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Purpose:Deep learning (DL) is a technique explored within ophthalmology that

requires large datasets to distinguish feature representations with high

diagnostic performance. There is a need for developing DL approaches to

predict therapeutic response, but completed clinical trial datasets are limited in

size. Predicting treatment response is more complex than disease diagnosis,

where hallmarks of treatment response are subtle. This study seeks to

understand the utility of DL for clinical problems in ophthalmology such as

predicting treatment response and where large sample sizes for model training

are not available.

Materials and Methods: Four DL architectures were trained using cross-

validated transfer learning to classify ultra-widefield angiograms (UWFA) and

fluid-compartmentalized optical coherence tomography (OCT) images from a

completed clinical trial (PERMEATE) dataset (n=29) as tolerating or requiring

extended interval Anti-VEGF dosing. UWFA images (n=217) from the Anti-VEGF

study were divided into five increasingly larger subsets to evaluate the influence

of dataset size on performance. Class activation maps (CAMs) were generated

to identify regions of model attention.

Results: The best performing DL model had a mean AUC of 0.507 ± 0.042 on

UWFA images, and highest observed AUC of 0.503 for fluid-

compartmentalized OCT images. DL had a best performing AUC of 0.634

when dataset size was incrementally increased. Resulting CAMs show

inconsistent regions of interest.

Conclusions: This study demonstrated the limitations of DL for predicting

therapeutic response when large datasets were not available for model training.
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Our findings suggest the need for hand-crafted approaches for complex and

data scarce prediction problems in ophthalmology.
KEYWORDS

deep learning, diabetic retinopathy, diabetic macular edema, ultra-widefield
fluorescein angiography, optical coherence tomography, transfer learning
1 Introduction

Diabetic retinopathy (DR) is the most common cause of

vision loss and blindness in working-age adults. DR is thought to

be present in approximately 30% of diabetic individuals over the

age of 40 in the United States (1). Diabetic macular edema

(DME), a serious complication of DR, is intracellular fluid

accumulation within the macular region. Retinal vein

occlusion (RVO) is the second most common retinal vascular

disease and can result in visually-significant macular edema (2).

Vascular Endothelial Growth Factor (VEGF) has been

recognized as an important cytokine that induces retinal

vascular hyperpermeability in both DME and RVO. This

results in the accumulation of intraretinal fluid (IRF) or

subretinal fluid (SRF) in the retina. Anti-VEGF is the current

standard treatment in DME and RVO to resolve leakage

accumulation. The response to anti-VEGF can be variable and

interval tolerance between treatments is not currently

predictable based on traditional clinical features. Ultra-

widefield fluorescein angiography (UWFA) and Optical

coherence tomography (OCT) are standard imaging modalities
02
used for diagnostics of patients with DME or RVO. UWFA

enables analysis of pan retinal vascular abnormalities, such as

fluid leakage, micro-aneurysms and non-perfusion. OCT allows

detailed anatomic evaluation of retinal layers (3). UWFA and

OCT imaging modalities are illustrated in Figure 1.

Deep learning (DL) is a class of machine learning that uses

configurations of deep neural networks using unsupervised

feature generation techniques to distinguish categories of

interests (4–7). DL has been employed to great effect in many

application areas within ophthalmology, mostly revolving

around disease detection and diagnosis. Different modalities of

data also impact the performance of DL models, as visual

markers are captured and presented differently depending on

the imaging modality (8). Both UWFA and OCTmodalities have

been used in DL-based experiments for diagnosis related tasks

and have achieved robust classification performance on large

datasets (4–7).

DL approaches have also been used for detection and

segmentation of specific hallmarks of disease such as the

approach by Schlegl et al. where DL approaches were

employed for quantifying macular fluid in OCT images (n =
A B

FIGURE 1

Comparison of (A) UWFA and (B) OCT imaging modalities. UWFA is a wide angle scan of the retinal surface and OCT is a volumetric scan of the
retina that can be decomposed into 2D OCT B-scans. Note that in (B), the 3D volume is represented as a stack of the 2D B-scans used in
this study.
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1200), yielding a mean AUC of 0.94 (4). Lee et al. used DL to

distinguish normal OCT images versus age-related macular

degeneration images (n = 101,002), yielding an AUC of 0.93

(5). Varadarajan et al. predicted DME grades from fundus

photos (n = 7072), yielding an AUC of 0.89 (6). Different DL

model architectures were used for these aforementioned studies

(4–6) where imaging datasets had sizes greater than a thousand

samples available for training. In these previously mentioned

disease classification studies where identifiers for disease

presence are quite discernible, DL models were provided with

training sets upwards of thousands of samples (4–6). When

presented with large amounts of data for a task that contains

obvious hallmarks of disease presence, DL-based approaches

yield good classification results (4–6). In disease diagnosis tasks,

visual markers have been identified in OCT or fundus photos.

Specifically for diagnosing DR, similar works have utilized visual

markers from various retina modalities to high levels of success

(9, 10). Sandhu et al. utilized extracted clinical biomarker

features from both OCT and OCT angiography (OCTA) to

train a classifier to diagnose and grade the severity of

nonproliferative DR, classifying samples as either no DR, mild

nonproliferative DR, or moderate nonproliferative DR. Using

this classifier, Sandhu et al. reported an AUC of 0.987 when

combining features extracted from both modalities (9).

Sharafeldeen et al. extracted high-order morphological and

novel reflectivity markers per individual segmented retinal

layers to detect early DR with OCT B-scans, classifying

samples as either normal eyes or eyes containing DR. Each

extracted descriptor per retinal layer is fused to create a novel

classification model that reached a classification AUC of

0.982 (10).

However, when it comes to a task like predicting treatment

response, there are limited hallmarks of disease aggressiveness,

or tolerance to treatment. Even clinical interpretation of severity

of DME and response to anti-VEGF therapy is highly variable,

and subject to the impression of the individual ophthalmologist

reviewing the images. Furthermore, the response to therapy can

be the same between two patients, but have vastly different late

phase image scans due to differences in the initial severity of the

disease. Thus, the task of predicting treatment response is

potentially more challenging to disease diagnosis. Additionally,

in the absence of obvious hallmarks of disease treatment

response, unsupervised feature generation approaches like DL

could be challenged by the limited size of training datasets

available for developing treatment response predictors. In

addition, certain emerging modalities may be subject to greater

limitations in sample size, such as UWFA and OCTA. Unlike for

diagnostic decision-making tasks, where typically large sample

set sizes are readily available, predictors for treatment response

are typically reliant on completed clinical trial datasets which are

usually limited in sample size in the context of ophthalmology.

In instances where larger datasets are obtainable however, DL

techniques have identified and utilized key OCT image-based
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features correlated to anti-VEGF response and treatment

prognosis (11). Using an OCT dataset of 101 samples, Alryalat

et al. propose a novel method of utilizing DL-generated

segmentation masks to train a DL classification model to

predict treatment response. When training the DL

classification model on only the OCT image B-slices, the study

reports a classification AUC of 0.76. When the generated

segmentation masks are applied to the B-slices, the DL model

reaches a high classification AUC of 0.81 (11).

In general applications of DL, data scarcity has been

addressed through techniques such as transfer learning, where

layers of a neural network are first pre-trained on large general

image datasets to learn basic edge and object detection (among

other basic feature extractors) (12). As a result, this effectively

lowers the dataset size requirement, as only the problem-specific

features need to be learned from the data. Then, the last layers of

the model are trained specifically on the smaller, desired dataset

in order to learn the specified problem. In theory, this approach

circumvents the need for extensive model training on a large

dataset. Nonetheless, with extreme cases of data scarcity and a

complex task, transfer learning may still fail, and be unable to

reach optimal classification performance. An alternate approach

to deep learning, more apt for data scarce environments, is the

radiomics or hand-crafted based feature approach category

where pre-defined image attributes are used to predict

treatment response (13, 14). For instance, Prasanna (13) and

Moosavi (14) separately showed that hand-crafted based

radiomic features relating to eye vessels and arrangement of

leakage patterns were associated with response to anti-VEGF

treatment, albeit for relatively small sample sizes (n=28).

When presented with a more complex task, such as

predicting therapeutic response in afflicted eyes, it is important

to determine the best strategy to utilize artificial intelligence to

solve such a problem. Even with limitations, such as small

training dataset size, is it possible to augment the training data

in such a way that can lead to optimal predictive performance

with DL based models? Does the imaging modality used have an

effect on whether DL models can converge in such a problem

space? Furthermore, how does the dataset size influence the

training of a DL model, and what size dataset should be

considered as “large enough” for effective training? Finally, is

it possible for DL to detect and learn an underlying signal for a

task that does not have obvious visual cues, such as identifying

whether a patient is a rebounder or non-rebounder based off

their imaging scans? This study seeks to preliminarily explore

these questions for the task of predicting therapeutic response in

ophthalmology images corresponding to two different

modalities - OCT and UWFA. To address these questions, we

first evaluated the performance of transfer learning on two

different imaging modalities, UWFA and OCT, taken from the

PERMEATE clinical trial (n = 29), a prospective open-label IRB-

approved study that contained eyes with DME and RVO

undergoing anti-VEGF therapy (15). Due to small dataset size,
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leave one out cross validation is used for classifier training and

evaluation. To verify our findings, we visualized the areas where

the trained DL models identify as categories of interest, through

the use of class activation heatmaps, where areas highly

influencing classification are highlighted. Separately, the

influence of training set size was explored by dividing the

larger Anti-VEGF UWFA dataset into smaller subset sizes,

where each subset increased by a factor of 28. In summary,

this was the first comprehensive attempt to evaluate DL for

ophthalmology related treatment response applications,

particularly when large amounts of data were not available

for training.
2 Methodological framework

2.1 Description of datasets

2.1.1 PERMEATE dataset
The PERMEATE study is an IRB-approved prospective

clinical study established by the Cole Eye Institute at

Cleveland Clinic Foundation (CCF) (15). Written consent was

obtained to conduct the study. The study aimed to assess the

outcomes of Intravitreal Aflibercept Injection (IAI) therapy in

eyes with DME or macular edema secondary to RVO. For the

first 6 months, subjects receive 2 mg IAI injections every 4 weeks
Frontiers in Ophthalmology 04
(q4w) and then progress to 8-week dosing periods (q8w) for the

remaining 6 months. Inclusion criteria consist of treatment-

naive patients ≥ 18 years of age, presence of DME or RVO, and

best-corrected visual acuity of 20/25 or worse. UWFA and OCT

were obtained at baseline and at specific time points throughout

the study. In order to evaluate treatment interval tolerance, eyes

were separated into two cohorts based on visual acuity during

the first q8w period. Rebounders (n=12) are eyes exhibiting at

least 1 letter worsening in best-corrected visual acuity following

the initial q8w challenge, and non-rebounders (n=17) are eyes

that maintained or improved best-corrected visual acuity. The

UWFA PERMEATE data set consists of 29 total samples with

the aforementioned class distribution, while the OCT data set

observes a dropped rebounder patient from the dataset (due to

poor image quality), and thus contains only 28 samples. Patient

characteristics for the PERMEATE dataset is shown in Table 1.

2.1.2 Anti-VEGF dataset
The Anti-VEGF dataset consists of UWFA imaging (Optos)

from a retrospective image analysis study that was conducted on

eyes with DR. The study was approved by the Cleveland Clinical

Institutional Review Board. Two-hundred seventeen eyes from

189 patients were included. Eyes are classified as either requiring

anti-VEGF treatment (n=141) or not requiring treatment

(n=76). Inclusion criteria include eyes with DR of any severity

stage, as determined by the International Clinical Diabetic
TABLE 1 PERMEATE patient characteristics.

Characteristic Mean Std Dev Count Column N %

Age 67.17 9.71

Central Subfield Thickness 541.17 246.59

Letter Score 54.34 23.34

Macular Volume 13.70 4.30

Diagnosis DME 14 48.30%

RVO 15 51.70%

CRVO 10 34.50%

BRVO 5 17.20%

Gender Female 18 62.10%

Male 11 37.90%

Glaucoma No 20 69.00%

Yes 9 31.00%

Hypertension No 6 20.70%

Yes 23 79.30%

Lens Status Phakic 22 75.90%

Pseudophakic 7 24.10%

Race African-American 6 20.70%

Caucasian 23 79.30%

Study Eye Left (OS) 12 41.40%

Right (OD) 17 58.60%

VA Worse at V8 No 17 58.60%

Yes 12 41.40%
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Retinopathy Severity Scale. Exclusion criteria consist of eyes that

had undergone panretinal laser photocoagulation at any time or

intravitreal pharmacotherapy within the preceding six month

time period. Poor UWFA image quality was also a consideration

for exclusion, where instances of artifact presence, poor field-of-

view, or limited contrast led to the sample being removed from

the dataset. This dataset was used to track changes in DL

performance for predicting treatment response when training

set size is varied. Patient characteristics for the Anti-VEGF

dataset is shown in Table 2.
2.2 Transfer learning model architectures

Four pre-trained model architectures were used for the

classification problem of predicting treatment response in

ophthalmology images. These models include ResNet50,

ResNet101, Inception-v3 and DenseNet201. The ResNet50 and

ResNet101 model architectures utilize stacking of convolutional

layers to learn the residuals of the provided input. ResNet50 is a

50 layer residual network, and ResNet101 is a 101 layer residual

network (16). The Inception-v3 model increases the depth and

width of a deep convolutional network, while keeping the

computational budget constant using a sparsely connected

architecture (17). DenseNet201 increases the depth of deep

convolutional networks through connecting every other layer
Frontiers in Ophthalmology 05
in the network in a feed-forward framework. The previous

feature maps from each layer are used as the next layer’s

input, and are propagated throughout the entire model (18).

All four of these models are well-established for image

classification tasks, and when combined with transfer learning

techniques are typically able to converge to an accurate

representation of the image data.

Variations of these model architectures have also been

previously explored for various ophthalmologic image

classification tasks (19–22). Kim and Tran explore several

architectures, such as VGG16, VGG19, ResNet50, ResNet152,

DenseNet121, and Inception-v3 as feature extractors to develop

binary classifiers for categorizing OCT images into Choroidal

neovascularization, Diabetic macular edema, Drusen, and

Normal patients (19). Khojasteh et al. utilized the ResNet50

model architecture to detect exudates in fundus images (20).

Diaz-Pinto et al. employed five different ImageNet pre-trained

models (VGG16, VGG19, Inception-v3, ResNet50, and

Xception) for automatic glaucoma assessment of fundus

images (21). Pan et al. detect and classify lesions of diabetic

retinopathy in fundus fluorescein angiography images using

DenseNet, ResNet50, and VGG16 model architectures (22).

Across a wide variety of image classification tasks, these

variations of ImageNet pre-trained model architectures

performed optimally on their respective tasks. In our study,

four different image classification model architectures were
TABLE 2 Anti-VEGF patient characteristics.

Characteristic Mean Std Dev Count Column N %

Age 61.83 13.12

Clinical DME No 125 57.60%

Yes 92 42.40%

Diagnosis Mild NPDR 19 8.76%

Moderate NPDR 53 24.42%

Severe NPDR 92 42.40%

PDR 53 24.42%

Gender Female 96 44.24%

Male 121 55.76%

Hypertension No 10 4.61%

Yes 207 95.39%

Lens Status Phakic 160 73.73%

Pseudophakic 57 26.27%

Race African-American 99 45.62%

Asian 1 0.46%

Caucasian 109 50.23%

Multiracial/Multicultural 1 0.46%

Unavailable 7 3.23%

Study Eye Left (OS) 87 40.09%

Right (OD) 130 59.91%

Required Anti-VEGF No 76 35.02%

Treatment Yes 141 64.98%
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chosen to highlight the sub-optimal classification performance

due to limited data, and not to conduct a comprehensive review

of every possible network architecture for this image

classification task.
2.3 Classification methods

Transfer learning classification experiments are performed

on both UWFA and OCT scans to classify patients as rebounders

or non-rebounders. With small-sized imaging datasets, leave-

one-out cross validation (LOOCV) is utilized to maximize the

training set size. Through each iteration of LOOCV, one sample

is set aside and used for model validation. The rest of the samples

are used for training, and this process is repeated with a new

model instance for each configuration of a sample being used as

the validation sample. This is done to give DL the best chance of

learning necessary features from the data. Standard three-fold

cross validation was also employed for experiments using the

larger dataset. Optimal hyper-parameters (e.g. learning rate,

number of epochs) were found for each model through grid-

search experiments.
2.4 Heatmap visualizations

Class activation maps (CAM) were generated per sample to

visually identify the regions of interest (ROI) that the trained

model places attention on when making predictions (23). Using

the model’s final layer, highly activated pixels were identified and

marked with warmer (red) tones. Similarly, pixels of the sample

image that have low attention were marked with cooler (blue)

tones. The resulting CAMs were analyzed to determine if the

ROI’s identified by the model shared correlation with clinically

shown identifiers for anti-VEGF treatment response. In

addition, the ROIs were compared among samples to verify if

the underlying task was being learned by the model, regardless of

sample variance.
2.5 Implementation details

Transfer Learning models were loaded in through the use of

PyTorch, a Python based machine learning framework (24).

Through PyTorch, the four aforementioned model architectures

were pre-trained on the ImageNet database, with all layer
Frontiers in Ophthalmology 06
weights frozen except for the final layer. The model training

pipeline and CAM generation is also conducted through the

PyTorch package.
3 Experimental results

3.1 Experiment 1: utility of DL on limited
UWFA data

Ability for DL to predict treatment response on UWFA

imaging data was evaluated on the PERMEATE dataset.

3900x3072 UWFA late-phase frames for 29 eyes are imported.

The images are first resized to 508x400 and then center cropped

to 224x224 to match input dimensions of the pre-trained DL

models. This process also removes the artifacts on the outer

regions of the images such as eyelashes and eyelids. Finally,

normalization is applied to match ImageNet standards. A patch-

based approach and the use of data augmentations were also

explored in experiments detailed in Section 1 and 2.1 of the

Supplementary Material.

Transfer learning, as described in Section 2, is applied to

these processed images and LOOCV is employed due to the

small sample size of the PERMEATE dataset (n=29). Training is

done over 30 seeded runs, with 100 epochs per training set and a

learning rate of 0.001. Then, resulting CAMs are generated per

trained model for the set of samples.

Results are observed for DL-based classification of UWFA late

scans. The model AUC and accuracy are averaged over the 30

seeded runs of LOOCV, with the best performing model

(DenseNet201) only reaching a mean AUC of 0.507 ± 0.042. The

highest mean accuracy across the 30 seeded runs was only 0.511 ±

0.075. The complete results for the four model architectures are

presented in Table 3, and an example of the resulting CAMs are

presented in Figure 2. Confusion matrices for a single seeded run of

LOOCV is show in Figure S1 of the Supplementary Material.
3.2 Experiment 2: utility of DL on limited
OCT data

The ability of DL to predict treatment response was further

evaluated by conducting experiments on the OCT imaging data

of the same patient cohort from the PERMEATE dataset.

Macular cube scans with 128 B-scans covering a nominal 6x6

mm scan area of 28 eyes were analyzed by a semi-automated
TABLE 3 PERMEATE UWFA Results (over 30 runs).

Metric ResNet50 ResNet101 Inception-v3 DenseNet201

Mean AUC 0.491 ± 0.036 0.504 ± 0.032 0.487 ± 0.076 0.507 ± 0.042

Mean ACC 0.511 ± 0.075 0.468 ± 0.072 0.488 ± 0.095 0.508 ± 0.082
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segmentation and feature extraction software, OCTViewer

(Cleveland Clinic, Cleveland, Ohio) (25). The software

generated segmentation masks for both IRF and SRF objects.

B-scans along with their corresponding fluid compartment

masks are imported to be used with transfer learning

architecture. The values specific to IRF and SRF regions are

thresholded to separate the detected regions, and applied on the

original 2D-OCT slice to extract detected fluid per slice. In

addition to the individual fluid compartments, a mask of

combined IRF and SRF regions was also generated. Slices with

no detected fluid compartment are removed from their

corresponding region dataset. All 28 samples with a total of

2046 slices remain for IRF compartments and combined fluid

compartments. There was no SRF detected in 8 of the samples.

239 slices from 20 samples are included for SRF analysis. Slices

included for fluid compartment analysis are cropped and resized

to 224x224 to match input dimensions of the pre-trained DL

models. Normalization is applied to the image slices to match

ImageNet standards. Regions within the square image that do not

contain fluid compartments are represented with zero pixel

intensity, indicating that these areas are void of data. The use of

data augmentations was also explored in an additional experiment

detailed in Section 2.2 of the Supplementary Material.
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Again, transfer learning classification experiments are

employed as described in Section 2. Experiments are

individually done based on the fluid compartment region; IRF,

SRF, and both compartments combined. Similarly to the UWFA

analysis, LOOCV is used due to the small sample size of

PERMEATE. For the compartmentalized OCT analysis, a

sample is considered as ≤ 128 masked B-scan slices generated

during image pre-processing. For classification purposes,

samples are classified as rebounder or non-rebounder through

majority class voting of each of the extracted slices. Training is

done with 50 epochs per training set and a learning rate of

0.0001. Then, CAMs are generated after training. Due to the

OCT data being a stack of 2D image slices, the images used to

generate the CAMs are chosen from the central regions of the

stack of 2D slices (slices chosen randomly between 60 to 68).

This allows for the highest chance of detected fluid compartment

regions to be included for CAM analysis.

Results are observed for DL-based classification of 2D

compartmentalized OCT scans, grouped by fluid compartments.

The best performingmodel architecture for classifying IRF regions

was ResNet101 with a mean AUC of 0.425 ± 0.105. SRF region

classification was slightly worse for each tested model architecture

due to sample pruning, with the exception to DenseNet201 which
A

B

D

C

FIGURE 2

Examples of resulting heatmaps for the four trained models on rebounder and non-rebounder UWFA samples. Black outlines indicate correct
classification of the sample, while red outlines indicate incorrect classification. Areas within the heatmap that are warm toned (red) represent
areas where DL models have high attention and areas that are cold toned (blue) represent areas with low attention. Resulting heatmaps
observed across different model architectures are inconsistent for the same sample, as attention is focused at different locations.
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performed the best with a mean AUC of 0.418 ± 0.021. The

performance for combined region experiments followed similar

trends to classifying IRF regions, as ResNet101 again had the best

performing mean AUC of 0.443 ± 0.045. ROC curves were also

generated for each fluid compartment experiment with the four

testedmodels. Complete results can be found inTable 4, AUCplots

can be found in Figure 3, and corresponding CAMs are illustrated

inFigure4.Confusionmatrices for a single seeded runofLOOCVis

show in Figure S3 of the Supplementary Material.
3.3 Experiment 3: effect of sample size
on performance

In order to evaluate the impact of sample size on DL-based

classification performance, the best performing model

architecture from the UWFA experiment was selected and re-

trained on the Anti-VEGF dataset of increasing training set size.

Five subsets were sampled from the Anti-VEGF dataset to create

balanced class distributions. Image processing for these samples

is the same as described for the PERMEATE UWFA experiment.

Subsets increased by a factor of 28 in size from 28 to 140 eyes.

This value is chosen to mirror the dataset size of PERMEATE.

New instances of the transfer learning model are trained on the

varying subsets and model performance is reported from 3-fold

cross validation. In addition, CAMs are generated to examine

how the identified ROIs change over different sample set sizes.

Results fromDL-based classification of the Anti-VEGF dataset

are calculated from the pooled predictions over 3-fold cross

validation per subset. The best performing model architecture

from the PERMEATE UWFA experiment (DenseNet201) was

chosen to examine the effect of sample size on performance.

Subsets are denoted as S1, S2, up to S5, in order of increasing

subset size. Subset 5 (largest training set size) had the best reported

AUC of 0.634. These results are shown in Table 5. In addition,

receiver operating characteristic (ROC) curves are generated for

each subset and plotted on the same axis to showhowperformance

changes as the subset size increases. This plot is illustrated in

Figure 5. The resulting CAMs are illustrated in Figure 6.
4 Discussion

The objective of this study was to evaluate the utility of deep

learning (DL) to predict response to treatment or future
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treatment need, a DL task that lacks well-defined visual

indicators and large readily available datasets. The goal of the

PERMEATE Ultra-widefield fluorescein angiography (UWFA)

experiment was to gauge the ability for DL to classify samples as

rebounders and non-rebounders with the PERMEATE dataset,

where training set size was small. Even when utilizing transfer

learning, a DL technique that is tailored towards image

classification problems, performance is sub-optimal regardless

of model architecture. Over 30 averaged runs, both the average

AUC and accuracy are at or slightly less than random chance,

indicating that for this more challenging DL task of predicting

treatment response, DL has failed to converge to an accurate

representation of the problem. Furthermore, upon analysis of

resulting class activation maps (CAMs), it is clear that the DL

models are inconsistent in identifying regions of interest (ROI)

that lead to classification of the sample. Identified ROI are

sporadic, and alternate between focusing on the optic nerve,

macula, or peripheral regions. Additionally, fluid leakage did not

seem to consistently be identified as ROI by the model. These

results suggest that for the UWFA modality, DL is unable to

detect consistent visual indicators from the limited training set

size related to predicting therapeutic durability in this

disease set.

Similar to the UWFA analysis, the goal of the PERMEATE

Optical coherence tomography (OCT) experiment was to

observe DL performance on a small dataset but with

compartmentalized OCT data. Similarly, the transfer learning

models failed to reach optimal performance in predicting

therapeutic durability. In fact, for the compartmentalized OCT

analysis, the transfer learning models failed to even consistently

reach random chance. Subretinal fluid (SRF) classification was

exceptionally poor, most likely due to the limited number of

samples as 2D slices that contained detected SRF were minimal

(n=10). Furthermore, the combination of intraretinal fluid (IRF)

and SRF was subject to increased bias due to the small number of

SRF samples. Similar trends are observed for the resulting CAMs

for the compartmentalized OCT images. Identified areas of

attention are again very inconsistent for the four different

model architectures. As a result of attempting DL classification

for two modalities of the PERMEATE dataset, it can be

concluded that DL was unable to derive accurate

representations for this particular treatment prediction task.

Given the results of DL classification on the PERMEATE

dataset, it was important to also determine if the issue with the

sub-optimal classification performance was due to the training
TABLE 4 PERMEATE OCT AUC results (over 5 runs).

OCT Compartments ResNet50 ResNet101 Inception-v3 DenseNet201

IRF Regions 0.414 ± 0.053 0.425 ± 0.105 0.407 ± 0.034 0.386 ± 0.055

SRF Regions 0.367 ± 0.026 0.347 ± 0.030 0.400 ± 0.052 0.418 ± 0.021

Combined Regions 0.399 ± 0.056 0.443 ± 0.045 0.409 ± 0.060 0.379 ± 0.063
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set size, or the task itself. The task of classifying eyes based on

tolerance of treatment interval is much more complex than

classifying based on need for anti-vascular endothelial growth

factor (Anti-VEGF) therapy. From the results of the UWFA

subset experiment on the Anti-VEGF dataset, it was observed

that there was only a marginal improvement in DL performance

as the training set size increased for UWFA images. Even when

the training set size increased by a magnitude of five (though still

a relatively small dataset), DL performance was only slightly

better than random chance. Thus, DL appears to fail for this task

of predicting treatment response due to the inability to learn

necessary features and representations from UWFA data with

concurrent data scarcity. However, treatment response imaging

datasets for eyes afflicted with diabetic eye disease that are large

in sample size are also limited, which will lead to even worse DL

classification performance, particularly in UWFA data. This

further suggests that DL might not be optimally suited for

such a task, and other radiomic-based feature-based

approaches should be considered as an alternative.

Such approaches include hand-crafted or radiomic feature

extraction techniques. Radiomics is a technique of extracting

and analyzing quantitative image features from medical images

with image processing techniques, with the goal of identifying

correlations between biologically relevant features to support

clinical decision making (26). Previous studies have shown the

efficacy of handcrafted feature-based approaches (like
Frontiers in Ophthalmology 09
radiomics) in predicting treatment response from UWFA

images, where high predictive performance is reported on the

PERMEATE dataset, a result that was not reproducible with DL.

Prasanna et al. presented two novel UWFA-derived radiomics

biomarkers from the PERMEATE study. The first being a

biomarker that captures the differences in spatial arrangement

of leakage patterns for eyes more tolerant of extended interval

dosing and those that do not. The second biomarker relates to

the variance of vessel tortuosity between eyes with different levels

of tolerance to treatment (13). These feature extraction-based

approaches are better suited for this task, as even with limited

data, radiomics was able to identify FA-derived leakage

morphology and vessel tortuosity-based biomarkers that

discriminated eyes that were rebounders and non-rebounders

to treatment with a cross-validated area under the receiver

operating characteristic curve (AUC) of 0.77 ± 0.14 for

baseline leakage distribution features and 0.73 ± 0.10 for

UWFA baseline tortuosity measures (13, 14). Additionally, a

set of texture-based radiomics features were extracted from each

of the fluid and retinal tissue compartments of the PERMEATE

OCT images and yielded a cross-validated AUC of 0.78 ± 0.08

for distinguishing rebounders from non-rebounders (27). These

findings suggest that algorithms attempting to identify pre-

defined patterns in the image might require fewer training

images compared to unsupervised feature generation

approaches such as DL.
A B

C

FIGURE 3

ROC plots of each tested DL model for Compartmentalized OCT experiments of (A) IRF regions only, (B) SRF regions only, and (C) both regions
combined. Performance across the board is poor and is generally worse than random guessing (0.5 AUC shown as a dotted black line).
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Recent works have also evaluated the utility of DL for predicting

treatment tolerance of eyes with various ocular diseases, such as

diabetic macular edema (DME) (28–30). Rasti et al. achieved an

average AUC of 0.855 in discriminating rebounders from non-

rebounders using DL on a retrospective study of 127 subjects (28).

Outside of DME, Feng et al. demonstrated that predictive AUC can

reach levels greater than 0.80 for predicting effectiveness of therapy

for choroidal neovascularization (CNV) and cystoidmacular edema

(CME) afflicted eyes in a study containing 228 patients (29). Finally,

using a dataset that included 183,402 OCT B-scans, Prahs et al.

developed a DL model capable of distinguishing OCT B-scans that

require intravitreal injection from those that do not, yielding

above 95% classification accuracy on a validation dataset (30).

One distinction for this study is that it instead predicted need

for treatment as opposed to tolerance to treatment. These
Frontiers in Ophthalmology 10
recent studies indicate that there is promise in DL-based

algorithms for ocular related tasks, when provided with a

large enough dataset.

We do acknowledge that this study has important limitations.

The major limitation revolves around the extremely limited dataset

size (n=28). The small dataset size causes DL models to be prone to

overfitting, as well as limits the possible cross validation techniques

used. That said, the primary goal of this analysis was to evaluate the

potential for DL in a data scarce environment, particularly in a

dataset that has previously been able to be evaluated with other

image feature characterization techniques. The compartmentalized

approach to OCTDL assessment also has an important limitation of

cross-study comparison, asmost other OCTDL analyses utilized full

image or region-of-interest assessments for their studies. An

additional important limitation is related to the specifics of
A

B

D

C

FIGURE 4

Examples of resulting heatmaps for the four trained models on rebounder and non-rebounder OCT sample slices. Samples consist of the OCT
fluid compartments segmented out from IRF and SRF masks. Black outlines indicate correct classification of the sample, while red outlines
indicate incorrect classification. Areas within the heatmap that are warm toned (red) represent areas where DL models have high attention and
areas that are cold toned (blue) represent areas with low attention. Resulting heatmaps observed across different model architectures are
inconsistent for the same sample, as attention is focused at different locations. Also, different models focused attention on regions of the image
that contained no fluid compartments, suggesting that classifications were made based on areas with no fluid features at all.
TABLE 5 Anti-VEGF UWFA results (3-fold cross validation).

S1 S2 S3 S4 S5

Pooled AUC 0.546 0.625 0.550 0.616 0.634
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defining treatment response/durability, as well as the need for anti-

VEGF treatment. These are challenging definitions based on variable

perspectives on timing, what qualifies as a failure, and variable

physician-based decisions on need for therapy. The post-hoc

retrospective nature of the analysis creates challenges specifically

around these definitions. A future prospective comparative

assessment of DL versus hand-crafted feature characterization or

even hybrid techniques would be of high value to consider for

additional validation. Furthermore, a separate independent
Frontiers in Ophthalmology 11
validation dataset would alleviate this issue by providing an

avenue for model validation that did not limit the training size.
5 Conclusion

In spite of the aforementioned limitations, the present study

was able to evaluate the limitations of DL for predicting anti-

VEGF treatment response across variable imaging modalities
FIGURE 5

ROC plot of each DL model for anti-VEGF subset performance. Subsets increase in size with S1 being the smallest sample size and S5 the
largest. As subset size increases, there is only limited observed improvement in model AUC, with the largest subset size still failing to reach high
classification performance.
FIGURE 6

Examples of resulting heatmaps from a new instance of a trained model as subset size increases for both rebounder and non-rebounder
patients. Black outlines indicate correct classification of the sample, while red outlines indicate incorrect classifications. Areas within the
heatmap that are warm toned (red) represent areas where DL models have high attention and areas that are cold toned (blue) represent areas
with low attention. Identified regions of interest in heatmaps vary and are inconsistent as subset size increases, indicating that DL models fail to
consistently learn relevant features needed for classification.
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and sample sizes. The findings of this study have allowed for

potentially identifying the circumstances where deep learning

fails, mainly when given a more complex task for which data is

not as readily available. Even after an exhaustive search of model

architectures and model hyperparameters, performance

markedly better than random guessing was unobtainable. This

was further supported by resulting class activation maps that

showed the lack of consistent identification of regions of interest

that were learned by the deep learning models. The findings in

this study appear to suggest that deep learning is not the blanket

approach for predicting therapeutic response in ophthalmology,

and other approaches should possibly be evaluated and

considered in parallel.
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