to construct a diagnostic model for BTC

patients. Each method randomly divided 70% of patients into a

training set and 30% into a validation set. We used the training set

to construct a diagnostic prediction model and evaluated the

diagnostic performance of the model using the validation set

(Figure 4A). We found that the machine learning models

constructed by these six machine learning methods all had good

diagnostic efficiency (p < 0.05, Table 3, Figure 4B). Among them, RF

had the highest diagnostic performance (AUC = 0.935, p < 0.001),

sensitivity of 76.2%, specificity of 96.3%, precision rate of 94.1%,

FPR of 3.7%, and the FNR of 23.8%.

According to the RF model, we further ranked the importance of

VOCs in the model. Based on the importance score, we selected the

top 4 VOCs (Figure 5A), which were Acetaldehyde, 1-Propanol,

Propanal and Ethanol. We optimized the model by adjusting

parameters and conducting five fold cross validation on each

parameter combination using online search. We constructed a

novel diagnostic model with an AUC of 0.982, sensitivity of 87.9%,

specificity of 96.7%, and FNR of 12.1% (p < 0.001, Figure 5B). This

model improved the sensitivity of diagnosis while reducing FNR.

Meanwhile, we further used the Random Forest (RF) method to

construct a diagnostic model based on 14-VOCs to distinguish

between cholangiocarcinoma and benign biliary diseases. The AUC

of the model was 0.872, the accuracy was 82.5%, the specificity was

92.9%, and the sensitivity was 58.3% (p < 0.001). Further analyze the

importance of VOCs in the RF model, and select the top four VOCs

based on their importance ranking, namely 1-Propanol,

Acetaldehyde, Propanal, and 1-butanol (Figure 6A). Furthermore,

by adjusting the parameters and conducting five fold cross

validation using online search for each parameter combination,

we optimized the diagnostic model and constructed a new

diagnostic model based on 4-VOCs with an AUC of 0.977,

accuracy of 92.4%, specificity of 98.9%, sensitivity of 77.5%, and

FPR of 1.1% (p < 0.001, Figure 6B), greatly improving the sensitivity

and specificity of the model and reducing FNR and FPR.
3.5 Sex and age effects in model

We further conducted gender group comparison, indicator

correlation, and diagnostic performance analysis of multiple

models in this study. Among the included patients, we found that

88 cases were female and 70 cases were male, Proponal intensity was
TABLE 1 The baseline characteristic of the patients.

BBD BTC p - value

Age (years) 47 (19 - 88) 67 (23 - 87) < 0.001

Gender 0.224

Male 37 (40.2%) 33 (50%)

Female 55 (59.8%) 33 (50%)

ALT 36.6 (16.3 - 30.8) 92.8 (23.9 - 172.8) 0.444

AST 26.4 (16.5 - 137.5) 76.4 (26.1 - 159.1) 0.026

mAST 5.8 (3.6 - 25.8) 13.0 (5.7 - 30.4) 0.042

G-GGT 104.0 (25.0 - 343.0) 269.0 (73.5 - 759.0) < 0.001

ALP 97.0 (70 - 192.5) 385.0 (119.0 - 637.5) < 0.001

GR 74.0 (59.2 - 107.6) 99.5 (74.9 - 124.9) < 0.001

ALB 44.2 (38.9 - 46.7) 37.9 (33.5 - 42.6) < 0.001

TBIL 14.5 (8.9 - 43.7) 56.5 (11.9 - 198.2) < 0.001

DBIL 6.5 (4.2 - 25.2) 53.4 (6.3 - 180.7) < 0.001

IBIL 6.6 (4.3 - 10.7) 7.6 (3.9 - 19.2) 0.329

TBA 3.8 (1.7 - 31.8) 26.7 (4.4 - 153.3) < 0.001
BBD, benign biliary diseases; BTC, biliary tract cancer; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; mAST, mitochondrial aspartate aminotransferase; g-GGT, g-
glutamyl transferase; ALP, alkaline phosphatase; GR, gluathione reductase; ALB, albumin;
TBIL, total bilirubin; DBIL, direct bilirubin; IBIL, indirect bilirubin; TBA, total bile acod.
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higher in females than males (1.431 vs. 1.311, p = 0.022).

Subsequently, we conducted further correlation analysis

(Figure 7), and heatmap showed the correlation values,

represented by color intensity. We found that among all included

patients, Propanal was related to gender (0.18, p = 0.027). We also

found a positive correlation between 1-Propanol intensity and age

(0.18, p = 0.023). In addition, we found that 1-Propanol was

associated with patients’ GGT, ALP, GR, and ALB (p < 0.05),

Ethanol was associated with GR, TBIL and DBIL (p < 0.05),

Proponal was correlated with ALT and MAST (p < 0.05).

To further investigate the impact of gender and age on the final

model, we included gender and age in the final model. In BTC and

BBD patients, we found that increasing age improved the diagnostic

performance of the model (Table 4). Compared with the 4-VOCs

model, the AUC in Model 1 (4-VOCs+age) increased (0.991), while

sensitivity (95.5%), specificity (97.8%), and accuracy (96.8%) were

all improved, FNR and FTR were both reduced. However, the

diagnostic performance of Model 2 (4-VOCs+gender) did not

improve after adding gender.
Frontiers in Oncology 05
In addition, We also evaluated the impact of incorporating

gender and age into the final model for distinguishing

cholangiocarcinoma and BBD patients (Table 5). We found that

the performance of the model changed after adding age. In Model 3

(4-VOCs+gender+age), the AUC was as high as 0.989, further

improving accuracy (94.7%) and sensitivity (87.5%), and reducing

FNR (12.5%), but the specificity slightly decreased (97.8%).
4 Discussion

We analyzed for the first time the VOCs in the serum of BTC

and BBD patients, and applied machine learning to construct and

evaluate diagnostic prediction model. Based on importance scores,

we identified four VOCs. The prediction model constructed based

on these four VOCs has good sensitivity and specificity, which may

provide a new diagnostic basis for BTC patients.

Volatile organic compounds (VOCs) were endogenous

products of cellular metabolic activity under physiological and
FIGURE 2

Characteristics of volatile organic compounds (VOCs) detected in BBD and BTC patients. (A) The three-dimensional spectrum consisting of gas
retention time, ion migration time, and signal peak intensity; (B) The two-dimensional spectrum shows the migration time and retention index of
different VOCs; (C) Peak signals of VOCs detected in BBD and BTC patients.
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pathological conditions, which can be detected in exhaled breath,

blood, urine, and other bodily fluids. More and more studies have

shown that VOCs seem to be a promising non-invasive diagnostic

biomarker for cancer patients (13). The pathological mechanisms of

VOC production in cancer patients include oxidative stress,

cytochrome P450, carbohydrate metabolism (such as glycolysis or

gluconeogenesis pathways), lipid metabolism, and loss of tumor

suppressor genes, angiogenesis, or cell apoptosis, leading to

significant increases or decreases in volatile organic compounds

(VOCs), which may be associated with cancer diagnosis (14).

VOCs were also used as potential biomarkers for detecting

gastrointestinal tumors (15). Xinru Gui et al. used GC-IMS to

analyze VOCs in bile samples and found that compared with BBD

patients, there were 12 differentially expressed VOCs in patients

with perihilar cholangiocarcinoma (PHCCA), including class 1

alcohols, 2 ketones, 3 esters, 5 aldehydes, and 2-methoxyfuran.

The diagnostic model based on 12-VOCs had good diagnostic

performance with specificity of 100% and sensitivity of 93.1%

(12). Udayakumar Navanethan et al. used selected ion flow tube

mass spectrometry to analyze the concentrations of 22 common

volatile organic compounds in bile samples, and performed logistic

regression analysis to adjust for age and gender based on VOC levels

of acrylonitrile, 3-methylhexane, and benzene, developing a

predictive diagnostic model for cholangiocarcinoma (CCA) in

patients with primary sclerosing cholangitis (PSC) (16). The

above study used bile samples for analysis, while serum samples

seem to be easier to obtain and store. In this study, we used GC-IMS

to detect VOCs in the serum of BTC and BBD patients, and

constructed and evaluated a diagnostic prediction model using

machine learning with good sensitivity and specificity. According

to the RF model, we identified four VOCs with high scores,

including two aldehydes and two alcohols. Numerous researchers
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have also found ethanol and propanol in urine and bile samples of

malignant biliary tumors. The increase or decrease of VOCs may be

related to various metabolic pathways. Research has shown that

changes in the metabolic status of CCA, including ethanol

biosynthesis, pyrimidine metabolism, methanol biosynthesis, and

TCA cycle, were closely related to diseases (17). In addition, the

metabolic mechanism of aldehydes may include the following

pathways: ADHs or cytochrome P450 CYP2E1 mediated

reversible oxidation of alcohols and lipid peroxidation (18). The

peroxidation of fatty acids produced under oxidative stress

conditions is related to the formation of straight chain C3-C10

aldehydes (19, 20). The study reported that the occurrence and

development of biliary tract tumors are closely related to lipid

oxidation. Khenjanta, Chakkaphan et al. reported that cytochrome

P450 enzyme (CYP39A1) and its transcription factor (RUNX2) are

associated with expression and progression in cholangiocarcinoma

(21). Therefore, the production of aldehydes was closely related to

the occurrence and development of biliary tract tumors. We will

further explore the mechanisms underlying the relationship

between VOCs and the occurrence and development of biliary

tract tumors.

The clinical parameters analyzed in this study reflect the liver

function damage, bile stasis, and metabolic disorders of patients.

The differential analysis of these clinical parameters provided a

potential basis for distinguishing malignant biliary tumors from

benign biliary diseases by analyzing VOCs. When conducting

volatile organic compound analysis, combining these clinical

parameters can provide a more comprehensive understanding of

the relationship between disease status and volatile organic

compounds. We found that ethanol was related to GR, which was

consistent with previous research reports. Research has found that

many ethanol induced pathologies are associated with oxidative
TABLE 2 Comparisons of peak intensity of VOCs in BBD patients and BTC patients.

VOCs BBD BTC p - value

Propanoic acid 0.018 (0.016 - 0.023) 0.021 (0.017 - 0.040) 0.022

1-Octen-3-ol 0.030 (0.019 - 0.050) 0.043 (0.027 - 0.058) 0.018

(E)-3-hexen-1-ol-M 0.372 (0.235 - 0.611) 0.543 (0.272 - 0.747) 0.017

(E)-3-hexen-1-ol-D 0.025 (0.013 - 0.064) 0.057 (0.017 - 0.101) 0.031

Cyclohexanone-M 1.415 (1.147 - 1.659) 1.556 (1.301 - 1.764) 0.026

1-Octen-3-one 0.044 (0.023 - 0.066) 0.051 (0.039 - 0.078) 0.011

1-Pentanol 0.025 (0.011 - 0.042) 0.037 (0.024 - 0.054) 0.004

Acetaldehyde 0.078 (0.034 - 0.355) 0.032 (0.011 - 0.274) 0.004

1- butanol 0.540 (0.450 - 0.595) 0.500 (0.431 - 0.560) 0.026

1-hexanal-M 0.279 (0.147 - 0.520) 0.424 (0.260 - 0.599) 0.012

Toluene 3.439 (3.349 - 3.561) 3.504 (3.399 - 3.755) 0.009

1-Propanol 0.954 (0.841 - 1.174) 1.162 (0.952 - 1.369) 0.001

Ethanol 2.085 (1.827 - 2.329) 2.396 (2.103 - 2.703) <0.001

Propanal 1.469 (1.266 - 1.698) 1.270 (1.191 - 1.440) <0.001
VOCs, volatile organic compounds; BBD, benign biliary diseases; BTC, biliary tract cancer.
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stress (22). GR (glutathione reductase) was involved in the

intracellular antioxidant defense system. In biliary diseases, the

activity of GR may change due to an increase in oxidative stress

response. Malignant tumors of the biliary tract may trigger stronger

oxidative stress, leading to differences in GR levels compared to

benign biliary disease groups. This explains the correlation between

ethanol and GR.We will further explore the relevant mechanisms to

provide new ideas and directions for the diagnosis and differential

diagnosis of biliary diseases. In addition, demographic factors such

as age and gender may also affect VOCs. Mar ı ́ a-Pilar Mart ı ́ nez
Moral et al. used Non targeted SPME-GC/MS to explore VOCs in

serum samples of pancreatic cancer. They also found that different
Frontiers in Oncology 07
ages and genders were related to VOCs signal intensity (23). Elina

Gashimova et al. used GC-MS to detect VOCs in exhaled breath

samples from lung cancer patients and healthy subjects of different

ages. They analyzed and compared the peak areas of VOCs and

constructed diagnostic models using various machine learning

methods. They found that the diagnostic performance created

using healthy subjects of different ages was roughly the same, but

it was important to select parameters related to disease status rather

than age (24). We found that the diagnostic performance of the

model slightly increased with increasing age, and we will further

expand the sample size to explore and validate the impact of

population factors on VOCs.
FIGURE 3

Significant difference analysis of VOCs peak intensity between BTC patients and BBD patients. *p < 0.05, **p < 0.01, ***p < 0.001 ****p < 0.0001
(Mann–Whitney U-test).
FIGURE 4

Performance Analysis of Machine Learning in the validation set. (A) Confusion matrix of six machine learning methods; (B) ROC curves of six
machine learning methods.
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In recent years, the application of machine learning in tumor

diagnosis and treatment management has received increasing

attention. In terms of modeling, machine learning can robustly

analyze data and make wise judgments with minimal human

involvement, thereby achieving good specificity and sensitivity in

diagnostic model (25). Supervised learning trains machines using

correctly classified labeled data, and then provided test data to the
Frontiers in Oncology 08
machines for evaluation using any supervised algorithm, resulting in

accurate results (26). In this study, multiple machine learning

methods were used, including RF, SVM, LDA, KNN, LASSO, and

XGBoost. The machine randomly selected 70% of patients as the

training set and 30% of patients as the validation set to construct and

evaluate a diagnostic prediction model. It was worth noting that

model validation was the process of evaluating the accuracy of a
TABLE 3 The AUC, sensitivity and specificity of machine learning model.

Model AUC Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) FPR (%) FNR (%) p - value

RF 0.935 76.2 96.3 87.5 94.1 3.7 23.8 < 0.001

SVM 0.862 76.2 85.2 81.3 80.0 14.8 23.8 < 0.001

LDA 0.829 71.4 85.2 79.2 78.9 14.8 28.6 < 0.001

KNN 0.771 61.9 77.8 70.8 68.4 22.2 38.1 0.001

LASSO 0.815 85.2 66.7 77.1 76.7 33.3 14.8 < 0.001

XGBoost 0.841 66.7 88.9 79.2 82.4 11.1 33.3 < 0.001
f

AUC, the area under the curve;FPR, false positive rate; FNR, false negative rate; RF, RandomForest; SVM, Support Vector Machine; LDA, Latent Dirichlet Allocation, KNN, K-Nearest Neighbors,
LASSO, Least Absolute Shrinkage and Selection Operator, XGBoost, Extreme Gradient Boosting.
FIGURE 5

Constructing the model using Random Forest method for distinguishing between BTC and BBD patients. (A) Assessing the importance of VOCs; (B)
ROC curves of 4-VOCs model.
FIGURE 6

Constructing the model using Random Forest method for distinguishing between cholangiocarcinoma and benign biliary diseases patients.
(A) Assessing the importance of VOCs; (B) ROC curves of 4-VOCs model.
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machine learning model trained on a dataset, in order to improve

data quality and quantity, and ensure that the model was trustworthy

before relying on its predictions. Model validation has various

methods, including training/testing splitting, K-fold cross
Frontiers in Oncology 09
validation, leave one method cross validation, and nested cross

validation (27). In this study, based on the AUC and p - values

obtained from machine learning, we found that the model

constructed using RF had the highest diagnostic efficiency. Based
FIGURE 7

Correlation analysis heatmap between VOCs and clinical parameters.
TABLE 4 Diagnostic performance of different model used to distinguish between biliary tract cancer and benign biliary diseases.

Model AUC Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) FPR (%) FNR (%) p - value

4-VOCs 0.982 0.93 0.951 0.879 0.967 0.033 0.121 < 0.001

Model 1 0.991 0.968 0.969 0.955 0.978 0.022 0.045 < 0.001

Model 2 0.979 0.918 0.949 0.848 0.967 0.033 0.152 < 0.001

Model 3 0.992 0.956 0.94 0.955 0.957 0.043 0.045 < 0.001
f

VOCs, volatile organic compounds; 4-VOCs include, Acetaldehyde, 1-Propanol, Propanal and Ethanol; Model 1, 4-VOCs+age; Model 2, 4-VOCs+gender; Model 3, 4-VOCs+age+gender; AUC,
the area under the curve; FPR, false positive rate; FNR, false negative rate.
TABLE 5 Diagnostic performance of different model used to distinguish between cholangiocarcinoma and benign biliary diseases.

Model AUC Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) FPR (%) FNR (%) p - value

4-VOCs 0.977 0.924 0.969 0.775 0.989 0.011 0.225 < 0.001

Model 1 0.989 0.947 0.946 0.875 0.978 0.022 0.125 < 0.001

Model 2 0.974 0.902 0.935 0.725 0.978 0.022 0.275 < 0.001

Model 3 0.989 0.947 0.946 0.875 0.978 0.022 0.125 < 0.001
VOCs, volatile organic compounds; 4-VOCs include:1-Propanol, Acetaldehyde, Propanal, and 1-butanol; Model 1, 4-VOCs+age; Model 2, 4-VOCs+gender; Model 3, 4-VOCs+age+gender;
AUC, the area under the curve; FPR, false positive rate; FNR, false negative rate.
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on the importance score, we selected the top ranked VOCs and

further used network search to perform five fold cross validation on

each parameter combination, thus constructing an optimized

diagnostic model. Compared with previous models, this model

further improved the sensitivity of diagnosis and reduced FNR. A

diagnostic model based on random forest (RF) algorithm using

microorganisms in tissues and blood has shown excellent

performance in over 20 types of cancer (28). Xu et al. reported that

ML models based on optimal algorithms improve the accuracy of

cancer diagnosis by analyzing blood substances (29). We will also

expand the research cohort to further evaluate our research findings.

Our research also has some limitations. 1) The research

population was not included in the healthy population. The focus

of this study was to identify specific biomarkers for distinguishing

between patients with biliary tract tumors and benign biliary diseases,

in order to better understand the pathophysiological mechanisms of

disease occurrence and development, as well as to search for effective

indicators for disease diagnosis and differential diagnosis. In the

future, we will include healthy populations and expand the sample

size to explore VOCs biomarkers that distinguish patients from

healthy populations for use in high-risk population surveys. 2) This

study uses GC-IMS to detect VOCs in patients’ serum and analyze

their characteristic peak intensity. The peak intensity can be directly

read from the spectrum, which can quickly provide intuitive

information on the relative content of compounds, but it may not

be possible to accurate quantification. These may be the advantage

and disadvantage of GC-IMS in detecting VOCs. GC-IMS had a high

ability to separate complex components, and the ultra sensitivity of

ion migration spectroscopy allows it to detect very small intensity

volatile organic compounds. It had the advantages of fast analysis

speed and no need for complex sample pretreatment. However, its

database were relatively small. Compared with gas chromatography-

mass spectrometry (GC-MS), the compound database of GC-IMS

were not complete enough, and its ability to identify unknown

compounds was relatively weak. Additionally, the accuracy of

quantitative analysis needs to be improved (30); Although GC-MS

had high resolution and accurate quantitative analysis, it can only be

used for the separation and identification of low molecular weight

(about 50 - 600 Da) and volatile compounds, and the analysis time

was long. The sample pretreatment requirements were high, and

chemical derivatization and other pretreatment were needed to detect

polar, non thermal, and non-volatile metabolites. In addition, the

instrument cost and maintenance cost were high (31). Selected ion

flow tube mass spectrometry (SIFT-MS) can perform real-time and

continuous monitoring of samples. Although the maintenance cost of

this instrument was relatively low, it separates fewer volatile organic

compounds (32). ENOSE detection was simple, fast, and inexpensive,

but its sensitivity was limited and may be affected by environmental

interference, making it impossible to separate individual volatile

organic compound components (33). We will also conduct further

high-precision quantitative analysis by selecting appropriate internal

standards and analytical methods. 3) It was necessary to further

explore the correlation mechanism between changes in endogenous

VOCs and the occurrence and development of BTC or BBD.
Frontiers in Oncology 10
5 Conclusion

We first used GC-IMS to analyze VOCs in the serum of BTC

and BBD patients. Six machine learning methods, including RF,

SVM, LDA, KNN, LASSO, and XGBoost, were used to construct

and evaluate diagnostic prediction models for patients. Four VOCs

were identified, and the model based on 4-VOC showed good

sensitivity and specificity, which may be a new biomarker for

distinguishing the diagnosis of BBD and BTC patients. In

addition, we also constructed and evaluated the diagnostic

performance of model in cholangiocarcinoma and benign biliary

diseases, which provided new ideas for the differential diagnosis of

biliary tract diseases
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