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Ophthalmic autoimmune and autoinflammatory conditions cause significant

visual morbidity and require complex medical treatment complicated by

significant side effects and lack of specificity. Regulatory T cells (Tregs) have

key roles in immune homeostasis and in the resolution of immune responses.

Polyclonal Treg therapy has shown efficacy in treating autoimmune disease.

Genetic engineering approaches to produce antigen-specific Treg therapy has

the potential for enhanced treatment responses and fewer systemic side effects.

Cell therapy using chimeric antigen receptor modified T cell (CAR-T) therapy, has

had significant success in treating haematological malignancies. By modifying

Tregs specifically, a CAR-Treg approach has been efficacious in preclinical

models of autoimmune conditions leading to current phase 1-2 clinical trials.

This review summarises CAR structure and design, Treg cellular biology,

developments in CAR-Treg therapies, and discusses future strategies to apply

CAR-Treg therapy in the treatment of ophthalmic conditions.

KEYWORDS
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Introduction

Chimeric antigen receptor (CAR) T cell therapy has had remarkable success in the

therapy of haematological malignancies, leading to relapse-free treatment response in

patients with previously treatment-resistant leukaemia and lymphoma (1). CAR-T therapy

redirects a patient’s own T cell immune responses to target and eliminate cancer cells, as

seen with CD19-targeted CAR T cells that eliminate a patient’s B cell compartment. The

first CAR-T cell therapy received US FDA approval in 2017 and since then the field has

expanded substantially with hundreds of ongoing clinical trials (2, 3).

CAR-T therapy is not without risk of serious adverse events, such as B cell

compartment elimination in CD19-directed CAR-T therapy, cytokine release syndrome

(CRS), and immune effector cell-associated neurotoxicity syndrome (ICANS) (4). CRS

occurs secondary to systemic cytokine release leading to high fever, hypoxia, hypotension,
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and neurologic symptoms (1, 4). ICANS manifests most commonly

with acute delirium but can also be life-threatening secondary to

cerebral oedema and seizures (1, 4).

Although current CAR-T therapies that have been released to

market have exclusively been used in cancer treatment, there is

increasing research interest in applying CAR technology in the

treatment of immune mediated inflammatory disorders

(IMIDs) (5).
Tregs and immune tolerance

Tregs, a regulatory subset of CD4+ T-cells, comprise

approximately 10% of the total CD4+ T cell compartment, and

are characterised by the expression of the cell surface high affinity

IL-2 receptor CD25 and the transcription factor FoxP3+ (6).

Thymic-derived ‘tTregs’ develop through central tolerance

mechanisms (7). In contrast, peripheral ‘pTregs’ are induced

following the exposure of effector CD4+ T cells to conditions

including the presence of IL-2 and TGF-beta (7). tTregs have T-

cell receptor (TCR) specificity for autoantigens imprinted in the

thymus and have a key role in immune self-tolerance. pTreg

promote immune homeostasis, often at barrier sites, with their

dysregulation being associated with the development IMIDs,

including rheumatoid arthri t i s (RA), systemic lupus

erythematosus (SLE), multiple sclerosis (MS), and inflammatory

bowel disease (IBD) (6). The key role of Tregs in immune regulation

is evidenced by the disease polyendocrinopathy enteropathy X-

linked (IPEX) syndrome occurring in males with functional variants

of the FOXP3 gene (8), and a similar lethal autoimmunity that is

recapitulated in the scurfy mice strain which carry pathogenic

FOXP3 variants (9).

Tregs express a TCR that directs their tissue specificity and

activation state (10). However, many Treg suppressive functions are

not antigen specific allowing suppression of effector cells of multiple

specificities (termed bystander suppression) (11). This further leads

to local alterations in the immune environment, which can be long

lived by promoting development of other regulatory immune cell

populations e.g., pTregs, Tr1 cells; a process called infectious

tolerance (11) (Figure 1). Tregs produce antigen specific

suppression via their TCRs interacting with cognate antigen

presented via MHC on dendritic cells (DC) and CD4+ T cells

(12). Once activated, Tregs have several antigen non-specific

mechanisms of action, these include but are not limited to: release

of inhibitory cytokines (IL-10, IL-35, TGF-b) (6, 12); consumption

of IL-2 inhibiting T-effector cell differentiation and function (13);

expression of PD-1 and PD-L1 inhibiting T-cell proliferation; and

CD39/73 expression leading to pro-inflammatory ATP degradation

to adenosine thus exerting an anti-inflammatory effect (14). These

antigen independent effects also promote a tolerogenic phenotype

in DCs which function with activated Tregs to further induce

regulatory T-cells, and suppress effector T-cells (10). Other

mechanisms identified include the release of granzyme B, which

lead to direct killing of both APCs and CD4+/CD8+ effector cells;

upregulation of CTLA-4 and enhanced DC indoleamine 2,3-

dioxygenase (IDO) activity promoting Teffector cell anergy. The
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functional roles and specialisation of different subtypes of Treg are

reviewed in detail in (6, 10, 12).

Bystander suppression and infectious tolerance leading to both

acute immune suppressive effects and long-term shifts in the local

immune environment has sustained efforts to use Tregs as a cell

therapy approach (5, 15). Adoptive cell transfer of CD4+ CD25+ T-

cells was initially trialled in athymic nude mice (with concomitant

loss of central tolerance mechanisms) successfully suppressing self-

reactive T-cells. This approach has been trialled in patients with

IMIDs including Type I Diabetes (16, 17), and ulcerative colitis

(18), and as an adjuvant to immune suppression in the context of

solid organ transplantation (19, 20). Although partially effective, use

of polyclonal Treg therapy entails the risk of generalised

immunosuppression and loss of tumour immunosurveillance

(21). Antigen specific approaches to Treg therapy have also

demonstrated greater efficacy in therapeutic responses in pre-

clinical studies, with a lower risk of off-target side effects (11, 22).

Generating sufficient antigen specific Tregs for cell therapies

from naturally occurring populations is complicated by low starting

numbers of Tregs with the desired TCR specificity (11). Alternative

approaches have included the use of engineered receptors to re-

direct the specificity of a starting population of Tregs, or the

conversion of antigen specific effector T-cells into Tregs through

enforced FOXP3 expression (23). For all strategies to utilise natural

Tregs or converted effector cells, there is a significant concern of

phenotype instability, leading to an antigen-specific Teffector cell

therapy being generated with the opposite intended effect for Treg
FIGURE 1

Roles of Tregs in immune suppression. Tregs are activated through
their antigen specific TCR. Engagement with antigen presenting
cells (APCs) via the antigen specific MHC-peptide and Treg TCR
interaction leads to downregulation of APC immune stimulatory
activity and inflammatory cytokine production. This induces a
tolerogenic phenotype in APCs suppressing Teffector cell activity.
Once activated Tregs can regulate immune responses through both
contact and non-contact mediated methods which themselves are
not antigen specific, leading to bystander suppression of effector T-
cells of different TCR specificity, and promoting infectious tolerance
with the conversion of Teffector cells to Tregs. Adapted from (11).
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therapy. This appears to be modulated by TCR signalling (24) and

the inflammatory microenvironment (25).
Chimeric antigen receptors: structure
and production

CARs offer a different approach to re-direct Treg specificity. A

CAR in its most essential form consists of an extracellular antigen

binding domain, and an intracellular T-cell signalling domain (23)

(Figure 2). There are several advantages of CARs over engineered

TCRs, including their ability to exploit mechanisms of target

recognition without the requirement of MHC co-presentation.

Consequently, CARs can bind a much wider repertoire of

antigenic targets than a natural or engineered TCR, including

whole proteins, and this can be further modified based on the

antigen binding domain (11, 23).

The antigen binding domain of a CAR confers the antigen

specificity that directs the cell to a specific target. These have

typically derived from connected variable fragment heavy (VH)

and light (VL) domains monoclonal IgG derived antibodies

producing a single-chain variable fragment (scFv) (27). scFvs

usually target extracellular surface expressed antigens with their

target recognition plus binding leading to MHC independent T-cell

activation through the CAR CD3z intracellular signalling domain.

Alternatives to scFvs have been investigated as well, such as use of

the VH domains of camelid antibodies, natural ligands, and other

artificial protein binding constructs (28). The hinge or spacer region

links the antigen binding domain to the transmembrane domain.

The flexibility of the hinge region affects the ability of the antigen

binding domain to access the antigen epitope it binds to (27). The

intracellular signalling domains of CARs first used CD3z in

isolation in first generation CARs. When activated by target

recognition by the antigen binding domain, this domain initiates

TCR like signalling (28). Subsequent generations of CAR are
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characterised by additional co-stimulatory domains, whether one

or two additional domains (second and third generation CARs

respectively), or the release of cytokines on activation (fourth

generation CARs) (23). Further modifications to CARs can

enhance the phenotype stability of the Treg they are added to by,

for example, constitutive FoxP3 or IL-2 production which are

intended to help reduce the risk of Tregs developing T effector

function (23, 29).

Processes to generate CAR-Tregs typically use lentiviral

transfection of already isolated Tregs (5, 23). Other methods to

insert CAR transgenes have also been explored including non-viral

vectors (liposomes) or electroporation, and the use of CRISPR/

TALEN based genetic engineering approaches (15). Inducing

ectopic FoxP3 expression has also been explored, but this does

not appear to be sufficient to induce a functional Treg phenotype

when starting with CD4+ cells, given the limited efficacy of FoxP3

transfected Tregs in vivo (30, 31).

Currently, to produce CAR-Tregs for clinical use, CD4+ T-cells

must first be harvested and isolated from the patients receiving the

therapy. The cells are then further purified and cultured to produce

Tregs before transfection with a viral vector. The CAR-Treg cells

produced are then re-administered to the patient. This process

requires local expertise, facility infrastructure and monitoring

requirements, leading to high costs to the using therapeutic CAR-

Tregs (32). Future developments may reduce the associated costs of

delivering CAR-T related therapies, through broadening indications

across IMIDs requiring focus on improving manufacturing

pipeline, and development of off-the-shelf CAR-T products such

as ‘universal’ CARs or the use of allogeneic ‘universal’ starting blood

products (32).
CAR-T therapy in treatment of
autoimmune conditions

Applying CAR-T therapy to treat IMIDs has taken several

forms. This has including use of CAR-T therapies which direct

immune responses against a specific target, like the use of CAR-T

therapy in cancers. Anti-B cell CAR T therapy has been applied

successfully to treat patients with SLE following successful proof of

concept in mouse models of SLE (33, 34). This approach is also

being explored in other diseases related to autoantibody production

such as myasthenia gravis (35). More fine-tuned targeted

elimination of specific subsets of autoantibody producing B-cells

has also been explored as seen with chimeric autoantigen receptor

T-cells (CAAR T therapy) which has demonstrated efficacy in

models of pemphigus vulgaris and factor VIII deficiency (36, 37).

This approach may reduce systemic side effects such as generalised

immunosuppression that occur with complete elimination of the B

cell compartment. Many IMIDs are also driven by T-cell responses

orchestrating local immune dysregulation, with a lack of clear

autoantigen driven targets for elimination using a CAR-T effector

cell approach.

Using CARs to target Tregs offers the prospect of more long-

lived immune regulation with fewer risks of adverse events such as

CRS seen with conventional CAR-T therapy. Currently studies are
FIGURE 2

CAR structure and generations. CARs consist of an antigen binding
domain, hinge, transmembrane domain, and single or multiple
signalling domains. The 1st generation CARs sole signalling domain
was the CD3z subunit, activating their T-cell upon CAR binding its
antigen target. 2nd and 3rd generation CARs include one or two
additional signalling domains respectively. These are typically CD28
and/or 4-1BB which help stabilise and enhance T-cell function.
Subsequent CAR generations include more signalling domains or
further subunits endowing additional functions such as cytokine or
chemokine production, inducible ‘suicide’ constructs, or
transcription factors. Adapted from (26).
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applying CAR-Treg therapy to prevent or treat transplant rejection

and Graft versus Host Disease (GvHD) with recruitment of patients

started since 2022 in phase I/II clinical trials for a CAR specific for

HLA-A2 in kidney transplant patients (5).

Pre-clinical evidence has also accumulated using a CAR-Treg

approach in several models of autoimmune diseases. The 2,4,6-

trinitrobenzene sulfonic acid induced colitis model was treated

successfully with CAR- 2,4,6-trinitrophenol Tregs both in

managing disease and preventing development of the colitis

model (38). CAR Tregs specific for carcinoembryonic antigen

(CEA) have also been shown to localise to the colon, and prevent

development of colitis (39). In Type 1 Diabetes (T1D) the use of

islet specific Treg adoptive cell therapy was able to stabilise and

reverse diabetes in a mouse model (40) supporting antigen specific

Treg therapy. A CAR-Treg developed with specificity for a

pancreatic beta cell epitope (GAD65) demonstrated stable

homing to pancreatic cells in a humanized mouse model of

T1D, with evidence for improved glycaemic control following

treatment reported (41). For RA, a CAR Tregs targeting type II

collagen have partially reversed collagen induced arthritis (CIA), a

mouse model of RA (42). A CAR targeting citrullinated vimentin

(CV), a post transcriptionally modified protein highly specific for

synovial inflammation in active RA, has demonstrated activity

against in-vitro to CV in patient synovial fluid and CV expressing

cells when transduced into Tregs (43). The experimental

autoimmune encephalomyelitis (EAE) murine model of MS can

be modulated using adoptively transferred CAR-Tregs specific for

myelin oligodendrocyte glycoprotein (MOG). The transferred

MOG CAR-Tregs successfully localised to the brain following

intranasal delivery leading to reduced disease activity scores in

EAE induced mice (44). Myelin basic protein (MBP) TCR

transgenic Tregs both successfully localised to brain and spinal

cord tissues and reduced EAE disease activity in mice (45). For

conditions with disease pathology related to antibody production

such as SLE or GvHD there may also be a role for use of CAR-

Tregs in directly suppressing B-cell driven antibody production, as

seen with a CD-19 targeting CAR-Treg in pre-clinical models of

GvHD (46, 47). These findings provide a proof of concept

to further translating CAR-Treg therapy towards treating

human disease.
Applying CAR-Treg therapy in
ophthalmic care

Like other IMIDs, Tregs also influence regulation of ocular

IMIDs. For example, Tregs are upregulated in the disease resolution

phase of the animal models of uveitis, experimental autoimmune

uveoretinitis (EAU), with concomitant increase in IL-10 and TGF-

Beta levels measured (48) There is also reported variation in the

ratio of Tregs to Teffector cells in patients with uveitis during active

disease (49). There is competing evidence regarding whether

functionality of Tregs during active inflammation in EAU is

impaired or not (48, 50). Patients with uveitis also show

conflicting evidence of Treg dysfunction with stable suppressive

Tregs detected in aqueous samples of patients with active uveitis
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versus dysfunctional Tregs detected in peripheral blood samples

(51). Nevertheless, the role of Tregs is evident with their depletion

in mice leading to more severe manifestations of EAU (52). This

effect of Tregs is also seen in ocular surface conditions, with

exacerbation of a mouse model of ocular Sjögren’s following Treg

depletion (53) and adoptive transfer of Tregs successfully

suppressing ocular surface inflammation (54).

Ocular IMIDs are an attractive target for CAR-Treg therapy.

Diseases such as posterior uveitis and corneal IMIDs (e.g. GvHD (55),

peripheral ulcerative keratitis (PUK) (56)) present significant risks of

sight loss and are difficult to treat effectively. Adapting CAR-Treg

therapy has also been applied with success in transplant rejection

(20); this can be extended to expanding access to corneal grafts in

ophthalmology (57), offering a novel approach to managing higher

risk indications for corneal transplantation. There is also the prospect

of applying CAR-Treg therapy as an adjuvant to enhance the effect of

existing ocular gene therapies (58, 59). Given the accessible nature of

the eye, it may also be possible to directly deliver CAR-Treg therapies

into target tissues using subconjunctival, intracameral, intravitreal, or

subretinal approaches (60). These delivery routes may introduce

constraints on maximum therapeutic dose able to be delivered

compared with intravenous transfusion, in addition to introducing

procedure specific risks such as haemorrhage, endophthalmitis, or the

development of retinal tears (60). Nevertheless, intravitreal delivery of

polyclonal Tregs has previously demonstrated efficacy in treating a

uveitis model in mice (61).

Current treatment modalities for non-infectious uveitis employ

tapering steroid therapies, alongside systemic immunosuppression to

reduce uveitis flares and minimise the steroid load (62, 63).

Immunotherapies have been effective in reducing the ongoing need

for higher doses of steroids in a proportion of patients with uveitis,

however, there remains a large patient cohort who experience uveitis

relapses despite high levels of immunosuppression (64). Corneal

surface related IMIDs such as PUK Sjögren’s syndrome or GvHD

are also managed with escalating steroid and immunotherapy

regimens in addition to ocular surface protection (55, 56, 65). The

use of CAR-Treg therapies offers the prospect of an alternative

therapy that may lead to long-lasting immunosuppression with a

localised treatment effect and help reduce the ongoing need for higher

doses of steroid therapies which themselves cause side effects.

Corneal transplants, including partial- or full-thickness grafts

typically remain stable with topical steroid therapy alone, with often

no ongoing need for medication (66). However, in patients with

higher-risk grafts, ongoing use of higher dose steroid or

immunotherapy regimens may be needed to prevent acute or

chronic graft rejection (57). Further, patients with long-standing

grafts continue to experience acute and chronic rejection, which can

lead to the need for repeat corneal transplantation with a higher risk

of repeated rejection (67). CAR-Treg therapy in these patients may

encourage peripheral tolerance mechanisms that reduce or reverse

the risk of rejection. It is also possible the use of CAR-Treg therapy

at the time of surgery could enhance engraftment and long-term

outcomes. This may also expand the indications for corneal grafts to

include patients with ongoing corneal inflammatory diseases such

as PUK or other ocular surface diseases which currently limit or

contraindicate the use of corneal grafts (57).
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Ocular gene therapies, such as Luxturna, have helped treat

inherited retinal diseases with significant impact (58, 59). Although

effective in providing visual acuity improvements, ocular

inflammation, and immune responses to the gene therapy (both

the viral vector and the transgene product) can lead to reductions in

final visual outcomes, or treatment failures (68). In addition, repeat

treatment may be limited by the development of immune response

against the therapy (68). This may also present a significant barrier

to future use of further gene therapy products for different diseases;

for example if multiple ocular diseases are amenable to viral vector

delivered gene therapies, there is the prospect of recurrent immune

responses triggered by repeated use of immunologically cross-

reactive AAV capsids for different gene therapy products (69).

Given the high costs of in current gene therapies (70, 71), which

may limit access to one attempt at treatment, any enhancement of

therapeutic success modifying immune responses will bring will be

highly cost efficient. CAR-Treg therapy in this context may be

delivered at the time of gene therapy and help reduce accompanying

immune responses, and perhaps limit future responses to re-

treatment. An example of the application of CAR-Treg therapy in

gene therapy has been developed in an AAV specific CAR-Treg

which helped reduce immune responses directed against both the

AAV capsid and the transgene product, thereby providing initial

evidence of bystander suppression of the CAR-Treg (72).
Challenges to translating
CAR-Treg therapy

To realise the potential of CAR-Treg cell therapies in

ophthalmic care, barriers to their safe translation will need to be

overcome. The use of antigen-specific CAR-Treg therapy helps

address concerns of the development of general ised

immunosuppression from polyclonal Treg therapies, with the

ensuing loss of tumour surveillance or risk of viral infection (21).

Other challenges include improving stability and maintaining Treg

functionality in CAR-Tregs – Tregs exposed to inflammatory

environments can switch to an effector phenotype. This could

lead to the opposite intended effect with CAR-Tregs with

immune responses upregulated at the site of disease (24, 25). In

addition, there is also the requirement for CAR-Treg treating

centres having the capacity to produce CAR-Tregs safely and

reproducibly (29).

The hurdles to successful CAR-Treg production arise initially

with the design and validation of suitable antigen targets which are

expressed specifically in the tissues of interest to treat. The ideal

targets for a CAR antigen binding domain having limited

expression in other tissue or organ sites (11). These can be

antigens associated with disease states or autoantigens expressed

by tissues in the affected sites, leveraging the properties of bystander

suppression of CAR-Tregs (15). At present there are limited

published sequences of eye specific autoantibodies to guide CAR

design, hence other techniques to initially characterise antigen

binding domains such as the use of hybridoma or phage display

might be considered (73). Alternative approaches, targeting
Frontiers in Ophthalmology 05
antigens associated with disease states and damaged retinal tissue

may also prove valuable in eye disease, as achieved elsewhere with

CV specific CAR Tregs which are being investigated for RA (43).

Ocular IMIDs with pathophysiology related to antibody production

such as GvHD (55) or PUK (56) may also benefit from CAR-Treg

therapies that directly suppress B-cells (46, 47). Further

considerations in CAR design of the intracytoplasmic part of the

receptor include the use of co-stimulatory domains and whether

these can enhance the immunosuppressive properties of Tregs (29).

2nd generation CD28 CARs appear to have greater stability

compared to OX40 2nd generation CAR (74). Further

modifications of CAR design have been investigated in promoting

safety of the CAR through inclusion of suicide genes, to allow

CARTregs to be killed efficiently should adverse proliferation occur

(23). Additional modified CARs have been developed which can

improve Treg lineage stability of CAR-Tregs by, for example, FoxP3

over-expression, or incorporating gene silencing of IL-17 (23).

Techniques to transfect CARs into Tregs, commonly using viral

vectors such as lentivirus or retrovirus, also risk insertional

mutagenesis from DNA integration risking neoplasia (28).

Alternative approaches leveraging guided transgene delivery may

increase the safety profile of CAR-Treg therapies (75). Use of such

techniques allows for more physiological expression of the CAR by

e.g. linking the transgene to the TCR promotor region when

combined with TCR knockout (76). Alternatives to viral vectors

are also being explored such as use of liposomes or electroporation

however these currently have low transduction efficiency (77).

Currently autologous CD4+ cells are the source of Tregs for

CAR-Treg therapy, however patients with autoimmune diseases

have evidence of deficiencies in Treg function (78, 79). This may

affect the efficacy of CAR-Tregs produced using autologous Tregs

from these patients as an adoptive cell therapy. Gene editing

techniques can be leveraged to remove MHC related genes

allowing the use of allogeneic Tregs to produce CAR-Treg

therapies (80), this could help resolve barriers related to deficient

autologous Treg function in patients with autoimmune conditions.
Concluding remarks

Future pre-clinical studies are needed to develop proof of

concept of use of CAR-Treg therapy of ocular conditions, in

parallel with ongoing research to reduce the costs associated with

CAR-T therapies, and thereby improve access in future. To deliver

this technology initial hurdles need to be overcome. An important

step will be the generation of a library of ocular specific antigenic

‘targets’ for CAR antigen binding domains to be developed towards.

Further steps toward translation will include demonstration of

trafficking of CAR-Tregs into the eye based on the CAR antigen

binding domain, and the impact this will have on future treatment

modality, for example, intravenous or intravitreal delivery.

Applying CAR Treg therapy to ocular conditions may provide a

novel disease modifying treatment modality to supplement or

enhance current treatment options for severe inflammatory

ocular disease.
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