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Visual processing starts at the retina of the eye, and signals are then transferred

primarily to the visual cortex and the tectum. In the retina, multiple neural

networks encode different aspects of visual input, such as color and motion.

Subsequently, multiple neural streams in parallel convey unique aspects of

visual information to cortical and subcortical regions. Bipolar cells, which are

the second-order neurons of the retina, separate visual signals evoked by light

and dark contrasts and encode them to ON and OFF pathways, respectively.

The interplay between ON and OFF neural signals is the foundation for visual

processing for object contrast which underlies higher order stimulus

processing. ON and OFF pathways have been classically thought to signal in

a mirror-symmetric manner. However, while these two pathways contribute

synergistically to visual perception in some instances, they have pronounced

asymmetries suggesting independent operation in other cases. In this review,

we summarize the role of the ON–OFF dichotomy in visual signaling, aiming to

contribute to the understanding of visual recognition.

KEYWORDS

retina, bipolar cell, parallel processing, visual system, primary visual cortex,
superior colliculus
1 Introduction

Foundational processing of the visual environment occurs in the retina of the eyes,

the lateral geniculate nucleus (LGN) in the thalamus, the primary visual cortex (V1),

where visual recognition occurs, and the superior colliculus (SC) in the tectum, a center

for eye movement (Figure 1). Until several decades ago, the function of the retina was

thought to involve capturing visual signals, much like a camera film, and then sending

them to the brain. Recent evidence has suggested that the retina contains numerous

intricate neural networks that analyze the captured visual signals and actively starting

visual signal processing. Understanding how the entire visual system conducts visual

signal processing is the ultimate goal of vision research. However, the critical centers of

the visual system are located far from each other, rendering it difficult to undertake a

systematic investigation. This review focuses on a set of classical visual pathways, the ON
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and OFF pathways, and discusses how they are generated,

conveyed, and utilized throughout the visual system.

Visual signal recognition is achieved by parallel processing,

that is, multiple features of visual signals are encoded into

separate neural streams and analyzed in parallel (1). Parallel

processing is initiated by separation of visual signals in retinal

neurons, including photoreceptors, bipolar cells, and ganglion

cells, and are coded to multiple types of retinal ganglion cells.

Each visual pathway is then sent to unique sets of destinations in

the brain. In the primate retina, two main pathways have been

identified as being involved in parallel processing, namely, the

magnocellular pathway, which encodes motion and changes in

the visual scene, and the parvocellular pathway, which encodes

the shape and color of visual information (2, 3).

Parallel processing is initiated at the photoreceptors, the

first-order neurons in the retina, where color information is

separated by cone photoreceptors with different wavelength

sensitivities (4–12). Visual signals are then transmitted from

photoreceptors to the second-order neurons, bipolar cells, where

signals are further subdivided. Approximately 15 subtypes of

bipolar cells have been identified in the retinas of vertebrates,

including primates, rodents, fish, birds, and salamanders

(Figure 2) (13–21). Each type of bipolar cell is thought to

extract unique features of visual scenes and initiate distinct

parallel signaling pathways. Two well-studied bipolar cell

pathways are chromatic signaling pathways (22–25) and ON/

OFF-signaling pathways (13, 26, 27).
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The ON–OFF separation occurs at the dendrites of bipolar

cells (discussed in more detail below). The retina senses the

contrast of an object, either bright or dark, against the

background luminance. Half of the bipolar cells depolarize in

response to a visual signal brighter than the background,

whereas the other half hyperpolarizes in response to the

bright object, but depolarizes when the illumination ends

(Figure 3). Cells that respond to the onset of light (or offset

of dark) are ON bipolar cells (Figure 3C) while cells responding

to light offset (or onset of dark) are OFF bipolar cells

(Figure 3B). Signals in ON and OFF bipolar cells are

transferred to ON- and OFF-responding ganglion cells,

respectively. A subset of ganglion cells collects both ON and

OFF signals, which are described as ON-OFF ganglion cells.

Then, ON, OFF, and ON-OFF ganglion cells send their signals

to a unique set of targeted neurons in the LGN and other parts

of the brain to achieve visual perception.

Separated ON and OFF visual signals in the retina are

conveyed through independent parallel processing neural

streams to the brain where ON and OFF signals start to

combine. Because ON and OFF signaling pathways convey

the light and dark signaling of the same object, it has been

classically thought to signal in a mirror-symmetric manner.

However, asymmetric ON and OFF signaling has been reported

in the retina and V1. Furthermore, ON and OFF signal

coordination outlines the features of the object for some

object recognition (e.g. orientation tuning and direction
FIGURE 1

Ventral view of the brain and visual system. The retina (red) in the eye sends visual signals through the optic nerve. The lateral geniculate
nucleus (LGN, green) relays visual signals to the visual cortex (V1, blue) in the cerebral cortex. Some signals are also relayed to the superior
colliculus (SC, orange) in the midbrain tectum. Dotted lines denote the visual pathway.
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selectivity), whereas ON and OFF signals separately operate to

achieve the object recognition for other object recognitions (e.g.

optokinetic reflex (OKR) and looming stimulus-evoked fear

responses). In this review, we focus on ON–OFF signaling to

explore how the visual system executes the visual

recognition process.
Frontiers in Ophthalmology 03
2 On and off signaling in the
visual system

ON and OFF signaling pathways are separated at the retinal

photoreceptor-bipolar cell synapse. The separated signals are

transmitted to amacrine and ganglion cells in the retina, which
A

B C

FIGURE 3

Visual signals in the first- and the second-order neurons in the retina. (A) A representative visual signal in photoreceptors. Photoreceptors
hyperpolarize when illuminated and depolarize at light offset. The bar color indicates the timing of dark (black) and light (yellow) stimuli. (B) An
OFF bipolar cell hyperpolarizes when illuminated. The signal is transferred from photoreceptors via ionotropic glutamate receptors (light blue)
and the sign of the signal is preserved. (C) An ON bipolar cell depolarizes when illuminated. The signal is transferred from photoreceptors
through metabotropic glutamate receptors (mGluR6, green) and the sign of the signal is inverted.
FIGURE 2

A schematic showing retinal organization. First-order neurons—rod and cone photoreceptors—occupy the outer nuclear layer (ONL). At the
outer plexiform layer (OPL), visual signals are transferred to second-order neurons—bipolar cells—in the inner nuclear layer (INL). Numbers are
included in bipolar cells’ somas to show their types in the mouse retina. Then, at the inner plexiform layer (IPL), visual signals are transferred
from bipolar cells to third-order neurons—ganglion cells—in the ganglion cell layer (GCL). Ganglion cell somas are outlined in blue. Two red
lines in the IPL indicate the ChAT bands: OFF ChAT band (upper) and ON ChAT band (lower), which are utilized as a landmark of the IPL.
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are transferred to LGN neurons. The separated ON and OFF

signaling streams are subsequently integrated into the visual

cortex and superior colliculus (SC).
2.1 Retina

Both rod and cone photoreceptors hyperpolarize to light and

depolarize under dark conditions (Figure 3A). In the dark,

photoreceptors are depolarized and continuously release the

neurotransmitter glutamate, thereby providing signals to

subsequent neurons, the bipolar cells. OFF bipolar cells

possess ionotropic glutamate receptors and depolarize in the

dark in response to glutamate released by the photoreceptors

(27–31). In contrast, ON bipolar cells express the metabotropic

glutamate receptors, mGluR6, on their dendrites. mGluR6 links

to the G protein, Go, and consequently, the downstream second-

messenger system, which leads to the cell hyperpolarization

following glutamate binding (32, 33). Therefore, ON bipolar

cells hyperpolarize in the dark, which is the opposite sign of

photoreceptors and OFF bipolar cells.

When the ret ina is i l luminated, photoreceptors

hyperpolarize and reduce their glutamate release.ON bipolar

cells are free from the suppressive effect of glutamate binding to

mGluR6, resulting in activation of the mGluR6-linked cation

channel, TRP M1, to depolarize the bipolar cell (Figure 3C) (34–

36). In contrast, reduced glutamate release from photoreceptors

leads to hyperpolarization of OFF bipolar cells (Figure 3B). In

brief, ON bipolar cells hyperpolarize in the dark, which is the

opposite of that seen for photoreceptors and OFF bipolar cells.

In response to light, ON bipolar cells depolarize, and OFF

bipolar cells hyperpolarize. Accordingly, bipolar cells are the

site of ON and OFF signaling separation.

The ON and OFF dichotomy is received by downstream

amacrine and ganglion cells. Signal transfer occurs in the inner

plexiform layer (IPL), where ON and OFF cells ramify in

separate layers (Figure 2). The outer half of the IPL is the

OFF-signaling layer and is where OFF bipolar, amacrine, and

ganglion cells make synaptic connections, while the inner half of

the IPL is where ON bipolar, amacrine, and ganglion cells extend

their processes for the synaptic transmission of ON signaling.

Dozens of ganglion cell types have been recently identified in the

retinas of mice (37, 38) and primates (39, 40), with most being

categorized as either ON, OFF, or ON-OFF ganglion cells based

on their ramification patterns in the IPL. Retinal ganglion cells

extend their axons to the brain forming the optic nerve, through

which the signals are transmitted.

ON and OFF bipolar cells innervate ganglion cells that

include dozens of types. Many types of ganglion cells possess

ON and OFF counterparts, such as ON brisk-transient and OFF

brisk-transient ganglion cells. Ravi et al. (41) recorded spikes
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from ON and OFF pairs of brisk-sustained, brisk-transient, and

small transient ganglion cells and found asymmetries between

ON and OFF signals. ON brisk-sustained cells possess a larger

receptive field and respond briefer than their OFF counterparts.

In contrast, ON brisk-transient ganglion cells possess a smaller

receptive field and respond more sustained than their OFF

counterparts, and ON and OFF small-transient ganglion cells

have similar spatial and temporal profiles. Asymmetries in

temporal, spatial, and linearity characteristics between ON and

OFF ganglion cells of the same types have been reported in the

mouse retina (42, 43) and the macaque retina (44, 45).

The ON and OFF asymmetry in temporal aspects probably

does not arise due to the different glutamate receptors present in

OFF and ON bipolar cells because in the mammalian retina,

there are no significant temporal differences between ON and

OFF bipolar/ganglion cells (29, 37, 44, 46). Instead, the ON and

OFF asymmetry is in a ganglion cell type-dependent manner,

suggesting that the combination of bipolar cell inputs and

amacrine cell inputs to a type of ganglion cells shapes

the asymmetry.
2.2 Lateral geniculate nucleus to the
primary visual cortex

2.2.1 Lateral geniculate nucleus
Many types of ganglion cells project to multiple locations in

the central nervous system. The lateral geniculate nucleus (LGN)

is a major target for ganglion cells (Figure 1), which is divided

into dorsal and ventral parts. Image-forming ganglion cells

target the dorsal LGN (dLGN), relaying visual signals from the

retina to the visual cortex (47–49). In contrast, non-image-

forming ganglion cells, including the intrinsic photosensitive

retinal ganglion cells (ipRGCs), project to the ventral LGN (50,

51). These observations indicate that visual stimulation-evoked

responses take place in the dLGN.

In the dLGN, parvocellular and magnocellular ganglion cells

from ipsilateral and contralateral eyes project into multiple

distinct layers. The ON–OFF dichotomy is preserved in each

region of the dLGN (52), suggesting that the mixing of ON/OFF

signals does not occur in the thalamic structure. Koniocellular

LGN neurons exhibit transient combined ON–OFF responses,

which may originate from broad-thorny ON–OFF retinal

ganglion cells (52) and not from separate ON and OFF

ganglion cells. This case also suggests that ON and OFF

signaling is relayed as transferred from the retina.

In the mouse and rat dLGN, color-responsive cells exhibit

ON and OFF dichotomy (53, 54). Chromatic cells show color

opponency with opposite ON and OFF responses when activated

by green or UV light. In the mouse retina, cone photoreceptors

contain two types of opsins, green and UV (55), which are
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transferred to green-OFF (Type 1) and UV-ON (Type 9)

chromatic bipolar cells (9, 25). Concomitantly, some types of

ON ganglion cells exhibit color opponency in a region of the

retina, with green light evoking OFF responses and UV light

triggering ON responses, consistent with the signs of chromatic

bipolar cells (56). Most color-opponent cells in the dLGN show

the same color response signs, also suggesting that dLGN

neurons receive ON and OFF signals from retinal ganglion

cells and relay the signals to the subsequent neurons without

mingling the signals.

2.2.2 Primary visual cortex (V1)
The ON and OFF pathways are still separated in the dLGN,

which are conveyed and integrated into the primary visual cortex

(V1). The V1 is composed of six layers of cytoarchitecture.

Thalamocortical fibers entering area V1 from the dLGN project

mainly to Layer 4 but also partly to Layer 6. Layer 4 fibers

primarily project to Layer 2/3 in the visual cortices of cats,

monkeys, and tree shrews (57–60). In addition to the

thalamocortical inputs, neurons make feedforward and

feedback connections among layers. Furthermore, there is also

considerable feedback input to the LGN and projection to the SC

from Layer 5 (Figure 4A).

The V1 contains both simple cells and complex cells. Simple

cells are mainly found in Layer 4 and receive input through the

thalamocortical fibers (62). The receptive fields of many simple

cells have adjoining, elongated ON and OFF subfields

(Figure 4B) (61). This elongated shape differs from the shape

of receptive fields of the dLGN and retinal ganglion cells, which
Frontiers in Ophthalmology 05
show a concentric ON or OFF center with an antagonistic

surround. The different shapes are attributable to the

convergence of thalamocortical inputs; multiple thalamic

neurons in line innervate one simple cell in V1 (62). Complex

cells reside outside of Layer 4, which are innervated by simple

cells (61, 62), and have greater ON and OFF signals overlap

(Figure 4C) (61).

ON and OFF signals in V1 are transferred from the dLGN in

parallel. Interestingly, these two inputs appeared to be

asymmetric in terms of spatial and temporal aspects. In the

temporal aspect, the OFF pathway is faster than the ON pathway

in cat V1 (63, 64). In line with this, a large, long-lasting stimulus

evokes stronger ON than OFF responses, whereas the opposite is

seen when a small, fast stimulus is applied (65). The origin of the

ON/OFF temporal asymmetry might be originated in the retina,

but it has not been fully understood. The ON/OFF temporal

difference indicates that dark signals are recognized faster than

the light signals.

ON/OFF asymmetry is also observed in the mouse visual

cortex. OFF responses dominate in the central visual field where

binocular innervation occurs. In contrast, ON and OFF

responses are more balanced in the periphery (66).

In the spatial aspect, ON/OFF asymmetry is also detected in the

size of receptive field and neuronal linearity/nonlinearity in the

LGN and V1 of cats (67) and humans (68). OFF-center cells

dominate the areas in V1 of cats (69) and macaque V1 (70, 71),

which facilitates the contrast discrimination in the natural scene

(72). These features would cause dark stimuli to drive cortical

neurons more strongly than light stimuli at low spatial frequencies.
A B

C

FIGURE 4

Structure and the signals of the primary visual cortex (V1). (A) The V1 comprises six layers of neurons, including pyramidal cells and interneurons.
The visual signal from the lateral geniculate nucleus (LGN) innervates Layer 4 and partially also Layer 6. Layer 4 interneurons relay signals to
Layer 2/3. There are also interlayer connections, feedback connections to the LGN, and feedforward connections from Layer 5 to the superior
colliculus (SC). (B) A representative receptive field of a simple cell in Layer 4, which contains aligned and elongated ON and OFF subfields. Black
and gray traces show per-stimulus time histograms measured with dark and light stimuli, respectively. (C) A representative receptive field of a
complex cell in Layer 2/3. The ON and OFF subfields show greater overlap. (B) and (C) are adapted with permission from Martinez et al. (61).
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2.3 Superior colliculus

The SC is a midbrain structure and the integrating center for

eye movements (Figures 1, 5). Although the SC communicates

with the motor, auditory, and visual systems, the superficial

layers of the SC are purely visual (Figure 5B). Retinal ganglion

cells directly project their axons to this region, which preserves

retinotopic organization (74, 75). Approximately five to six ON

and OFF ganglion cells provide synaptic inputs to one SC cell in

mice (76, 77).

Most SC cells are ON and OFF responding (73, 78).

Receptive field mapping showed that most SC neurons have

spatially overlapping ON and OFF subfields (Figure 5C) (73),

indicating that the corresponding ganglion cells are neighboring

ON and OFF ganglion cells. Interestingly, one study indicated

that when the visual cortex is removed, the ON and OFF overlap

ratio is decreased (73), suggesting that the corticocollicular

inputs, which connect from V1 cortex to the SC, adjust the

receptive fields of SC cells. The corticocollicular pathway

originates in Layer 5 of V1, where most cells are complex cells

with overlapping ON and OFF receptive fields (Figure 4). The

high ON and OFF overlapping in V1 Layer 5 presumably

increases the ON and OFF overlap ratio in SC cells. This

observation also suggests that separate ON and OFF ganglion

cells, and possibly also some ON-OFF ganglion cells, provide

synaptic inputs to single SC cells.
Frontiers in Ophthalmology 06
3 Unified on and off functions

ON and OFF signals are separated in the retina and integrated

into V1 cortex and SC. In this section, we address how the ON and

OFF signals contribute to specific visual functions, focusing on

two visual functions that result from the synergistical

contributions of ON and OFF signals. In the following section,

we introduce two visual functions that are achieved by signaling

independently through either ON or OFF pathway.
3.1 Orientation tuning

Several decades ago, Hubel and Wiesel identified the

orientation column in the V1 of cats (79, 80). An orientation

column is a unit of functional architecture of V1 in which

neurons in a columnar region (a small area that encompasses

Layer 1 through Layer 6) strongly respond to a bar of a particular

orientation (Figure 6A). Neurons in neighboring columns show

slightly different angle preferences, while neurons in a larger area

exhibit preferences to all angles (Figure 6B). The orientation

preference is determined by the shape of the receptive field of the

simple cell in the column, which is elongated and responds to a

bar that fits the angle (Figure 4B). In addition to cats, functional

columnar structure and orientation columns are also present in

the V1 of primates (82, 83), tree shrews (84, 85), and ferrets (86).
A

B

C

FIGURE 5

Structure and signals of the superior colliculus (SC). (A) A schematic showing a mid-sagittal view of the brain and the locations of the lateral
geniculate nucleus (LGN) and the SC. The SC is located in the midbrain tectum. (B) A schematic showing a midbrain section at the level of the
SC. The superficial layer of the SC is purely visual. (C) Examples of SC receptive fields. ON (red) and OFF (blue) subfields show overlap with a
range of overlap index (OI). Adapted with permission from Wang et al. (73).
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Recent evidence has shown that the receptive fields of V1

single cells contain ON and OFF subfields, and the arrangement

of these subfields is a crucial determinant of the preferences of

orientation columns. In the V1 of the tree shrews, the receptive

field of a single cell often contains a central OFF subfield flanked

by two ON subfields, and the arrangement of the two ON

subfields predicts the orientation preference of the column

(Figure 6B) (81, 87). A similar arrangement is observed in

simple cells of the cat V1, which exhibit elongated ON and

OFF subfields aligned according to their orientation preferences

(88, 89). These observations suggest that ON and OFF cells

coordinate to generate the orientation tuning.

In contrast to the cortices of primates and other mammals,

the orientation column is not well developed in the V1 of some

species, including rabbits and mice (90, 91). Mouse V1 simple

cells have ON and OFF subfields within the receptive field;

however, there is a lack of identifiable orientation columnar

structure (90). Interestingly, in both mice and rabbits, the

orientation-selective ganglion cells in the retina appear to be

responsible for generating orientation tuning (92–94). Their

signs are almost exclusively ON-responding; however, the OFF

pathway might generate their antagonistic receptive fields. The
Frontiers in Ophthalmology 07
orientation tuning mechanism seems to differ between rodents

and primates/cats, but the arrangement of both ON and OFF

pathways is crucial in all species examined to date.
3.2 Direction selectivity

Direction selectivity is a form of motion detection that is first

coded in direction-selective ganglion cells (DSGCs) in the retinas

of many vertebrates, including mice, fish, and rabbits (48, 74,

95–97). Starburst amacrine cells (SACs), which release GABA

onto DSGCs asymmetrically, shape the direction-selectivity of

DSGCs (98, 99). DSGCs generate spikes in response to the

movement of an object in a specific direction. Each DSGC

senses one of the cardinal directions, namely, dorsal, ventral,

nasal, or temporal (Figure 7). DSGCs display ON, OFF, or ON–

OFF signs. However, the existence of DSGCs in the primate

retina remains controversial, and there is both evidence for (100,

101) and against (102, 103) this possibility.

The SC is a critical target for retinal direction selectivity,

which has been reported in SC cells of many species, including

fish, mice, and monkeys (73, 97, 104–106). The receptive field of
A B

FIGURE 6

Orientation tuning in cortical neurons of the primary visual cortex (V1). (A) Orientation tuning exhibited by a simple cell in cat V1. The cell
responded with spiking to a vertical bar. The response decreased when the bar angle became more horizontal, showing that the cell was tuned to a
vertical angle orientation. Adapted with permission from Hubel and Wiesel (79). (B) A representative simple cell receptive field from and orientation
column in tree shrew V1, which shows ON (red) and OFF (blue) subfields. An OFF subfield is flanked by two ON subfields. The angle of the two ON
subfields determines the tuning orientation (yellow bar). Adapted with permission from Lee et al. (81).
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SC cells contains several ganglion cells with ON, OFF, and ON-

OFF signs. Most SC cells respond to both the onset and offset of

visual stimuli: ON-OFF responding cells (77, 78).

The ON and OFF signs of retinal DSGCs are species-

dependent. ON, OFF, and ON-OFF DSGCs are found in the

mouse retina (37); ON and ON-OFF DSGCs but not OFF

DSGCs are found in the rabbit retina (107, 108); and ON and

OFF DSGCs but not ON-OFF DSGCs are present in the fish

retina (109, 110). However, single SC cells receive both ON and

OFF signals and show ON-OFF responses (110), suggesting that

the motion signal, and not the polarity of contrast (darkness or

brightness) is essential information for SC cells.

SC cells and retinal ganglion cells also display differences in

directional preference. In the fish retina, DSGCs show three

directional preferences, namely, dorso-ventral, ventro-dorsal,

and caudo-rostral. However, in the fish tectum of the

midbrain, SC neurons also show a rostro-caudal directional

preference (106). Similarly, in the mouse retina, DSGCs

exhibit only one of the four cardinal directional preferences

(dorsal, ventral, nasal, or temporal) (Figure 7), whereas SC

neurons exhibit a full range of preferred directions (104).

Notably, SC neurons receive feedback and feedforward inputs

from multiple regions of the central nervous system, and these

may be the source of the additional directional preference.

In summary, SC neurons preserve the orientation of the

retinotopic map, hold both ON and OFF signals from the retina

in their receptive fields, and exhibit unique preferred directions.

These properties indicate that SC neurons code the spatial extent

and direction of a moving object to initiate smooth pursuit or

foveation. For direction selectivity in the SC, retinal ON and

OFF cells are the contrast detectors, perceiving the direction of

both bright and dark moving objects.
Frontiers in Ophthalmology 08
4 Independent on and off functions

4.1 Optokinetic reflex

The optokinetic reflex (OKR) is a visual reflex that helps

most vertebrates stabilize retinal images in relation to

movements in the visual world. OKR testing comprises slow

eye-tracking of the moving vertical stripes in a rotating grating

followed by a rapid saccade in the opposite direction, which

returns the eye to its primary position (Figure 8A) (111). The

OKR test is utilized to measure visual acuity and contrast

sensitivity in laboratory animals (112), and different models of

optomotor devices have been developed to obtain reliable

optokinetic responses (113, 114).

Visual kinetic information is sensed by retinal motion

detectors; SACs and DSGCs. Detected signals are transmitted

through the optic nerve and the optic tract to the visual cortex

and SC. The accessory optic system (AOS) contributes to the

pathway and receives afferent connections from the nuclei of the

optic tract (NOT), the dorsal terminal nucleus (dTN), and the

LGN. Efferent connections of the AOS target the brainstem and

cerebellar nuclei, which activate the motor neurons of the

extraocular muscles (115–117). Using functional ultrasound

imaging of the whole brain, Mace et al. (118) identified 87

brain regions that exhibit changes in activity in relation to

the OKR.

Some evidence have shown that OKR depends exclusively on

the ON pathway and not the OFF pathway. A zebrafish mutant,

no optokinetic response c (nrc), lacks an OKR (119), of which

processes invaginated into the photoreceptor terminals and the

ribbons in most photoreceptor pedicles appeared to be free-

floating in the cytoplasm, indicating that the synaptic
A B

FIGURE 7

Direction-selective responses and tuning directions. (A) Representative spike responses from a retinal ON–OFF direction-selective ganglion cell
in response to a bar moving in eight directions. This ganglion cell responded with significant spiking to a bar moving in a bottom-right direction
but responded less to a bar moving in a top-left direction. (B) A schematic showing the four cardinal directions—dorsal, ventral, nasal, and
temporal.
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connections between photoreceptors and ON bipolar cells were

disrupted. Additionally, Emran et al. (120) reported that most of

the cells in nrcmutants display an OFF function and no pure ON

ganglion cells could be detected based on electroretinogram

(ERG) and single-unit recordings, and pharmacological

blockade of ON pathway in wild-type zebrafish mimicked the

nrc mutant phenotype.

A study was done by Aung et al. (121) on nob and Vsx1-/-

mice which have dysfunctional ON, and partial dysfunction in

OFF pathways, respectively. They used spatial frequency and

contrast sensitivity thresholds to assess the OKR and reported

that both mutants exhibited reduction in OKR. However, the

findings noticed in Vsx1-/- mice were significantly lower than

those observed in nob mice. This is another evidence that ON

pathway is crucial for the OKR, while OFF pathway contributes

minimally to the reflex.

Joly et al. (122) used ischemia/reperfusion (I/R) to identify

the direction-selective circuits linked to the OKR in mice.

Ligation of the central ophthalmic artery and vein for 60

minutes caused irreversible loss of the OKR. Histological

analysis revealed that ON SACs and ON DSGCs were

markedly affected by I/R, whereas OFF SACs were only

minimally impacted. Specifically, notable dendritic loss was

observed in the DSGCs at DSGC-ON SAC synaptic

connections. The results of this study also showed that the ON

pathway is critical for the OKR.

Interestingly, Drosophila model exhibited that both ON and

OFF pathways are necessary to evoke OKR, while photoreceptor
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input to either ON or OFF pathway alone is sufficient to sense

the moving grating. This paradox is attributable to the

separation of photoreceptors output into ON and OFF

channels in the lamina and the electrical coupling happening

between both pathways which enables cross activity, so a single

pathway is activated when only its counterpart is receiving the

input (123).
4.2 Looming-evoked fear response

The neural pathways responsible for fear responses have

recently been explored. When a dark object suddenly

approaches, animals react to the object by quickly escaping

from it or freezing. The looming stimulus of a rapidly-

expanding black disk displayed on a ceiling monitor mimics

the approaching dark object, and induces a freezing or rapid

flight response in mice (Figure 8B) (124, 125). Therefore, the

looming stimulus can be used as a vision test if a mouse sees a

black object and responds with escaping or freezing.

Because an expanding dark spot with moving edges evokes

fear responses, OFF direction-selective cells in the retina are

expected to contribute to looming-evoked behavior (124). Two

types of OFF cell pathways have been shown to convey looming-

evoked fear responses in mice: the PV-5 OFF ganglion cells

(126), and a neural pathway of VG3 amacrine cells - W3 & OFF

t-a ganglion cells (127, 128). The VG3 (vesicular glutamate

transporter 3) cells are one of more than 60 types of amacrine
A B

FIGURE 8

Optomotor reflex and looming-stimulus experiments. (A) A schematic showing the optomotor reflex testing device. A mouse is placed on a
stage in the middle of the enclosure and observes moving gratings shown on monitors. If the mouse sees the gratings, it chases the motion by
moving its head. The camera on top of the enclosure captures an image of the mouse head and the experimenter judges whether the mouse
can see the grating movement. (B) A schematic showing the looming-stimulus and mouse behavior experiments. A mouse is placed in an arena
with a shelter (orange hut). A stimulus display is placed on the arena ceiling. After acclimation, the monitor shows a rapidly expanding black
circle (upper panels). The mouse shows a fear response, either dashing to the hut (flight) or freezing.
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cells that contain glutamate as their neurotransmitter. W3 and

OFF t-a cells are types of ganglion cells, which receive synaptic

inputs from the VG3 amacrine cells.

VG3 cells depolarize to looming stimuli and hyperpolarize to

receding stimuli, leading to the unique innervation of two types

of ganglion cells, W3 and OFFa. VG3 cells respond at the onset

of motion by transient excitation followed by sustained

inhibition, with amplitudes proportional to the speed of the

stimulus. W3 cells receive a similar excitation and inhibition

pattern and are believed to signal the onset of the looming

stimulus. Meanwhile, OFFa ganglion cells respond during

looming, and their excitation corresponds to the speed of the

stimulus. Therefore, slight delays between excitation and

inhibition of both W3 and OFFa ganglion cells inform the

brain regarding the onset and speed of stimulus, respectively.

The ablation of these neurons eliminates the defensive responses

to looming stimuli (127, 128), indicating that the pathway of

VG3-W3/OFFa ganglion cells is critical for looming stimulus-

evoked fear responses.

Looming-evoked fear responses are induced in both

vertebrates and invertebrates. In the fly eye, a looming

detector has been identified, named type II (LPLC2) neuron in

the lobula plate/lobula columnar (129), which is analogous to the

SC of vertebrates (130). These cells respond strongly to a

looming stimulus, but weakly to a moving stimulus in a lateral

direction. Similarly, in the locust eye, the lobula giant movement

detector (LGMD) and its downstream neurons are designated

looming detectors (131, 132). These cells respond only to dark,

indicating that the looming responses are mediated only by

OFF-responding neurons.
5 On-off polarity switch

Recent evidence suggests that the retinal neural hardware is

more flexible than was previously thought (133). Rivlin-Etzion

and her group (134) reported that in ON SACs, a certain light

stimulus switched the status of light-evoked responses from

depolarized to hyperpolarized. Because SACs are a crucial

component of direction selectivity in the retina, the polarity

switch in the SACs changed the direction selectivity in DSGCs

(135, 136). Additionally, Tikidji-Hamburyan et al. (137) and

Pearson and Kerschensteiner (138) found that ON and OFF

spikes in ON-OFF ganglion cells were differently generated over

a broad range of ambient light levels from scotopic to photopic

conditions, resulting in the switching of the ON-dominance and

OFF-dominance at different ambient light conditions.

Furthermore, Sagdullaev and Mccall (139) and Farrow et al.

(140) reported that a bright full-field light stimulus altered ON

and OFF polarity in some ganglion cells, a result that was

attributable to wide-field amacrine cell inputs that convey

signals to distant regions within the retina. Pang et al. (141)
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and Hoshi et al. (142) suggested that glutamatergic AMPA

receptors in ON bipolar cells may also induce cross excitation.

Together, these reports provide evidence of a polarity switch

between ON and OFF signs in the retina.

The ON and OFF sign switch might be a crucial mechanism

for adapting to the saccadic image shift (143, 144). Additionally,

the switch might play a role in coding a complicated natural

scene (145, 146). How the ON and OFF polarity switch in the

retina affects the central projection has not been explored, and

future studies should focus on elucidating the ON and OFF

pathways and signals in a broad range of visual environments.
6 Clinical conditions

Vision disorders in humans regarding the ON and OFF

pathways have been reported. Sieving et al. (147) reported that a

human patient with unilateral cone dystrophy exhibited an

abnormal electroretinogram (ERG) with a sustained positive

plateau instead of a standard transient b-wave. The patient’s

ERG is similar to a photopic macaque ERG when ionotropic

glutamate receptors were blocked pharmacologically, indicating

that the OFF pathway is disrupted in this patient. The major

complaint of cone dystrophy, including this patient, is decreased

color vision (147, 148), which might be originated from the cone

dysfunction and the reduced OFF pathway signaling might not

be related to the symptom. This is a rare disorder, and physio-

pathological mechanisms have not been fully understood.

Vision disorder with a loss of ON pathway has been reported

as the congenital stationary night-blindness (CSNB) (149). ERG

for these patients shows a reduced or abolished scotopic b-wave,

which indicates that the signal transmission from rod

photoreceptors to rod bipolar cells, scotopic ON signaling, is

disrupted. These patients complain of night blindness, but many

of them show normal vision in the daytime. There is a broad

spectrum for this disorder; the complete form CSNB patients

show the eliminated scotopic b-wave but normal cone

photoreceptor functions, whereas the incomplete form CSNB

patients exhibit reduced scotopic b-wave and reduced cone

functions. Pathological mechanisms include the dysfunction of

mGluR6-TrpM1 complex and Ca++ channel disorders (150, 151).
7 Conclusion

Although the visual system is complicated and only poorly

elucidated, it is increasingly accepted that parallel processing

represents a crucial mechanism for visual recognition. The ON/

OFF dichotomy is generated in the retina through the sensing of

the contrast of an object against the background luminance. ON

and OFF signaling synergistically or independently conveys the

features of the object. Specifically, orientation tuning and
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direction selectivity are achieved by the interaction between ON

and OFF pathways, while the OKR and looming-evoked fear

responses are mediated by either ON or OFF pathways

independently. This suggests that visual recognition through

the cerebral cortex utilizes both pathways, but reflexes use only

one of them to promptly respond to a visual scene. Studying how

the signals are subsequently transferred to the visual system is

crucial for understanding visual signal processing.
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